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For the analysis of transient two-phase flows in nuclear reactor components, a three-dimensional thermal hydraulics
code, named CUPID, has been developed. The CUPID code adopts a two-fluid, three-field model for two-phase flows, and
the governing equations were solved over unstructured grids, which are very useful for the analysis of flows in complicated
geometries. To obtain numerical solutions, the semi-implicit numerical method for the REALP5 code was modified for an
application to unstructured grids, and it has been further improved for enhanced accuracy and fast running. For the
verification of the CUPID code, a set of conceptual problems and experiments were simulated. This paper presents the flow
model, the numerical solution method, and the results of the preliminary assessment.
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1. INTRODUCTION

A realistic simulation of two-phase flows is essential
for the advanced design and safe operation of a nuclear
reactor system. The need for a multi-dimensional analysis
of thermal-hydraulics in nuclear reactor components is
further increasing with advanced design features, such as
direct vessel injection systems, gravity-driven safety
injection systems, and passive secondary cooling systems.
Because of the complicated multi-dimensional flow effects
and/or the reduced driving force in comparison with
conventional active systems, more detailed analysis with
enhanced accuracy is required. The use of computational
fluid dynamics (CFD) codes for a more detailed analysis
of two-phase flows has been studied extensively and such
codes are known to be very promising [1-4]. But the
modeling capabilities of most of the current CFD codes are
limited to certain two-phase flow regimes and, furthermore,
the use of these codes requires a huge computational cost
[5]. Thus, the direct use of two-phase CFD codes for system
transient analysis is not likely to be practical for a few
decades. In this regard, the concept of a “multi-scale’ analysis
has been developed; this system aims at advanced simulation
by adopting the combined use of different scale computational
tools, such as system codes, component codes, CFD codes,
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and the smallest possible scale codes [6,7].

KAERI has developed a three-dimensional thermal
hydraulics code, CUPID [8-12], for the analysis of transient,
multi-dimensional, two-phase flows in nuclear reactor
components. The code was designed for use as a component-
scale code, and/or a three-dimensional component, which
can be coupled with a system code. In the CUPID code, a
two-fluid three-field model is adopted for two-phase flows,
and the governing equations are solved on unstructured
grids, which are very useful for the analysis of flows in
complicated geometries. In two-phase momentum equations,
non-drag forces [10], such as lift, wall lubrication, and
turbulent dispersion forces are modeled in addition to the
interfacial drag forces. These features distinguish the
CUPID code from the three-dimensional components of
system codes such as RELAP5-3D [13] and CATHARE
2 [14]. The physical modeling and the numerical solution
method of the CUPID code put emphasis on versatile and
robust simulations of complicated two-phase flows. This
is based on a practical need to overcome the shortcomings
of existing CFD codes and the three-dimensional component
of system codes. For example, downcomer boiling during
the reflood phase of a large-break, loss-of-coolant accident
has been an important issue in the advanced reactor
development [15]. It is characterized by the combined
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effects of boiling due to heat transfer from the downcomer
wall, multi-dimensional counter-current flow, lateral motion
of bubbles, flow regime changes, bulk condensation, and
phase separation. The system codes, such as RELAP5/MOD3
and MARS [16], were not applicable to the realistic
analysis of the phenomena, and some commercial CFD
codes failed to yield a converged solution. Instead, the
issue was addressed through experimental research.

This paper presents an overview of the CUPID code
development and preliminary assessment, mainly focusing
on the numerical solution method and its verification. In
Section 2, the governing equations and closure relations
for two-phase flows are presented. Section 3 gives the
numerical solution method, which includes the unique
features of the CUPID code such as the improved numerical
scheme for fast running, second-order upwind scheme
for the convective terms, and a new scheme to calculate
the pressure gradient on unstructured grids. Section 4
presents the results of the preliminary assessment. The
heat conduction model also plays an important role in the
CUPID code. Description of the heat conduction model,
however, is skipped here. It should also be noted that the
preliminary assessment in Section 4 puts emphasis on the
verification of the numerical solution method rather than
on the validation.

2. GOVERNING EQUATIONS AND CLOSURE
RELATIONS FOR TWO-PHASE FLOWS

To describe two-phase flows, a transient two-fluid
three-field model is adopted in the CUPID code. The
three fields represent a continuous liquid, an entrained
liquid, and a vapor field [16,17]. The three-field model is
particularly useful for modeling the thermal-hydraulics
of a reactor core and containment during a hypothetical
large-break loss of coolant accident. The CUPID governing
equations take into account the porosity concept to model
the two-phase flows at the component scale. However,
for simplicity, the concept is omitted in this paper.

2.1 The Governing Equations of the Two-Fluid
Three-Field Model
At first, the mass, energy, and momentum equations
for each field are established separately and, then, they
are linked by the interfacial mass, energy and momentum
transfer models. The continuity equation for k-field is

0
a(akp/;)+v'(akpkl'_‘k) = Qk s (l)
where

Q,=r,,
Q =—(-ml, =S, + Sy
Q,=-nl, +S8; —Spg»

n=a,(a +a,).
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The non-condensable gases, when present, are contained
in the vapor field, and these are assumed to move with
the same velocity and have the same temperature as the
vapor phase. Thus, the continuity equation for the total
noncondensable component is given as

o
5 (@PX)+V (a,p,X,u,) =0, 2

where the noncondensable gas quality X, is defined as the
ratio of the noncondensable gas mass to the total gaseous
phase mass.

The momentum equation for k-field is:

0
E(Qkpkgk)_'_v'(akpk’éklik) =

~o,VP+V [, (z, + )+ p g+ My + M, ©)

where Mi is the interfacial momentum transfer due to
interfacial drag, virtual mass, and interfacial mass transfer.
MP is the interfacial momentum transfer terms due to
non-drag forces. The turbulent viscosity is obtained by
using the standard k-& model or the mixing length model.

For the energy equations, it is assumed that the continuous
liquid and the entrained liquid are in a thermal equilibrium,
i.e.,, Ta=T,and ps = p [16]. As a result, only two energy
equations are used, i.e., one for the vapor field and one
for the combined liquid field:

L (@pe)+V-@pen)

o
=E)-P—a ~PV-(au)+0, -0, 4

o
£ [A-a)pel+V -y, +a,u,)pe]

B =P L)~ PVt au)+ 0,400 (9)

where E® includes the k-phase conduction, turbulent
energy source, and viscous dissipation.

2.2 Interfacial Heat, Mass, and Momentum
Transfers

The interfacial energy transfer terms, Qi and Qi, in
Egs. (4) and (5), are modeled as:

P
0, =—H,[T,

P (P)=T)1+T A, (6)

at

0, =H,[T,,(P)-T]1-T A, )

where the first terms in the right-hand side of Egs. (6) and
(7) are the bulk interface heat transfer and the second terms
are the interface energy transfer due to interface mass
transfer. Ps is the steam partial pressure. The interface
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enthalpies h,i and h; are defined in such a way that the
interface energy jump conditions at the liquid-vapor
interface are satisfied [13]. Because the sum of Q, and Qi
is zero, the volumetric vapor generation rate is represented as:

B HL T, (P) =T+ H T, (P) - T))
L .

hvi - hn (8)
The term Qu in Egs. (4) and (5) is the sensible heat
transfer rate per unit volume at the noncondensable gas-
liquid interface:

P-P
0, == H,(T,~T)
P
P,
=2 H, (T, 1), ©

where H, is the sensible heat transfer coefficient per unit
volume and P, is the noncondensable gas partial pressure.
The multiplier based on the pressures is an ad-hoc function
used to turn off this term when there is no noncondensable
gas [13].

The interfacial momentum transfer term, M in Eq.
(3), includes the interfacial drag, the momentum exchange
due to the interface mass transfer, and virtual mass force.
For simplicity, the virtual mass term is omitted hereafter
and M is written as:

M, =F,@u -u)+F,u,—u)+Tu,, (10)
M, =F,u,—u)—(-mT u,; —S,u,+Su,, (11)
M, =F, @, —u,)—nlu,+Syu,—Spu,, (12)

where F’s in the right-hand side of Egs. (10) through (12)
are the coefficients for the interfacial drag forces. The
interface velocities, Uy, are needed to obtain the interfacial
momentum transfer due to the interface mass transfer.
These are determined using a donor formulation concept
[13]. The non-drag force term, M&® in Eq. (3), represents
the forces acting perpendicular to the mean flow direction,
including the lift, wall lubrication, and turbulent dispersion
terms [10].

2.3 Constitutive Relationships and Equations of the
State (EOS)

For mathematical closure, the undefined terms and
coefficients in the right-hand side of the governing
equations should be given as functions of the independent
state variables and phasic velocities. These require physical
models for interfacial area concentration, interfacial heat
and momentum transfer, non-drag forces, droplet entrainment
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and deposition, and wall heat transfer model. Because all
these are dependent on a two-phase flow regime, they
again require some relevant models. All these constitutive
relations of the CUPID code [10,12] were adopted from
the state-of-the-art two-phase flow codes.

Equations of the states are also needed. In the CUPID
code, the phasic density and temperature of the liquid
field are expressed as functions of the pressure and
internal energy:

o =p(Pe), (13)

I,=T,(P.¢) (14

The properties for the gaseous phase are calculated
assuming a modified Gibbs-Dalton mixture of steam and
an ideal noncondensable gas:

P, = pv(P3e\’5 Xn)’ (15)
T,=T,(Pe,X,), (16)
P =P(Pe,X,). )

The saturation property is represented as a function of the
pressure:

T =T(P). (18)

3. NUMERICAL SOLUTION METHOD

In this section, the basic CUPID numerical solution
method [8] is described first. Then, the unique features of
the CUPID code are presented, such as the improved
numerical scheme for fast running, the second-order
upwind scheme for the convective terms, and a new
scheme to obtain the pressure gradient.

3.1 A Semi-Implicit Numerical Solution Scheme

In the CUPID code, the finite volume method is applied
to the integration of the governing equations on unstructured
grids. All of the system variables of pressure, velocities,
volume fractions, and energies are defined at a cell center.
The cell-faced values are interpolated using the cell-
centered values. Figure 1 shows an example of an unstructured
grid in two dimensions, where j is the neighboring cells
of cell i, f is the face number of cell i, and S is the area
vector of the face f between cell i and j.

The solution algorithm of the CUPID code is based
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Fig. 1. Control Volumes and Geometric Vectors for a Finite
Volume Discretization

on the semi-implicit method of the RELAPS code [13,18]
with some modifications for application to unstructured
non-staggered grids. In the RELAPS code, the momentum
equations in Eq. (3) are solved in the non-conservative
form for numerical convenience as follows:

oii _ L
& Py ai; + oy iy - Vi + 10,

=-—q,VP+V [ (7, +Tkr)]+akpk§+M[k +M;\YD‘ (19)

However, in the CUPID code, a semi-conservative form
is used, which is closer to the conservative form but still
maintains the numerically convenient feature of the non-
conservative form:

o, . . _ _
& Py % +V- (akp/:ukuk )_ TAS (a/:pkuk )+ AN

=-o,VP+V [ (7, +7])] +oyp 8 +M,, "'M:/D' (20)

The semi-conservative form in Eq. (20) is still non-
conservative in time but conservative in space. Eq. (20)
reduces to Eq. (3) in a steady state; in other words, the
semi-conservative form becomes a conservative form in
the case of a steady state. The numerical advantages of
this method were presented by Park et al. [9].

To obtain the numerical solution of the two-fluid
equations, at first, the momentum equation, Eq. (20), is
integrated over a cell i, as shown in Fig. 1. My and the
pressure gradient term in Eq. (20) are treated implicitly,
whereas the convection and diffusion terms are calculated
explicitly. Then, the phasic momentum equations are
spatially not linked and we can obtain three simultaneous
linear equations with three unknown phasic velocities,
U'ki. The superscript * indicates a temporal value. After
solving the phasic momentum equations, we obtain the
temporal phasic velocity represented by

w, =y + VP, (21)
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where y'%; includes the explicit convection, diffusion, and
body force contributions and f; is the coefficient of the
pressure gradient. The new velocity is implicitly linked to
a new pressure from the momentum equation as given by:

uy) =y, + B VP (22

Subtracting Eq. (21) from Eq. (22) gives:

u! g:,’, + B VP, (23

Zkii

where P'i(=P;""'-P") is a pressure correction that will be
determined from the coupled mass and energy equations.

Next, the six scalar equations, Egs. (1), (2), (4), and
(5), are integrated over the cell i. In this step, the convection
terms are treated by using implicit velocities, but the
convective quantities, such as the volume fraction, density,
and internal energy are treated explicitly. The interfacial
heat and mass transfer terms are treated implicitly. For
the non-linear terms, first-order Taylor series expansions
at the old time steps are used to linearly obtain variables
at the new time step. For example, the vapor continuity
equation is discretized and linearized as follows:

v, n+
(pa' +a,p'), E+Z(a‘,p‘,) S, =
f

V. P e n " n
- W |:?? Hiv (TZ'ar = 71\/ +l) + Hil (71'1171 - 7; Jrl):|i7 (24)

where the new time temperatures are linearized as:

T T, T
TSZ,H — T;Z/ + a sat Pv+ a sat e|v+ a sat th ,
P e, ox

T T T
TV"“ =T +LP'+L6'V+LX'” ,
oP Oe oX,

v n

n

T =7 +%P'+%e',.

oP Oe,

This is repeated for other scalar equations and the resulting
linear equations are ordered in the following sequence:
(1) the noncondensable gas continuity equation, (ii) the
vapor energy equation, (iii) the total liquid energy equation,
(iv) the vapor continuity equation, (v) the entrained liquid
continuity equation, and (vi) the continuous liquid
continuity equation. These linearized equations are
rearranged with respect to the six independent scalar
variables (X'n,e'v,e",a'v,0'q,P") as:

A =5+ 2.0 Vi ()
ok
where Ai is a 6 X6 coefficient matrix obtained from the
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above-mentioned six scalar equations,
Xi : the solution vector, x;=col(X',,e",,e",a'v,a's,P"),
Wit : phasic volume flow at the cell face ij, Wii' =
Ui - S
si and Cy; : coefficient vectors (known).
For instance, the coefficient vectors for the vapor-phase
continuity equation are given by

Cor :(avpv)f’
Cir =0,
Cay =0,
v .
§; == ]’l —]’l |: ;v(sa[_T )+H11( sat T;)j|,

The solution vector is obtained by multiplying Eq. (25)
by é\i'l.

X = é;lﬁf +Zé,‘ilz§k>/\y:f} : (26)
7 %

The volume flow of W{t! is obtained by applying a
divergence operator of V- to Eq. (23) and integrating it
over the computing cell i:

S S | N

Substituting Eq. (27) into the sixth row of Eq. (26) yields
a pressure correction equation of

[HZQ‘]P'I’_ZQP'}:BN (28)
f f
where

| f|Z(A Ck/) ﬂk./ >
:(é,- §f)6 +;;(é;]§/ﬂf )ka /

By repeating this procedure, we can establish an N XN
system of linear equations for the new time pressures for
N computing cells, resulting in a non-symmetric matrix.
An iterative method like the conjugate gradient method
could be used to get a solution from the linear equation.
After solving Eq. (28), the new time phasic velocity ugi*
and volume flow Wit are determined from Egs. (23) and
(27), respectively. Finally, the scalar variables are updated
from Eq. (26) and the remaining state variables, such as
density and temperature, are calculated using the EOS.
One can show that the interpolation of a new time
phasic velocity at a cell face [19] is identical to the Rhie-
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Chow scheme [20].

'

uy =F@ u)-F(B.. B, | = | ~F(VP',VP' )} (29)

where F(@i,¢;) is a linear interpolation function with a
distance weighting factor of &:

F((ﬂi,(ﬂ_f)zf(?/+(l_§)§0f- (30)

3.2 An Improved Numerical Solution Scheme for
Fast Running

The asymmetric system matrix of Eq. (28) requires
long computational time to solve and it is sometimes hard
to get the converged solution, especially when the number
of cells is very large. In the new numerical scheme, the
pressure calculation procedure is modified so that the
pressure matrix becomes symmetric. Combining the mass
conservation equations of Egs. (1), (2), and (3), we obtain:

Zl(vlakpkuk)iz[gk—zia(a”;j. (31)

& P P

Equation (31) is integrated over the cell i in the same
way as described in Section 3.1:

1 " QI{‘Fl [
zp (V QP Uy 1) :ZA:(#_a_kﬂ] (32)

P i P P AL,

where variables without superscript are the old values.
Thereafter, Equation (23) is substituted into Eq. (32) to
eliminate the new time velocities. Two unknowns in the
right-hand side of Eq. (32) are represented by

0, 3, 0, 0

QM2 +—Epr—Le + e\ +—E X, (33
oP Oe, Oe, oxX
op, 8p,
' P _e|> . 34
P [apj de, ¢ (39

To obtain a pressure equation from Eq. (32), the unknowns
X and € are eliminated by using the following approximation:

~ S n—1 ' n __ yn-l
e\ ~e/—¢ ,and X, =X —-X".
Then, the pressure equation becomes:

DP'+Y D,P', =D} (35)
-
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where
(Olkp/(ﬁ/()/ [ 1 6Q,j [ak 6p,j V.
D, = EAV Y | 2R L,
Z; Prs |dr,\ Z p, OP ) Zk:pkapl t
LA
k pk,,'
P gl T L
ZZ a/pA \Pkf+z[pk1 LV ;[Pk 6ekek]l A

Q=+ an e+ X, e+ X, X,
Oe, Oe, oxX,

v

The phasic density differences between neighboring cells
are very small, so that the coefficient matrix of Eq. (35)
is actually symmetric. Because of the symmetric pressure
matrix, a fast computation is possible in comparison with
the asymmetric matrix of the previous method in Section
3.1. After obtaining the new pressures, the remaining
calculation sequence is the same as that in the previous
method.

This scheme was found to be very useful when the
number of computational cells is greater than about
10,000 [11]. But it was slightly less robust than the basic
semi-implicit scheme in Section 3.1. Thus, the combined
use of the two schemes was devised and tested.

3.3 A Second-order Upwind Scheme for the
Convective Terms

In the previous versions of the CUPID code [8], the
convective quantities were approximated by the first-
order upwind scheme. To enhance the numerical accuracy,
a second-order upwind scheme was developed. The
convective terms in the mass and energy equations are
discretized as follows:

IV'(akpk¢ka)dV z;(akpkwk ),-(lPk ):H > (36)

where ¢ are 1, €, and X, for the k-phase continuity
equation, the k-phase energy equation, and the continuity
equation for noncondensable gases, respectively. In the
momentum equations, Eq. (20), two convective terms are
included and are discretized as:

J.[V (g puu)—u, V(o pu, )] av

~ Z(akpk Uy )/ (‘{jk )’; Uy Z(akpk )_1 (\pk )’; : (37)

The convective quantities in Egs. (36) and (37), such as
(awpi)s, (ap)r, (0tgPeXn)i, and (ouoUk)s, are hereinafter
denoted by (6).. These quantities are assumed to be
distributed in a piecewise continuous manner, which
indicates that the data on either side of a cell face may be
discontinuous. The unique convective quantity at a cell
face is then obtained by using an upwind method from
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Fig. 2. Face Value Evaluation for the Upwind Scheme

two distinct convective quantities, 8~ and 6, depending
on the sign of the normal velocity at a cell face, as shown
in Fig. 2.

For the first-order upwind scheme, the data was assumed
to be constantly distributed in a cell, and consequently
two convective quantities on a face can be directly obtained
from the values at the cell centers as follows:

0) - 0 =0 if (¥),20
@ =19 _g if (), <0

J

(38)

In the second-order upwind scheme, the assumption of
piecewise constant cell distribution in the first-order
scheme was replaced by linear distribution. The data are
extrapolated to the cell face using a Taylor series expansion
about the cell center so that the convective quantities on
the face are given by:

if (¥),20

if ), <0 (39)

o), = 0 =0,+(V0), dx,
( )/-7 9+:ej+(vg)/.@ﬁ

where dXy represents the vector extending from the cell
center to the center of the cell face. Equation (39) requires
the evaluation of the gradient V0 at the cell center. This
gradient can be reconstructed by using a Green-Gauss
theorem or by taking a least-squares approximation to the
neighboring cells. Various methods have been proposed
according to the contour path for the Green-Gauss
reconstruction or the support of the stencil for the least-
square reconstruction. Among those, Frink’s method,
originally developed on tetrahedral cells [21], was modified
to evaluate the gradients on arbitrary polyhedral cells, in
which the data are interpolated to the nodes first and the
gradient is then evaluated using the Green-Gauss theorem
along the path of a cell. The gradient at cell centers in a
polyhedral cell is expressed as:

|
=VZ,:9/§/ > (40)
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where

M

ny
0., /n,
i

represents a cell face value calculated by the interpolation
of the face node values and n, denotes the number of
nodes on the face. The node value 6, is determined by a
weighted average of the surrounding cell center values,
as shown in Fig. 3:

0,=3 w0,/ Sw: (41)

where w; and n. refer to the weighting factor for a surrounding
cell and the number of surrounding cells adjacent to the
node n, respectively. The weighting factor was determined
by using the pseudo-Laplacian method, which is fully
second-order accurate [21]. Since Frink’s reconstruction
has two interpolation procedures, one from cell centers to
a node and the other the Green-Gauss integration for the
gradient evaluation, this method increases the support of
the stencil and consequently smoothes the computed
gradient for a highly distorted cell, thus enhancing the
stability of the overall scheme.

The first-order upwind scheme in Eq. (38) can obtain
stable solutions without non-physical oscillations in the
presence of discontinuities, due to the monotonicity
properties on arbitrary polygonal control volumes [22].
However, it is well known that high-order numerical
schemes produce spurious oscillations in the vicinity of
discontinuities, which can lead to numerical instabilities
and unbounded solutions. To stabilize the numerical
solutions of the second-order scheme for two-phase flows
in which discontinuities might be present in convective
quantities, a slope limiter, ®, was applied to Eq. (39):

(g)f_{9=0‘+d>,.(ve)y_.d_x,,» if (¥),20 @)

0'=0,+®,(V0) -de, if (¥),<0

Two multi-dimensional slope limiters of Barth and
Jesperson [22] and Venkatakrishnan [23] have been

Fig. 3. Frink’s Pseudo-Laplacian Weighting Method
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widely used in the context of unstructured finite volume
frameworks. Barth and Jesperson’s limiter was designed
to satisfy the monotonicity principle by imposing strict
restrictions for reconstructed variables not to exceed the
maximum and minimum of neighboring cell values.
However, it was shown to stall the convergence to a steady
state due to the use of non-differentiable functions, such as
max and min. To improve the convergence characteristics,
Venkatakrishnan developed a new limiter by using
differentiable functions at the expense of monotonicity.
The limiter of Venkatakrishnan has a user-defined
parameter that severely influences the convergence and
oscillation-removal capability. This makes it difficult for
the limiter to be applied for general-purpose solvers. Due
to this unfavorable aspect of Venkatakrishnan’s limiter,
the limiter of Barth and Jesperson is optionally used:

q)i:rnin(¢l’¢2"“’¢n/>,)7 (43)
where ny; is the number of faces at a cell i,

min(LA,.,/A,), if A,;>0

‘max,i

¢, =qmin(L A, . /A), if A, <0>
1, ifA; =0

Ay = X0, 0310, ,0) 0

Ay =000, 6,6, ,6)— 6

iy :(9/ )/ —0..

The convective quantities should be carefully calculated,
especially when o is very small. For example, (o)
and (axpxex)r obtained by Eq. (42) should satisfy the
following restriction:

min(e,‘)‘.,e,\,_/.) < (a/(p/‘ek ), /(O%Dk ),- < max(ek.i5ek,j)'

If the above restriction is not satisfied, the convected
internal energy can be extremely small or great, leading
to unphysical results. Therefore, to avoid any unexpected
difficulties, the slope limiter was set to zero if & << &,
where ¢ and &, are set to 10 and 107, respectively.

3.4 A New Scheme for the Pressure Gradient
Calculation

In the previous versions of the CUPID code [8,9], the
pressure gradient at a cell center was evaluated by using
the Green-Gauss reconstruction method:

1
VE =3 2B, (44)
o f

where the subscript f indicates the faces of the cell 0. In
the case of a two-dimensional mesh, the pressure at the

285



JEONG et al,,

face f was determined by:

_wh +wh
By = M

(45)

Wy + w

where P;: the pressure at the cell 1, which is connected to
the cell 0 via the face f,

1

>
||)_Cf —X ||

(46)

1
R @

This method, i.e., the Green-Gauss reconstruction with
inverse-distance weighting, has second-order accuracy
on structured meshes, but may have some error for skewed
unstructured meshes. To overcome this problem, Frink’s
reconstruction was adopted in the new version of CUPID;
the cell face pressure was calculated by the interpolation
of the face node pressures:

B

-L(B+B) “9

where P, and P, are the pressure at the nodes a and b,
consisting of the face f. The pressure at a node is obtained
by the method in Eq. (41). Frink’s reconstruction provides
second-order accuracy on both structured and unstructured
meshes.

The reconstruction of the pressure gradient at a boundary
cell is somewhat different from that at inner cells because
of the interpolation error of the pressure at the boundary
face. For example, by using the Green-Gauss reconstruction
method, the pressure gradient at a boundary cell can be
underestimated if the pressure at the boundary face is
assumed to be equal to that at the boundary cell center.
To mitigate this error in the CUPID code, the pressure
gradient at the boundary cell was evaluated by the least-
square reconstruction method. In this method, the pressure
surrounding a given cell 0 was assumed to be linearly
distributed as:

P(x)=F+VE-(x—x,). (49

Supposing that the pressures at the neighboring cell centers,
P;, satisfy Eq. (49), an over-determined system is obtained
for the gradient VPy:
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where Nnei denotes the number of neighboring cells for
the cell 0. The gradient at the cell center can then be
determined by solving the over-determined system in a
least-square sense. This method greatly enhances the
accuracy of the pressure gradient at the boundary cells.
However, the results of some numerical tests showed non-
negligible error at the boundary cells of skewed unstructured
meshes.

Therefore, a new iterative method based on Frink’s
method was developed to evaluate the pressure gradient
at the boundary cells. The iteration sequence is:

(a) The node pressure P, is determined by Eq. (41), i.e.,

z WP, Zw (1)

where the weighting factor is determined by using the

pseudo-Laplacian method.

(b) The pressure at a cell face Ps is calculated by using
the node pressures P.. In the case of a two-dimensional
mesh, Ps is calculated by Eq. (48).

(c) Using the Green-Gauss method, the pressure gradient
at a cell center is reconstructed:

1

- ; Sy (52

V

(d) Using the reconstructed pressure gradient in Eq. (52),
the node pressure at the boundary is updated as follows:

P = — Z[P +VE, x -x, )J (53)

Lrl

(e) The above steps (b) through (d) are repeated until the
node pressure at the boundary converges to a certain
value, i.e.,

new
R’l - n

crit *

To assess the accuracy of the above iterative methods,
a simple test function in a two-dimensional space was
introduced:

S () =X+ y. (54
Then, the gradient of f. is exactly obtained:
VS, =it).
For the numerical tests, a structured grid and an unstructured
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grid, shown in Fig. 4, were used with the following three

numerical methods for evaluating the gradient:

(a) GG(IDW)+LS(B): The Green-Gauss method with the
inverse distance weighting for the internal cells and
the least square method for the boundary cells.

(b) GG(FRK)+LS(B): The Green-Gauss method with
Frink’s reconstruction for the internal cells and the
least square method for the boundary cells.

(¢) GG(FRKrer): The Green-Gauss method with Frink’s
reconstruction for the internal cells and the new iterative
process for the boundary cells.

In the numerical test, the cell center values were
exactly obtained from Eq. (54). Then, the gradients at the
cell centers are numerically obtained by using the above
three methods. The results of numerical tests are shown
in Fig. 4, where the absolute value of the difference
between the numerical and exact gradients is presented
[24]. The errors generated in the corner boundary cells
tend to propagate into the inner cells when the first two
methods are used. However, the new iterative method,
GG(FRKrr), yields very accurate results for both the
structured and unstructured grids. The numbers of
iterations were about 30 for structured meshes and about
90 for unstructured meshes, where & was 10”. This
requires additional computation time, but the increment
is negligible because the number of boundary cells is
smaller than that of internal cells. The numerical tests
using the well known cavity problem also showed that
the new iterative method leads to the most accurate results
for both the structured and unstructured grids [24].

4. RESULTS OF THE PRELIMINARY ASSESSMENT

Verification and validation [25] are the most important
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GG(FRK)+LS(B
(a) Structured

GG(FRKirer)
g , 400 cells.

GG(FRKrer)
(b) Unstructured grid, 924 cells.

Fig. 4. Errors of the Gradients of the Test Function with Different Numerical Methods and Grids

steps in a code development process. The verification is
the assessment of the software correctness and the numerical
accuracy of the solution to a given computational model.
Meanwhile, the validation is the assessment of the physical
accuracy of a computational model based on comparisons
between computational simulations and experimental
data. The CUPID code was systematically verified using
various conceptual problems. The validation was under
progress in a limited range. This section introduces the
results of the preliminary assessment, mainly focusing on
the verification.

4.1 Conceptual Problems for the Verification

To verify the CUPID code, various numerical tests
were conducted. Table 1 summarizes the conceptual
problems for the verification. These problems are divided
into four groups:

(a) Steady-state flow problems were used to confirm
whether the scalar equations were solved correctly.
That is, the mass and energy flow rates were compared
at the inlet and the exit of the computation domain,
and the relative errors of the two-phase flows were
found to be less than 107,

(b) The phase change problems were used to confirm the
integrity of the numerical algorithm when a phase
appears or disappears. Boiling, flashing, and condensation
were tested. All these are concerned with the scalar
equations [8].

(c) The phase separation problems were related to the
momentum equations, in particular, the interfacial
drag force and gravity. In manometric flow oscillations
and dam break problems (see Section 4.6), the phases
are already separated and the hydrostatic head drives
the flow transient, leading to an equilibrium state.
Most of the terms in the momentum equations were
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Table 1. Conceptual Problems for the Verification of the CUPID Code

Problems

Remarks

(a) Conservation

- One-dimensional, steady-state liquid flow with a heat source
- One-dimensional, steady-state steam flow

- One-dimensional, steady-state two-phase flow

- Two-dimensional, liquid flow

(b) Phase change (Flow transitions)
- One-dimensional, boiling flow
- Two-dimensional, flashing flow
- Three-dimensional, boiling flow
- Cavitations with a sudden contraction and a condensation

(c) Phase separation

- One-dimensional, air-water phase separation by gravity
- Two-dimensional, air-water phase separation by gravity
- Two-dimensional, air-water manometric flow oscillations

Use both structured and
unstructured grids

- Two-dimensional, dam break

(d) Treatment of noncondensable gases

- Three-dimensional, steady-state air-water two-phase flow

involved in the calculations.

(d) A three-dimensional steady-state air-water two-phase
flow was simulated to confirm the continuity equations
of liquid and noncondensable gas. To verify the
interfacial mass transfer model under the presence of
noncondensable gas, dry air (X,=1) was injected into
the inlet of the three-dimensional duct and, then, the
noncondensable gas quality X, was observed. X, should
be decreased along the flow path due to the evaporation
of the water vapor and its theoretical minimum can
be determined by the local saturation pressure of the
water. The results revealed that the CUPID code works
well with non-condensable gas, as intended [8].
Through these problems, it was confirmed that the

CUPID governing equations for two-phase flows were

solved correctly on both structured and unstructured

meshes. Some of the results are presented in the following
sub-sections.

4.2 Flow Transitions in a Vertical Pipe

Flow transitions in a vertical pipe were simulated.
The pipe is 0.1 m in diameter and 6 m in length. Slightly
subcooled water at a temperature of 450.95 K is introduced
into the bottom of the pipe. The inlet and exit pressures
are maintained at 1.06 MPa and 1.0 MPa, respectively,
which results in an upward flow in the pipe. A volumetric
heat source, of which the power is given as a function of
time as shown in Fig. 5(a), is imposed on the fluid in the
pipe. In this calculation, a 20 equal-length one-dimensional
grid is used.
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Figure 5(b) shows the volume fraction behaviors of
the vapor, continuous liquid, and entrained liquid at the
exit of the pipe. Up to ~8 s, the flow at the exit is a single-
phase liquid flow and, then, boiling occurs due to the
volumetric heating. At ~ 12 s, the droplet field begins to
appear. Then, the flow reaches a steady state. Reducing
the volumetric heat from 35 s results in flow transitions
from a three-field flow to a single-phase liquid flow. Figure
5(b) shows that CUPID predicts a wide range of flow
conditions and various flow transitions well. The
conservation of the mass and energy are confirmed by
comparing the steady-state inlet and exit flow conditions.
This problem was calculated again using 40, 60, 120, and
240 one-dimensional meshes. Then, the axial void
distributions at 30 s are compared in Fig 5(c), which
clearly shows a mesh convergence of the CUPID code.

4.3 A Two-dimensional Single-Phase Flow

To verify the numerical scheme over both structured
and unstructured grids, a single-phase water flow in an
X-Y plane (0.1 m x0.4 m) was simulated by using two
structured and two unstructured grids. These grids are
shown in Fig. 6(a). The pressures at the inlet (bottom)
and the exit (top) are 1,000,020 Pa and 1,000,000 Pa,
respectively. The water density is 943.0 kg/m® and the
viscosity is set to 0.1 N.s/m* to produce a laminar flow.

A null-transient calculation was conducted to reach a
steady state. Figure 6(b) compares the steady-state Y-
direction velocities at y=0.3 m. Except for the calculation
with the 440 rectangular meshes, the solutions were very
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Fig. 5. Calculation Results of the Flow in a One-dimensional
Vertical Upward Pipe

close to each other. This shows that the semi-implicit
numerical scheme works for both structured and unstructured
grids.
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Fig. 6. Computational Grids and Results of the Two-
Dimensional Single-phase Flow

4.4 Phase Separation by Gravity in a Vertical Plane

A numerical test for the second-order upwind scheme
was conducted using the gravity-driven phase separation
problem [26]. A vertical plane of 1 m X1 m was initially
filled with a homogeneous two-phase mixture of air and
water with a void fraction of 0.5. The fluid motion was
driven by gravity, i.e., liquid water moved downward and
the air moved upward. Two steep void waves travel
simultaneously from the top and bottom ends into the
middle of the vertical plane, which results in the formation
of a sharp interface (liquid level) after phase separation is
complete. Analytical solutions for the phase separation
problem were obtained with some assumptions and
simplified expressions for the interfacial drag force [26].
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Fig. 8. Transient Void Profiles with the First-order Fine Meshes

In the CUPID calculation, the interfacial drag force was
modified to be equal to that for the analytical solution.
Figure 7 shows two unstructured grids for this problem:
236 and 3702 triangular cells were used for the coarse
and fine grids, respectively. Triangular meshes were used
to ensure the validity of the applied reconstruction method
for the unstructured meshes. It is well known that a
discontinuity of convective variables between two cells
can cause unphysical oscillatory numerical results. For
this reason, the limiter of Barth and Jesperson was used
in this calculation. Using this problem, the robustness of
the second-order scheme with the limiter was also tested.
Figure 8 shows transient void profilesatt=1s,2s, 3
s, and 4.5 s, which were obtained with the first-order
upwind fine meshes. The travelling void waves from the
bottom and top of the channel are well simulated qualitatively.
The four results at a fixed time of t=2.0 s are compared in
Fig. 9; these results were calculated with the first- and
second-order methods using coarse and fine meshes. It was
shown that there was convergence toward the discontinuous
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analytical solution with an increased number of meshes.
The more accurate numerical result was obtained with the
second-order scheme, as can be seen in Fig. 9. Unphysical
oscillatory numerical results are not observed in these
calculations, which means that the Barth and Jesperson
limiter, originally proposed for a single-phase compressible
flow, was applicable for a two-phase flow analysis.

Because this test consists of a closed system, total
water mass in the computation domain should remain
constant during the transient. The relative mass error in
the CUPID calculations was less than 2.1 X 10, indicating
that the mass was conserved very well [8].

4.5 Cavitations with a Sudden Contraction

Cavitations with a sudden contraction were simulated.
Figure 10(a) shows the schematic of a sharp-edged
contraction and its computational grid. The length and
height of the left and right parts are (0.016 m x<0.02304 m)
and (0.032 m x0.008 m), respectively. The entire domain
is modeled with 3,875 cells with the smallest size being
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0.00032 x0.00032 m. The left and the right ends were
the pressure boundaries with 0.5 MPa and 0.095 MPa,
respectively. Other boundaries were walls with no-slip
conditions. The water temperature was 346.1 K, which is
28.1 K higher than the saturation temperature at 0.095
MPa. These flow conditions were chosen so that cavitations
would occur near the throat.

This problem was also simulated by using the FLUENT
code, which has a two-fluid model with the fully conservative
form of momentum equations. For this problem, the
isothermal cavitation model neglecting latent heat of
vaporization is used [27]. It is noted that the three-field
model of the CUPID code reduces to a two-fluid model
because the droplet phase does not exist in this problem.
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Phase change by cavitations is modeled by the interfacial
mass transfer term in the CUPID code. The difference in
the phase change models of the two codes can entail
subsequent differences in other results. Thus, a strict
comparison of the two calculations is not very meaningful.
The interfacial drag and virtual mass force are set equal
in the CUPID and FLUENT codes. The first-order upwind
scheme for the convective terms was used in the calculations
to make a comparison.

Figures 10(b) through 10(d) show the steady-state void
distributions of three different momentum equations: the
conservative FLUENT, the semi-conservative CUPID,
and the non-conservative CUPID calculations [10]. Strong
cavitations occur near the orifice after flow separation at
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the sharp edge. The result of the semi-conservative form
is similar to that of the FLUENT code, the void fraction
near the walls increases to the maximum at x = ~0.0034
m. The void distribution after the sharp edge is spatially
very heterogeneous. Maximum local void fractions of the
semi-conservative CUPID and FLUENT codes are 0.91
and 1.0, respectively. Figure 10(d) shows that the void
distribution with the non-conservative form is quite different
from those of the semi-conservative CUPID and the
conservative FLUENT codes. To clearly illustrate the
differences, the vertical void and x-direction liquid velocity
profiles at x=0.0034 m are presented in Figs. 11 and 12,
respectively. The non-conservative CUPID shows poor
predictions of the void profile and the flow field after
separation at the sharp edge. These results show that the
semi-conservative form yields a better solution, especially
for heterogeneous two-phase flows. Thus, the semi-
conservative form is adopted in the CUPID code.

4.6 Dam Break

The dam break experiment is very useful for both the
verification and the validation of multi-phase flow codes.
Experiments by Nagatake, et al. [28] were used for the
verification of the CUPID code. The schematic of the
experiment is depicted in Fig. 13. Initially, the water

Stainless
----- = plate

ry
v

4L

il

Fig. 13. Schematic of the Dam-break Experiment

column was blocked by a stainless steel plate. The plate
was instantaneously pulled up, and then the water behavior
was recorded with a high-speed camera. Case 4 was
simulated for verification; the water column width, L,
was 5.0 cm.

To simulate this problem, both two- and three-
dimensional meshes were used. However, since the two
calculations yielded almost the same results, only the
two-dimensional meshes with 30 X30 and 60 X 60 cells
were used thereafter. Figure 14 shows the calculated
water behavior of the 30 X30 cells. The free surface of
the collapsed water column is well predicted qualitatively,
indicating that the local flow regime concept of CUPID
[12] works as intended. In about five seconds, the water
reaches an equilibrium state. The main parameter in this
experiment is the water front position during the transient.
Figure 15 compares a dimensionless water front position,
x*=x/L, vs. a dimensionless time, t*=t(2g/L)"°. The calculated
water front position in Fig. 15 is not continuous, but rather
discrete, because the water front was assumed to reach a
computational cell when oy < 0.99. It can be seen that, by
using fine meshes, the solution gets closer to the experimental
data, and that the water fronts of the second-order
computations are propagated more slowly than those of

© ——30x30, 1st order
30x30, 2nd order
60x60, 1st order
-— 60x60, 2nd order
m  Experiment

Dimensionless water front position

0 . : . ; . ; .
0 1 2 3 4

Dimensionless time

Fig. 15. Comparison of the Water Front Positions

(a)t=0.0s (b)t=0.3 (c)t=0.45s

(d)t=0.75 s

(e)t=19s (Ht=3.15s (g)t=5.5s

Fig. 14. Results of the CUPID Calculation: Void Distributions during the Transient
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the first order computations, which means that the second-
order scheme is less dissipative. The second-order scheme
does not always guarantee better accuracy. Accuracy is
more concerned with relevant physical models than with
numerical schemes.

Figure 16 shows the total mass behavior during the
transient. Because the test facility is nearly a closed system
in the CUPID calculation, total water mass in the computation
domain should remain almost constant. However, because
there was an opening on the top of the computation domain
to impose a constant pressure boundary condition, this
allowed for little mass flow through the boundary. Figure
16 shows that the total mass is conserved reasonably well
with a maximum relative change of 1.4 X 10,

4.7 Downcomer Boiling

An experimental facility, named DOBO, was designed
to simulate the downcomer boiling phenomena that may
occur in the lower downcomer region during the reflood
phase of a postulated LBLOCA [15]. The DOBO consists
of a test section, a steam—water separator, a condenser, a
heat exchanger, a drain pump, a storage tank, an air
injection and ventilation system, a pre-heater, and an
injection pump. The test section has a rectangular duct
geometry; its dimensions are 6.4 m high, 0.25 m deep and
0.30 m wide. The height and gap size are the same as those
of the reference plant downcomer, but the circumference
is reduced 47.08-fold. One among the four side walls of
the test section incorporates 207 cartridge heaters inside
it to simulate the stored energy release from the reactor
vessel wall. The heated region starts 0.3 m above the inlet,
and ends 1.0 m below the outlet. The major measuring
parameters are the local void fraction, local gas and liquid
velocities, local fluid temperature, differential pressures
along the elevation, pressures, and liquid flow rate.

For the assessment of the CUPID code, an upward
liquid flow test, DOBO-C2-1 Test [29], was selected.
The liquid inlet flow rate and temperature are 3.2 kg/s
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(i.e., 0.0183 m/s at the inlet) and 111.9°C, respectively.
The heat flux from the heated wall is 72 kW/m?, and the
outlet pressure is maintained at 0.16 MPa. Figure 17(a)
shows the schematic of the test. When bubbles are generated
on the heated wall, the liquid near the wall is accelerated
by the rising bubbles. Then, the liquid outside the bubble
region flows transversely toward the heated wall for the
mass balance. The inflow of the relatively cold water into
the bubble region results in a rapid decrease of boiling;
therefore, the void fraction is lowered. The cold water is
heated up again along the wall and the void fraction
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bounces back followed by the liquid flow acceleration.
This phenomenon is repeated, resulting in periodic
generation of bubbles.

In this calculation, it was assumed that the flow behavior
along the width direction is relatively negligible compared
to the axial and depth directions and, hereafter, the test
section was analyzed with a two-dimensional approach,
in order to save computational time. The 18 x 122
computational mesh is shown in Fig. 17(b). Constant
velocity and constant pressure boundary conditions were
imposed on the inlet and outlet, respectively. A constant
heat flux was applied on the heated wall.

To deal with the periodic oscillations of the flow field,
the calculation was continued for a 1500-second problem
time after a quasi-steady state was achieved, and the time
averaged results were used for the comparison of the
computational results and those of the experiment. Figure
18 shows the time-averaged void distribution of the
CUPID calculation.

Figure 19(a) compares the horizontal void fraction
distributions at elevations of 3.5 m and 4.5 m. The CUPID
code with the default bubble size model over-predicted
the void fraction. To investigate which models caused this
discrepancy, a series of sensitivity studies were performed
with various models for the bubble diameter, interfacial
drag and heat transfer models. It was found that the
computational results are highly sensitive in the bubble
size model. The bubble size strongly affects the interfacial
drag and non-drag forces, as well as the interfacial area.
In this regard, a new bubble size model was suggested so
that the bubble size can increase gradually with the void
fraction up to 0.3; the minimum bubble diameter was
restricted by the TRAC-M model [30,31]. The changes
of the bubble size model are summarized as follows [12]:
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Figure 19(b) shows the calculation results with the
modified bubble diameter model. The void distributions
at 3.53 m and 4.5 m were enhanced remarkably. The
overall trend of the velocity profile at 3.5 m was captured
reasonably as well. In the churn flow region, however,
there are still considerable discrepancies of the velocity
profile; in particular, the downward liquid of the calculation
result near the wall region was not observed in the test
results [12]. This assessment result showed that a further
improvement of the physical models of the two-fluid
model is required for the churn-flow region. In a future
study, this issue will be investigated in order to improve
the performance of the CUPID code for multi-dimensional
two-phase flow analysis.

It was revealed through this assessment that a more
systematic approach is needed for the improvement of
the physical models for multi-dimensional two-phase flow,
because there are very complicated interactions between
the momentum source terms. For example, increasing the
interfacial drag coefficient leads to a decrease in the relative
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Fig. 19. Comparison of the Calculated and the Measured Horizontal Void Distributions with Different Bubble Size Models
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velocity and an increase in the void fraction. This again
results in a change in the lift force, leading to a change in
the transverse void distribution. Then, the turbulent
dispersion force is also changed in these interactions. All
these, in turn, affect the interfacial drag force.

5. CONCLUSIONS

The three-dimensional thermal hydraulics code,
CUPID, was developed for realistic simulation of transient
two-phase flows in nuclear reactor components. In the
CUPID code, a two-fluid three-field model was adopted
for two-phase flows. The semi-implicit numerical
method of the REALPS code was extended for application
to unstructured grids and was improved for enhanced
accuracy and faster running. To verify the CUPID code,
a set of conceptual problems and some experiments were
simulated. The calculations were carried out for both
structured and unstructured grids including one-, two-,
and three-dimensional meshes. It was shown that the
numerical scheme was accurate and very robust for the
predictions of single- and two-phase flows, phase changes
and flow transitions due to boiling and flashing, phase
separations, and air-water two-phase flows. Conservation
of the mass and energy was also confirmed, and the
momentum equations worked as designed. Thus it can be
said that the CUPID code was successfully verified. The
results of the downcomer boiling calculations show that
the CUPID code is very promising, but a systematic
approach for the validation and improvement of the
physical models is needed.
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NOMENCLATURE
A Surface area
€x Internal energy of k-phase
g Gravitational acceleration

Hic  Volumetric interfacial heat transfer coefficient
Mic  Interfacial momentum transfer

N Outward face normal vector

P Pressure

Qi Interfacial heat transfer to k-phase

Spe  Droplet de-entrainment rate per volume

Se Droplet entrainment rate per volume
S Surface vector

t Time

T Temperature

Uk Phasic velocity, Ux = Ukl + Vi j + Wik

NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.42 NO.3 JUNE 2010

Ugi Interface velocity of k-phase
X Position vector
Xn Noncondensable gas quality

Greek Symbols

Ol Volume fraction of k-phase, where a,+a,+as=1
At Time step size, t"' —t"

op  ¢"'—¢" where p=X,,e\,8,a,,04q, or P

I, Vapor generation rate per volume

Wy Phasic volume flow

0 Density
Tk Viscous shear stress
T Turbulent shear stress

Q.  Inter-phase mass transfer rate per volume

Subscripts

d Entrained liquid (droplets)

f Saturated water or cell face

g Saturated steam

i Interface

k k-field, i.e., continuous liquid, entrained liquid, or
vapor

Continuous liquid

Noncondensable gases

Steam

sat  Saturated

Vapor (Steam and noncondensable gas mixture)
w Wall

w S5 -

<

Superscripts

n Old time step
n+l New time step
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