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1. INTRODUCTION

The task of selecting preferred solutions by a decision
maker (DM) confronted with multiple objectives can be
difficult when dealing with large Pareto Fronts and Sets,
representative of the best (non-dominated) solutions of the
problem at hand. To make the task feasible, only a small
number of solutions representative of the Pareto Front and
Set should be offered for selection to the DM.

Aid to multiobjective decision making can come from
methods that provide more flexible ways of handling
multiple objectives and DM preferences for optimal
decision making than the quasi-prescriptive methods based
on the aggregation of the multiple objectives into a single
one. In this respect, the importance for the practice of
multiobjective decision making and optimization of
determining and including DM preferences is inarguable.

The particular context of reference for this work is
practical decision making situations concerning the high-
consequence technologies involved in the nuclear power
field. The starting point is the acknowledgment that
technical analyses provide useful decision support in the
sense that their outcomes inform the decision makers
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insofar as the technical side of the problem is relevant for
the decision.

It is further understood that the actual decision outcome
for a critical situation involving a potential for large
consequences typically derives from a thorough process
which combines i) an analytic evaluation of the situation
(i.e., the technical assessment) by rigorous, replicable
methods evaluated under protocols agreed upon by an
expert community and peer-reviewed to verify the
assumptions underpinning the analysis, and ii) a deliberative
group exercise in which all involved stakeholders and
decision makers collectively consider the decision issues,
look into the arguments for their support, scrutinize the
outcomes of the technical analysis and introduce all other
values (e.g. social and political) not explicitly included in
the technical analysis. This way of proceeding allows us to
keep the technical analysis manageable by complementation
with deliberation for ensuring coverage of the non-modelled
issues. In this way, the analytic evaluation (i.e., the technical
assessment) supports the deliberation by providing numerical
outputs of the relevant parameters, possibly to be compared
with predefined numerical safety criteria for further
guidance to the decision, and also all the arguments
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behind the analysis itself, including the assumptions,
hypotheses, parameters and their uncertainties. The ultimate
concern of the DM is to fulfil his or her conflicting
objectives, while satisfying the constraints posed by the
problem itself.

In practice, the technical assessment leads to a
multiobjective optimization problem whose solution is
provided in terms of a discrete approximation of the Pareto
Front and the identification of the corresponding Pareto
Set of solutions. The ultimate purpose of the technical
assessment is to provide the decision makers with a clearly
informed picture of the problem upon which they can
confidently reason and deliberate. On the basis of the
information provided by the technical assessment, the
decision maker (DM) is requested to select one or more
feasible solutions according to criteria which depend on
the decision situation. In the literature, it is well
acknowledged that presenting the DM with too many
alternatives increases the burden of his or her decision
making task.

Different approaches can be undertaken for introducing
DM preferences in the process of searching for solutions;
a common classification is based on when the DM is
consulted: a priori, a posteriori, or interactively during
the search. A priori methods use DM preferences to bias
the search of optimal solutions towards a preferred region,
for example by changing the definition of dominance
([91.[21]), by weighting differently the objectives of the
optimization [18], by assigning reference values (goals)
and priority levels to them [20], by assuming a utility
function describing the DM behavior and interest in the
alternative solutions [7]. Interactive methods require the
direct intervention of the DM in the optimal solution search,
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for example simply to stop an iterative trial-and-error
search when satisfactory results are reached [6] or more
effectively to drive the optimization by ranking and
eliminating alternatives based on indicated preference
strengths ([4].[7].[15].[16] and [17]) or by bounding DM
utility functions by elicited preference information ([3]
and [12]); this is to be done while accounting for the fact
that the consequences of the alternative solutions may not
be completely known, the problem definition may not be
exact and the DM preferences may be only partially known
and even partially inconsistent. A posteriori methods, on
the other hand, apply DM preferences only after the
solutions of the Pareto Front are found; the selection task
by the DM can be difficult when the Pareto Front contains
a large number of solutions. To make the task feasible,
only a small number of solutions representative of the
Pareto Front should be offered for selection to the DM.

In this work, an a posteriori procedure is proposed for
reducing the set of Pareto solutions on a Pareto Front to a
small number of representative solutions, according to
the DM preferences. First, the set of optimal solutions
constituting the Pareto Front and Set is partitioned by
subtractive clustering in clusters (here also called “families™)
of solutions sharing common features [1]. The clustering
is based on the geometrical distance between solutions in
the objective values space. Then, the representative solution
(the “head of the family”) is selected for each family (or
cluster) on the basis of the DM preferences in order to
provide him or her with the most preferred solutions. To
this purpose, a scoring system based on a fuzzy preference
assignment is developed.

The procedure is applied to a problem concerning the
optimization of the test intervals of the components of a

from VCT

v

from RWST

Fig. 1. The Simplified HPIS System (RWST = Radioactive Waste Storage Tank) [2]
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nuclear power plant safety system. The optimization
considers three objectives: maximize system availability,
minimize cost (from operation & maintenance and safety
issues) and minimize workers exposure time [2]. Level
Diagrams [3] are used to graphically represent, analyze
and interpret the Pareto Front and Set.

The paper is organized as follows: Section 2 presents
the case study; Section 3 contains the analysis of the
clustering algorithm and the results of its application;
Section 4 presents the selection of the representative heads
of the families by fuzzy preference assignment and the
application to the case study; Section 5 gives the
conclusions that can be drawn from the findings of the work.

2. OPTIMIZATION OF THE TEST INTERVALS OF THE
COMPONENTS OF A NUCLEAR POWER PLANT
SAFETY SYSTEM

The case study here considered is taken from [5] and
regards the optimization of the test intervals (TIs) of the
high pressure injection system (HPIS) of a pressurized
water reactor (PWR), with respect to three objectives:
maximize mean system availability, minimize cost and
minimize workers time of exposure to radiation.

Figure 1 shows a simplified schematics of a specific
HPIS design. The system consists of three pumps and
seven valves for a total of Ne=10 components. During
normal reactor operation, one of the three charging pumps
draws water from the volume control tank (\VCT) in order
to maintain a normal level of water in the primary reactor
cooling system (RCS) and to provide a small high-pressure
flow to the seals of the RCS pumps. Following a small

Table 1. Characteristics of the System Components

loss of coolant accident (LOCA), the HPIS is required to
supply a high pressure flow to the RCS. Moreover, the
HPIS can be used to remove heat from the reactor core if
the steam generators are completely unavailable. Under
normal conditions, the HPIS function is performed by
injection through valves Vs and Vs but, for redundancy,
crossover valves Vs, Vs and V7 provide alternative flow
paths if some failure were to occur in one of the nominal
paths. This stand-by safety system has to be inspected
periodically to test its availability. A Tl of 2190 h is
specified by the technical specifications (TSs) for both
the pumps and the valves. However, there are several
restrictions on the maintenance procedures described in
the TS, depending on reactor operations.

For this study the following assumptions are made:

1) At least one of the flow paths must be open at all times.

2) If a component is found to have failed during surveillance
and testing, it is returned to an as-good-as-new condition
through corrective maintenance or replacement.

3)If a component is found to be operable during
surveillance and testing, it is returned to an as-good-
as-new condition through restorative maintenance.

4) The process of inspection and testing requires a finite
time; while the corrective maintenance (or replacement)
requires an additional finite time, the restorative
maintenance is supposed to be instantaneous.

The Nc system components are characterized by their
failure rate An, h=1,....,Nc, the cost of the yearly inspection
Cneh and corrective maintenance Cncn, the mean downtime
due to corrective maintenance dn, the mean downtime
due to testing t» and their failure on demand probability
pn (Table 1). They are also divided in three groups
characterized by different test strategies; all the components

Component Cg?ﬂ?}%g?”t An Chin Chen th th Ph g
(1) (Figure 1) (] ($/h) ($/h) (h) (h) (h)
1 Vi 5.83x10° 20 15 2.6 0.75 1.82x10* 1
2 V2 5.83x10°¢ 20 15 2.6 0.75 1.82x10* 1
3 Vs 5.83x10° 20 15 2.6 0.75 1.82x10* 2
4 Va 5.83x10° 20 15 2.6 0.75 1.82x10* 3
5 Vs 5.83x10°¢ 20 15 2.6 0.75 1.82x10* 2
6 Ve 5.83x10° 20 15 2.6 0.75 1.82x10* 3
7 V7 5.83x10° 20 15 2.6 0.75 1.82x10* 3
8 Pa 3.89x10°¢ 20 15 24 4 5.3x10* 2
9 Ps 3.89x10° 20 15 24 4 5.3x10* 2
10 Pc 3.89x10° 20 15 24 4 5.3x10* 2
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belonging to the same group undergo testing with the same
periodicity T¢, with g=1,2,3, i.e., they all have the same
test interval.

Any solution to the optimization problem can be
encoded using the following array 6 of decision variables:

o=|r" 1 17| @

Assuming a mission time (TM) of one year (8760 h),
the range of variability of the three Tls is [1,8760] h.

The search for the optimal test intervals is drlven by
the following three objective functions Ji(6), i=1,....,3:

Availability:

mpss,0)-mg (1- S50 @

v=l h=1

Cost:

nl()in JZ (0) = rn()ln|: uuu[ull Z CS& M, h :| (3)
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Exposure Time:

mgin J, (9 mln{z ET } @

h=1

The HPIS mean unavailability Uneis has been computed
from the fault tree for the top event “no flow out of both
injection paths A and B”; the Boolean reduction of the
corresponding structure function allows us to determine
the Nwmcs system minimal cut sets (MCS) [5]. Then, the
system mean unavailability can be expressed as in the
argument of the maximization (2) where nv is the number
of basic events in the v-th minimal cut set and dh is the
mean unavailability of the h-th component making up the
v-th MCS, h=1,....,nv [8]:

AL ©

h h

-, 1
Un =p, + Eﬂ’hrh + (ph +4,

where yo is the probability of human error. The simple
expression in (5) is valid for pn<0.1 and Ant<0.1, which
are reasonable assumptions when considering safety
systems.

The cost objective C is made up of two major
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Fig. 2. Small LOCA Event Tree [19]
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contributions: Csem the cost associated with the operation
of surveillance and maintenance (S&M) and Caccicent the
cost associated with consequences of accidents occurring
at the plant.

For a given component h, the S&M cost is computed
on the basis of the yearly inspection and corrective
maintenance costs. For a given mission time, TM, the
number of inspections performed on component h areTT’}f';
of these, on average, a fraction equal to (pn+Anth) demands
also a corrective maintenance action of duration dn; thus,
the S&M costs amount to

™ ™
Cosm (9) =Cy Z__th +C (ph +4,7, )T_dh , h=1,...N_(6)

h h

Concerning the accident cost contribution, it is intended
to measure the costs associated with damages of accidents
that are not mitigated due to the HPIS failing to intervene.
A proper analysis of such costs implies that we account
for the probability of the corresponding accident sequences;
for simplicity, but with no loss of generality, consideration
here is limited to only the accident sequences relative to
a small LOCA event tree of literature (Figure 2) [21].

The accident sequences considered for the quantification
of the accident costs are those which involve the failure
of the HPIS (thick lines in Figure 2), so that the possible
Plant Damage States (PDS) are PDS1 and PDS3. Thus,

C(u‘uidyu/ = Cl + Cs
C =P (EI ) ' (l - UR_T ) U s - {ULI’IS + (1 =Upps ) Uspe U s } Corpsi (7)
C3 =Pl (E] ) (1 - URT ) “Unpis - (1 - UL/’IS ) {(1 - UMSHR ) Usz)(‘ + (1 _USI)(' )} Cmss

where C: and Cs are the total costs associated with
accident sequences leading to damaging states 1 and 3,
respectively. These costs depend on the initiating event
frequency P(EI) and on the unavailability values Ui of the
safety systems which ought to intervene along the various
sequences: these values are taken from the literature ([10]
and [19]) for all systems except for the SDC (ShutDown
Cooling) and MSHR (Maintain Secondary Heat Removal),
which were not available and were arbitrarily assumed of
the same order of magnitude of the other safety systems,
and for the HPIS for which the unavailability Unkeis is

Table 2. Accident Cost Input Data [2]

calculated from (2) and (5) and it depends on the Tls of
the components. Finally, for the values of Ceps: and Ceross,
the accident costs for PDS1 and PDS3, respectively, are
taken as the mean values of the uniform distributions
given in [19].

Table 2 summarizes the input data.

During testing operations, the technicians may be
subjected to radiation exposure. With reference to the ICRP
recommendation n° 60 [11], based on the well known
ALARA (As Low As Reasonably Achievable) and limit-
dose principles, the dose received by workers should be
minimized. Assuming a constant exposure rate, the
minimization of the dose is equivalent to that of the
exposure time (ET), and the exposure time due to a single
component h can be computed as

ET0) =21, + (o, + 47,) 2L d,, h=1,.,N,  (®)
(3

4 h h

The multiobjective optimization problem (2)-(4) has
been solved using the MATLAB genetic algorithm toolbox,
with a population size of 100 individuals and a stopping
criterion of 500 generations, as indicated in [5]. The
resulting Pareto Set (®) is made of 100 points, and the
corresponding Pareto Front is shown in Figure 3 in the
objective functions space.

Exposure Time (h)
3
y

tooo 0.999

0 0.9985

Cost (§ Systern Mean Availability

Fig. 3. Pareto Front, in the Objective Functions Space,
Obtained by the MATLAB Genetic Algorithm

P(EI) Urr ULpis Usbc UwmsHr Crpst Crps2
\® \® D \®) \® ($xevent) ($xevent)
2.43x10° 3.6x10° 9x10° 5x10% 5x10? 2.1765x10° 1.375x10°
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3. CLUSTERING OF THE PARETO FRONT

3.1 Subtractive Clustering Algorithm

The first step of the procedure for reducing the number
of solutions to present to the DM is to group the solutions
of the Pareto Front in a number K of families of solutions
sharing similar characteristics. In this work, subtractive
clustering [2] is used to identify the families of similar
solutions (clusters) F, j=1,....,K, in the objective functions
space. The clustering is performed on the basis of the
geometrical distance between solutions, i.e., in this case,
the geometrical distance between objective function values.

Subtractive clustering has been chosen over other
methods like the k-means and fuzzy c-means, because it
does not require the solution of a minimization problem
of an objective function nor any random initialization so
that the results are independent of the initial cluster centers
or membership function choice; finally, different from the
k-means and the fuzzy c-means, the cluster centers J),,
j=1,....,K are objective values vectors corresponding to
existing solutions in the Pareto Front and Set and thus can
be used directly as representative solutions on the reduced
Pareto Front.

Let us consider a Pareto Set ® made of n solutions; to
the i-th solution 6' (i=1,....,n) corresponds a vector of
objective values

J0)=() 7.00) .. Tu,6) ©)

where Nosj is the number of objective functions of the
optimization problem. Since the objective functions are
usually given in different units and scales, their values
are normalized with respect to the minimum value in the
Pareto Front:

Jo@)=(n@) T1@) e Tryn(6) (20)
i I ')- ‘]\' min
J.\ ,norm (6‘ ) = % s, §= 1,...., N"’?/' (11)

§,max s,min

where

J s min =MD (9’) and J, ,, = max.J (6’).

s,min §,max

The subtractive clustering examines the optimal
solutions along the Pareto Front to define the cluster centers
according to the density of surrounding solutions.

419

The flowchart of the subtractive clustering algorithm
is given in Figure 4.

Given the Pareto Front made of n normalized solutions
Joom(0), the algorithm starts by calculating the following
potential P(J,om(0Y), i=1,2,....,N:

T T PR

=

~

where r.€[0,1] is an input parameter called cluster
radius, which indicates a cluster center's range of influence
in each of the data dimensions, assuming the solution space
is a unit hyperbox; a solution outside the cluster radius ra
of the cluster center has a small influence on the potential.
The choice of the parameter ra determines the number K
of clusters that will be identified: a large value of ra gives
only a few large clusters; usually this parameter is taken
smaller than 0.5.

After the potentials of all solutions have been computed,
the first cluster center J;,.., is selected as the solution with
the highest potential value P(J;,.). All the other n-1
solutions potentials P(J,...(0") are corrected by subtracting
the potential P(J},.,) multiplied by a factor which
considers the distance between the i-th solution and the

Calculate solution
potentials P(J.,..(6"))
——'—'/

Select the cluster center
J! . as the solution with the

highest potential value

Reject the cluster
center and set its Reduction of mc
potential to 0 cluster potentials

Aot rtotn)

yes

o

e, Pl P V=
o ot )2t
no no

yes

Rejects the last cluster
center and ends
clustering process

Fig. 4. Flowchart of the Subtractive Clustering Algorithm
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first cluster center:

P (lnw‘m (6’ )): P (lnurm (61 ))_ '3 (J:m,m)e _ﬂH‘/WM (0’ )—/: """""" ‘z ’

p=2and r, = gr,

Ty

(13)

where q is an input parameter called the squash factor,
which indicates the neighborhood with a measurable
reduction of potential expressed as a fraction of the cluster
radius; a value of 2 of the squash factor indicates that the
clusters found are far from each other.

At this stage, from the n-1 remaining solutions, the
one with the highest value of the reduced potential is chosen
as the second cluster center JZ,,... _

Generally, for the j-th cluster center found J.,, j=1.....,
K, the potentials are reduced as follows:

P (lrwr'm (gl )): P (lrwr'm (61 ))_P (lrll.w‘mkiﬂulmm(w )”l'/m"" |2 : (14)

Two other input parameters are introduced: the accept
ratio € and the reject ratio g, which are respectively the
fraction of the potential of the first cluster center above
or below which another solution is accepted or rejected
as a cluster center. Then, the process of finding new cluster
centers and reducing the potential according to (14), is
repeated according to the following criteria: if

Pl )=er(s))) (15)

the cluster center J/,.., is accepted and then the potential of
the other solutions are further reduced as in (21). If

P, )<ePl,,) (16)

the cluster center J! ... is rejected and the clustering
process terminates. If neither (15) nor (16) are satisfied,
then the acceptance criterion becomes

dmin P J r{m-m
- %}—; 21 (17)

where dmin is defined as

j h
N |

d with h=1,..,j-1. (18)

min

= min‘
h
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Finally, when all the cluster centers have been
computed, a membership function matrix u is found using
the standard Gaussian distribution:

i i
o] L0 -1, |

Hji=e

2

19)

Since the membership function (18) is computed as a
negative power of the distance between the solution
Joorm(0) and the cluster centers J,.,., the smaller the
distance, the higher the membership function.

The subtractive clustering algorithm allows us to avoid
the problem of objective function minimization; there is
also no random initialization so that the results are not
dependent on the initial cluster centers or membership
function choice; finally, the cluster centers J.,,m, j=1,.....K,
are objective values vectors corresponding to existing
solutions in the Pareto Front and Set and thus could be
used directly as representative solutions on the reduced
Pareto Front.

3.2 Clustering the Pareto Front of the case study of
Section 2

The algorithm presented in Section 3.1 has been applied
for clustering the Pareto Front solutions of the case study
presented in Section 2.

The default input parameters are given in Table 3. They
were set after we analyzed the results of the clustering
obtained with different values of the parameters.

The cluster radius ra, which influences directly the
number of clusters K obtained by the subtractive clustering
algorithm, is an important parameter in the Pareto Front
reduction procedure because it determines how many
families (clusters), and consequently representative
solutions, the Pareto Front is reduced to. To optimally set
it, the so-called global silhouette value is used to evaluate
the quality of the clustering allocation ([13] and [14]). For
any cluster partition of the Pareto Front, a global silhouette
index, GS, is computed as follows:

1
GS==-2.5, (20

where S; is the cluster silhouette of the j-th cluster F
indicating the heterogeneity and isolation properties of the

Table 3. Default Input Parameters for the Subtractive Clustering
Algorithm

I

q
1.25 0.5

|

0.15
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cluster; it is computed as the average value of the silhouette
widths s(i) of the solutions in the cluster j, defined as

N OR0)
sli)= max{a(0),b()]

(21)

where, a(i) is the average distance from the i-th solution
of all the other solutions in the cluster, and b(i) is the
average distance from the i-th solution of all the solutions
in the nearest neighbor cluster identified as the cluster with
the minimum average distance of all its solutions from the
i-th solution.

o
N

o
~
T

o o ©o ©
B 2 3 3
£

Global Silhouette (GS)
I
)

Iod
o
@

o

o

o))
T

064k SR ,,,,,, - R . .. a—

0.62 i 1 i i i i I i i i
01 012 014 016 018 02 022 024 026 028 03
Cluster radius (ra)

Fig. 5. GS for Different Cluster Radius Values

The value of s(i) ranges between +1 and -1; a value
of +1 indicates solutions that are very distant from
neighboring clusters; a value of 0 indicates solutions that
are not distinctly in one cluster or another; a value of -1
indicates solutions that are probably assigned to the wrong
cluster.

The maximum global silhouette can be used to define
the optimal number of clusters [13].

The values of the global silhouette obtained for different
values of ra with default settings are given in Figure 5:
the highest value of the global silhouette (0.71) is reached
for a cluster radius value r.=0.18, which results in K=9
clusters, and the other parameters are set as in the default
configuration of Table 3.

The results of the subtractive clustering are showed
in Figure 6.

4. CLUSTER REPRESENTATIVE SOLUTION
SELECTION

Each family of solutions F, j=1,....,K, obtained by the
subtractive clustering algorithm contains a number n' of
solutions of similar characteristics in the objective functions
space and whose best representative solution, the head of
the family H'=(H/ .... H{.... Hy,,), needs to be found,
accounting for the DM specific requirements. The DM
would then be provided with only this reduced number K
of solutions Hi, j=1,....,K, which best represent the Pareto
Front under analysis, according to his or her preferences,
and from which to select the final solution of the
optimization problem.

The clusters solutions can be visualized using Level

subtractive clusters and centers

110

100 ©  OCluster1 |-
O Cluster2
X +  Cluster3
+ Clusterq
. o > Clusters |-
s % Cluster 6 .
£ -] O Cluster7 [
i A Cluster 8
5 0 ¥ Cluster 8
g B Centers
& 60 e

800
800

Cost ($) 400 0.9986

0.0088

0.9998

0.909

System Mean Availability

Fig. 6. Solutions Clusters and Centers Obtained with the Subtractive Clustering Algorithm in the Objective Function Space of the
Test Intervals Optimization Case Study
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Diagrams [1], which account for the distance of the Pareto
Front and Set solutions from the ideal solution, optimal
with respect to all the objectives simultaneously. Considering
a multiobjective problem with | objectives to be minimized
and m maximized (such that Nesj=I+m), n solutions in the
Pareto Set and indicating by J (6')=(J1(0') .... Js(6) .... Inobj
(6") the objective functions values vector corresponding to
the solution ©', i=1,....,n, each objective value Js(6'), s=1.....,
Nobj can be normalized with respect to its minimum and
maximum values (J™" and J&*) on the Pareto Front [1]:

—n_ J(6)-m" B
7 (0')= gt $= bl 22)
and
J_\(H’)zm s=1,..,m (23)
so that now,
0<7(0')<1 s=1..N,, (24)
where

» J5(6)=0 means that solution ©' has the best value for
the s-th objective
» Js(6")=1 means that solution 6' has the worst value for

subtractive clusters and centers

Clustert
Cluster2
Cluster3
Clusterd [~z
Clusters
Clusteré
Oluster7 | @ il §
Clusterg : : 3
Clusterg :
Centers 5

maposrv+r0o0

0.2

the s-th objective.
To evaluate the distance to the ideal point

7(0')=0vs=1..N,, (25)

*

0

a suitable norm must be introduced. Different norms can
give different views on the characteristics of the Pareto
Front and Set [5]. In this paper, the norm considered is the
following 1-norm:

1-norm:

2]

=37 (e"). with 0<|s(¢']

1 s=1

<s (26

We chose this norm because it takes into account all
the objectives and thus can be used to analyze the
performance of the solution in an all-around way. The
plot of Level Diagrams is then done as follows: each
objective Js, s=1,....,Noyj is plotted separately; the X axis
corresponds to the objective in physical units of
measurement, while the Y axis corresponds, for all the
graphs, to the value || J(8')[|,. This means that all the plots
are synchronized with respect to the Y axis, i.e., all the
information for a single solution of the Pareto Front will
be plotted at the same level of the Y axis.

The clustered Pareto Front of the case study of Section
2 is represented by Level Diagrams in Figure 7.

When analyzing the Pareto Front, the DM applies his

0.2

0.2 i L i L i i i
0.9936 0.9988 0.999 0.9992 0.99%4 0.9996 0.9998 o] 600
System Mean Availability Cost (B

H i L i i L i L i
1000 16800 2000 2600 20 40 2] =] 100 120

Exposure Time (h)

Fig. 7. Level Diagrams Representation of the Pareto Front of the Test Intervals Optimization Case Study (Section 2)
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or her preferences on the objective functions values to
identify the best solutions according to these preferences.

The solutions most relevant for the DM are those which
are best with respect to the DM preferences.

In this work, the assignment of the DM preferences
to the solutions is done by assigning objective values
thresholds, which define different classes of merit. The
objective values thresholds are given in a preference
matrix P (NobjxC), where C is the number of objective
functions thresholds used for the classification, defining
C+1 preference classes as follows [1]:

Class J, Class J,
() s=1ly 1| s=1, m
1 Unacceptable 1 Unacceptable
(UNA) S (UNA) S
2 Highly Undesirable ’ 2 Highly Undesirable ’
(HU) (HU)
J? J
3 Undesirable 3 Undesirable
) R )
J J
4 Tolerable 4 Tolerable
(T . (T)
J: J
5 Desirable 5 Desirable
D s D)
) J? { J
6 Highly Desirable 6 Highly Desirable
(HD) (HD)

where J¢, Z=1,....,5 are the thresholds values of the s-th
objective, | and m are the number of objectives to be
minimized and maximized, respectively.

The fuzzy scoring procedure introduced by the authors
in [22] is then applied: each preference class is assigned
a score sv(r) [1], r=1,....,C+1, such that

sU(C+1)=0; sv(r)= N, -sv(r+1)+1, for r=C.,....1 (27)

and each objective value Js(0'), i=1,....,n and s=1,....,Nob;

is assigned a membership function wa:(Js(6%)), which
represents the degree with which Js(6') is compatible with
the fact of belonging to the r-th preference class, r=1,....,C+1.

A vector of C+1=6 membership functions is then
defined for each objective Js:

The membership-weighted score of each individual
objective is then computed; given the scoring vector
sv=(sv(1) sv(2) .... sv(C+1)), whose components are
defined in (27), and the membership functions vector
u(Js(0%) in (28) for the i-th solution and s-th objective
function, the score svi of the individual objective Js is
obtained by weighting the score sv(rs) of each class rs the
objective belongs to, by the respective membership
function value was(Js(0"), rs=1,....,6, and then summing
the 6 resulting terms. This can be formulated in terms of
the scalar product of the vectors w(J{) and sv as follows:

sVl = M
S, 0.0)

r=l

,i=l..,nand s=1,..,N (29)

24V obj o

where the denominator serves as the normalization factor.
Then, the score S(J(0")) of the i-th solution is the sum
of the scores of the individual objectives

"Vu»,

S(J(é’i))z Z:l:svf_ ,i=l,n (30)

and the lowest score is taken as the most preferred solution.

Table 4. Preference Threshold Matrix Pfor the Test Intervals Optimization Case Study of Section 2

% N5 RS RE
J
(mean availability) 0.9975 0.998 0.9985 0.999 0.9995
J2
(cost ($)) 900 800 700 600 500
" 60 45 40 30
(exposure time (h))
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Fig. 8. Level Diagrams Representation of the Family Representative Solutions with the Lowest Score S(H') for the Case Study of

Test Intervals Optimization (Section 2)

According to this fuzzy scoring procedure, the head
Hof the generic family F, j=1,....,K is chosen as the
solution in F with lowest scores S(J(0)):

S(H')=minS((07),), k=1,on’ and j=1,...K (31)

For illustration purposes, let us introduce the arbitrary
preference matrix P of Table 4 for the test intervals
optimization case study of Section 2.

The resulting family representative solutions are
visualized in Figure 8 by Level Diagrams combined with
a colouring method to represent the different scores S(H!)
[1]. It can be seen that the Pareto Front shape and coverage
is maintained after reduction.

Finally, the proposed procedure for reducing the
solutions of the Pareto Front and Set for presentation to
the DM is summarized in Figure 9.

5. CONCLUSIONS

The algorithms of multiobjective optimization
identify a Pareto Set of non-dominated solutions among
which the DM has to select the preferred ones. In
practical applications, the selection is difficult because
the set of non-dominated solutions can be quite large.

In this work, an a posteriori procedure for reducing
the set of solutions for presentation to the DM is

NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.42 NO.4 AUGUST 2010

Pareto Front and Set of n
solutions

l

Subtractive clustering algorithm in the
objective functions space (Pareto Front)

l

K families
(clusters)

l

Head of the family = solution of the
family with lowest score value by
fuzzy preference assignment

l

K representative
solutions presented to the
DM on Level Diagrams

Fig. 9. Schematics of the Procedure for Reducing the Pareto
Front and Set

proposed. The solutions are first clustered in “families”
by subtractive clustering according to their geometric
relative distance in the objective functions space (Pareto
Front); the parameters driving the subtractive clustering
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are chosen to maximize the quality of the resulting Pareto
Front partition. Then, a “head of the family” solution is
selected as the best representative solution in each
family, according to the DM preferences, by a fuzzy
preference assignment procedure and a scoring system.
Level Diagrams are used to represent and analyze the
reduced Pareto Front thereby obtained.

The procedure has been applied to the problem of
optimizing the test intervals of a nuclear power plant
safety system. The results obtained show that the
clustering-based reduction framework maintains the
Pareto Front shape and relevant characteristics, while
making it easier for the decision maker to select the final
solution.

REFERENCES

[1] Blasco , X., Herrero, J.M., Sanchis, J., Martinez, M. (2008),
A New Graphical Visualization of n-Dimensional Pareto
Front for Decision-Making in Multiobjective Optimization,
Information Science, 178: 3908-3924.

[2] Chiu, S. (1994), Fuzzy Model Identification Based on
Cluster Estimation, Journal of Intelligent & Fuzzy Systems,
2(3)

[3] Cho, K. I., Kim, S. H. (1997) An improved Interactive
hybrid method for the linear multi-objective knapsack
problema, Computers Ops. Res., 24, 11: 991-1003

[4] De Boer, L., van der Wegen, L, Telgen, J. (1998),
Outranking methods in support of supplier selection,
European Journal of Purchasing and Supply Management,
4:109-118.

[ 5] Giuggioli Busacca, P., Marseguerra, M., Zio, E. (2001),
Multiobjective Optimization by Genetic Algorithms:
Application to Safety Systems, Reliability Engineering and
System Safety, 72: 59-74

[ 6] Katagiri, H., Sakawa, M, Kato, K., Nishizaki, I. (2008),
Interactive multiobjective fuzzy random linear
programming: Maximization of possibility and probability,
European Journal of Operational Research, 188: 530-539

[ 7] Malakooti, B. (1988) A decision support system and a
heuristic interactive approach for solving discrete multiple
criteria problems, IEEE Trans. On Sys., Man and Cyber., 18:
273-284.

[ 8] Martorell, S., Carlos, S., Sanchez, A., Serradell, V. (2000)
Constrained Optimization of Test Intervals Using a Steady-
State Genetic Algorithm, Reliab, Engng Syst Safety,

425

67:215-32.

[9] Molina, J., Santana, L.V., Hernandez-Diaz, A.G., Coello
Coello, C.A., Caballero, R. (2009), g-dominance: Reference
Point Based Dominance for Multiobjective Metaheuristics,
European Journal of Operational Research, 197: 658-692.

[10] NRC, US Nuclear Regulatory commission,. Rates of
Initiating Events at United States Nuclear Power Plants:
1987-1995, NUREG/CR- 5750.

[11] ICRP Publication 60, (1991), 1990 recommendations of the
International Commission on Radiological Protection,
Annals of the ICRP, 21: 1-3.

[12] Rios Insua, D., Martin, J. (1994), Robustness Issue under
Imprecise Beliefs and Preferences, Journal of Statistical
Planning and Inference, 40, Issues 2-3: 383-389.

[13] Rousseeuw, P. J. (1987) Silhouettes: A graphical Aid to the
Interpretation and Validation of Cluster Analysis. Journal of
Computational and Applied Mathematics, 20 : 53-65.

[14] Rousseeuw P., Trauwaert E. and Kaufman L. (1989), Some
Silhouette-based Graphics for Clustering Interpretation.
Belgian Journal of Operations Research, Statistics and
Computer Science, 29 (3).

[15] Roy, B. (1968) Classement et Choix en Presence de Points
de Vue Multiples (la Methode ELECTRE), RIRO, 8: 57-75.

[16] Roy, B. (1974) Criteres Multiples et Modelisation des
Preferences (I’ Apport des Relations de Surclassement),
Revue d’Economie Politique, 84: 1-44.

[17] Roy, B., Bouyssou, D. (1986), Comparison of two Decision-
Aid Models Applied to a Nuclear Power Plant Siting
Example, European Journal of Operational Research,
25:200-215.

[18] Yang, J.B. (1996), Multiple Criteria Decision Making
Methods and Applications, Hunan Publishing House,
Changsha P.R. China.

[19] Yang, J-E., Hwang, M-J., Sung, T-Y., Jin, Y. (1999)
Application of Genetic Algorithm for Reliability Allocation
in Nuclear Power Plants, Reliab Engng Syst Safety, 65:229-
38.

[20] Yang, J.B. (2000), Minimax Reference Point Approach and
its Application for Multiobjective Optimisation, European
Journal of Operational Research, 126: 541-556.

[21] Zio, E., Baraldi, P., Pedroni, N. (2009), Optimal Power
System Generation Scheduling by Multi-Objective Genetic
Algorithms with Preferences, Reliability Engineering and
System Safety, 94: 432-444.

[22] Zio, E., Bazzo, R. (2009), Multiobjective Reliability
Allocation Problems by Fuzzy Preference Assignment on
Level Diagrams

NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.42 NO.4 AUGUST 2010



