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1. INTRODUCTION

Reactor design is an iterative process among various
disciplines such as reactor physics, thermal fluid dynamics,
mechanics, reactor and plant dynamics, fuel behavior, and
instrumentation and control, and requires a wide range of
modeling and simulation tools that can accurately predict
key system performance and safety characteristics. Most
code systems for fast reactor design were initiated more
than twenty years ago and designed to accommodate the
computing resources, tools and methods available at that
time, although considerable relevant advances of methods
and codes have been made more recently. Improvements
to the available tools are thus needed to design future reactor
systems that must meet performance, safety and economic
goals higher than the current ones. The uncertainties and
biases in the various areas of reactor design activities need
to be reduced by enhanced prediction capabilities. These
improvements are important to minimize the costly and
lengthy procedures of building multiple representative
mockup experiments to confirm the predictions. 

The challenge in neutronics analysis is to efficiently
generate solutions to the Boltzmann equation by taking
into account the geometric complexity and complicated
energy dependence of nuclear data. The Monte Carlo
method can represent these details, but needs sufficiently
low statistical uncertainty, reliable variance estimates and

uncertainty propagation. Computing resource requirements
still remain unmanageable for many types of routine design
analyses, including accurate estimations of detailed pin-
by-pin power distributions, effects of small perturbations,
thermal feedback, error propagation via fuel depletion,
and transient analysis. Thus, its use is typically limited to
steady-state reference solutions without thermal feedback.
As a result, the current design tools rely heavily upon
deterministic methods based on various approximations
and sophisticated multistep procedures [1-3]. Detailed
energy variable treatments are done only at the pin cell
level (or using a homogeneous mixture of fuel, coolant, and
structure materials) with approximate boundary conditions.
Then, by performing a series of subdomain calculations
with a larger problem domain but fewer modeling details,
space and energy condensed parameters are defined and
tabulated for global core calculations. Global analyses are
performed for three-dimensional models composed of
homogenized regions with low-order approximations of
the Boltzmann equation (e.g., diffusion approximation).
Detailed pin-by-pin information is then recovered by
reconstruction (de-homogenization) methods.

In order to explore a broad range of design space and
incorporate innovative design features, it is necessary to
minimize approximations and increase the modeling
capability from first principles. Significantly improved
capabilities to simulate multiphysics phenomena are also

This paper presents the neutronics modeling capabilities of the fast reactor simulation system SHARP, which ANL is
developing as part of the U.S. DOE’s NEAMS program. We discuss the three transport solvers (PN2ND, SN2ND, and MOCFE)
implemented in the UNIC code along with the multigroup cross section generation code MC2-3. We describe the solution methods
and modeling capabilities, and discuss the improvement needs for each solver, focusing on massively parallel computation.
We present the performance test results against various benchmark problems and ZPR-6 and ZPPR critical experiments. We also
discuss weak and strong scalability results for the SN2ND solver on the ZPR-6 critical assembly benchmarks.
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required to facilitate global design optimizations. For
example, in fast reactors where the coolant temperature
and its rise across the core are much larger than in light
water reactors, the reactivity feedback due to radial
expansion of the core is one of the most important reactivity
feedback phenomena [4,5].  In order to reliably evaluate
this reactivity feedback effect, the geometrical deformation
of assembly ducts and core structures needs to be determined
accurately by consistently coupled neutronics, thermal
fluids and thermo-structural analyses. With the current
neutronics analysis tools based on homogenized assembly
models and structured meshes, however, structural
deformations across a mesh interface cannot be modeled
accurately. The reactivity effect is thus not properly
accounted for. 

As part of the U.S. Department of Energy’s Global
Nuclear Energy Partnership (GNEP) program, an effort
was launched in April 2007 to develop the SHARP
(Simulation for High-efficiency Advanced Reactor
Prototyping) [6] fast reactor simulation system. The initial
plan was to develop and implement revolutionary, high-
fidelity reactor simulation capabilities for sodium-cooled
fast reactor (SFR) design and safety analysis, with an
emphasis on highly scalable simulation capabilities that can
harness the power of current generation high performance
computing (HPC) capacity in preparation for future high
performance desktop machines. The initial plan focused
on completing full-core transient simulations using the
largest computing resources available (beyond exascale)
at the end of the first decade of development. In October
2008, this effort was rearranged into the Reactor IPSC
(Integrated Performance and Safety Code) of the Nuclear
Energy Advanced Modeling and Simulation (NEAMS)
program of the U.S. DOE, with emphasis on expanding
its applicability from the initially targeted SFR to other
envisioned advanced systems. 

Under this Reactor IPSC program, the high-fidelity
deterministic neutron transport code UNIC is being
developed [7-9]. A long-term goal is to replace the multi-
step averaging approximations by progressively applying
more accurate treatments of the entire space-angle-energy
phase space with sufficiently fine-grained levels of
discretization. Given that high-fidelity transport calculations
are not required in all areas of reactor analysis, it is also
desirable to develop an analysis tool that can allow the
user to start at the current level of reactor analysis and
transition smoothly (i.e., with familiar input/output) to
less crude homogenization approaches and eventually to
fully heterogeneous descriptions. In this way, the
experienced reactor analyst can choose the desired level of
approximation appropriate for their computational resources
and analysis goals. In order to faithfully represent the
reactivity feedback caused by structural deformation, we
use a conforming unstructured, finite-element mesh
representation of the domain. The current mesh generation
tool is CUBIT [10] while all visualization of the solution

is done with VisIt [11]. At present, three transport equation
solvers have been developed: PN2ND, SN2ND, and
MOCFE. PN2ND is based upon the second-order even-
parity transport equation and implements spherical
harmonics for the angular approximation. SN2ND is also
based upon the second-order even-parity transport equation
but a discrete ordinates approximation is applied for the
angular approximation. These solvers are designed to use
100,000 processors or more for reasonably large problems
with reduced homogenization approximations (e.g., pin-
cell level). MOCFE is a method of characteristics solver
for the first-order transport equation, and its targeted
application is for explicit geometry, fine-group problems
with the short-term purpose of cross section generation and
the long-term purpose of fine-level transport calculations
without homogenization. UNIC has been applied to detailed
simulations of full-core mockup critical experiments on
up to 295,000 processor cores. In addition to the finite-
element-based solvers above, the capability of the nodal
transport code VARIANT [12,13] is being rebuilt in UNIC
to be applied to assembly-homogenized problems, called
NODAL. NODAL is currently limited to diffusion theory
and can potentially be used as one step in a multigrid
preconditioner for the other solvers in UNIC. 

To generate multigroup cross sections in fast reactor
applications, the MC2-3 code [14] has been developed by
improving the resonance self-shielding and spectrum
calculation methods of MC2-2 [15] and integrating the
one-dimensional cell calculation capabilities of SDX [16].
For ultrafine group spectrum calculations, to eliminate the
limitations of the generalized resonance integral method
of MC2-2, the resolved resonance cross sections are self
shielded by numerical integrations of pointwise cross
sections. The continuous slowing-down method used in
the resolved resonance energy range has been replaced
with the multigroup method in order to minimize the
approximations involved in the slowing-down by light
elements (especially hydrogen). The isotropic inelastic
scattering approximation has also been removed. For the
optional hyperfine group (HFG) spectrum calculation in
the resolved resonance range, the isotropic source
approximation has been eliminated by incorporating
anisotropic scattering sources. In addition, the one-
dimensional transport calculation of SDX, which was
previously limited to a fine group level, has been extended
to ultrafine and hyperfine group levels. The MC2-3 code
is being incorporated into UNIC to alleviate the
approximations used in cell calculations by the use of
transport solutions for extended problem domains and to
generate the cross sections consistently with the material
and temperature distributions used in transport calculations.

In this paper, we report on these early efforts to develop
an improved neutronics modeling capability for fast reactor
analysis. The solution methods and modeling capabilities
of UNIC and MC2-3 are discussed in Section 2. Initial test
results for various benchmark problems and critical
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experiments are presented in Section 3. The conclusions
and future work are summarized in Section 4. 

2.  SOLUTION METHODS AND MOELING 
CAPABILITIES

The simulation of generally time-dependent,
multiphysics phenomena requires solving the time-
dependent Boltzmann equation along with the delayed
neutron precursor equations. Representing the first-order
time derivative by a finite difference approximation,
however, the time-dependent Boltzmann equation can be
cast into the time-independent transport equation with
modified absorption and source terms. Thus, for simplicity,
we will discuss our methods using the steady-state neutron
transport equation, which can be written in standard notation
as:

where Ss, Sf, and Sex are the scattering, fission and
external neutron sources, respectively. The scattering and
fission sources are given by 

where the index i is used to denote the isotope
dependency of scattering and fission properties. The angular
distribution of scattered neutrons is typically represented
as a Legendre polynomial series and thus the scattering
source can be written as:

Here σi
sl is the l -th Legendre moment of the scattering

kernel of isotope i, Ylk is the spherical harmonics, and Y*
lk

is the complex conjugate of Ylk. When there is no external

source, Eq. (1) is generally cast into the form of an
eigenvalue problem by dividing the fission source by the
multiplication factor.

The transport equation solvers of UNIC solve the
multigroup form of Eq. (1), which can be written as

For the criticality problem, the group source    can be
written in terms of macroscopic cross sections as 

where k is the system eigenvalue known as the
multiplication factor. To facilitate the discussion below,
we separate out the within-group scattering source and
rewrite Eq. (5) as

Here Wg is the within-group scattering source, and Sg

includes the out-of-group scattering source and the fission
neutron sources. While we are developing a Krylov
subspace solver over the entire space-angle-energy system
for the SN2ND and MOCFE, the bulk of the work thus
far has focused on the preconditioner which requires the
approximate solution of Eq. (7).

This section presents an overview of the three transport
solvers implemented in UNIC for the system of equations
in Eq. (7) and the methods of MC2-3 to determine the
multigroup cross sections included in Eq. (7). 

2.1 PN2ND and SN2ND Solvers
As mentioned in the introduction, both the PN2ND and

SN2ND solvers are based upon the second-order even-parity
transport equation. These second-order methodologies
that implement continuous, spatial finite-element
approximations permit the parallelization successes
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achieved in other fields with the Poisson equation (e.g.,
parallel conjugate gradient methods) to be used directly in
UNIC. To derive the second-order methods, the angular
flux in Eq. (7) is first split into even- and odd-parity
components with respect to the angular variable as

where the superscript + denotes even parity and the
superscript – denotes odd parity. Evaluating Eq. (7) for
Ω and –Ω, and adding and subtracting the resulting
equations [17], the coupled, first-order even-parity and
odd-parity equations can be obtained using Eqs. (7) and
(8) as:

The odd-parity equation can be solved for the odd-parity
flux as:

Substituting Eq. (10) into the even-parity equation, the
second-order even-parity transport equation can be obtained
as:

This differential equation is accompanied by the
boundary conditions that constrain the angular flux along
the boundary of the problem domain and at element
interfaces.

In the PN2ND solver, the even- and odd-parity angular
fluxes in Eq. (11) are respectively expanded in terms of
even- and odd-parity spherical harmonic trial functions as:

where N is the angular expansion order. Figure 1
graphically displays some selected angular trial functions.
The SN2ND solver uses a discrete ordinates cubature to
represent the angular variable. Because a spherical
harmonics-based scattering kernel is used, the cubature on
the unit sphere that results from a discrete set of directions
Ωn is required to satisfy the following two relationships:

where Ylk is an even-parity spherical harmonic function
and wn ’s are the weights associated with the cubature. The
ψ+

glk (r) moments are identical to those obtained using the
spherical harmonic method. Currently, Carlson’s level
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Fig. 1. Graphical Depictions of Spherical Harmonic Functions
used in PN2ND
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symmetric cubature [18], the Legendre-Tchebychev product
cubature [19], the Thurgood cubature [20], the Lebedev-
Laikov cubature [21], the COBE sky cube-based cubature
[22], and the Tegmark icosahedron-based cubature [23]
have all been implemented into UNIC. Sample cubatures
are shown in Fig. 2, where the black dots indicate the
cubature abscissa intersections with the unit sphere and
the coloring indicates the distribution of weights associated
with the cubature.

The angular approaches are combined with a spatial
finite element method [24, 25]. The problem domain is
subdivided into a series of unstructured geometric elements
that do not overlap, and the border of each element is
defined using a series of spatial vertices which incorporate a
distinct numbering scheme to facilitate computer
implementations. For each type of finite element, a set of
polynomial basis functions is defined within each element
to satisfy the patch test. Lagrangian, serendipity, and
Gauss-Lobatto polynomial trial functions are available in
UNIC on six primary geometries: bar, triangle, quadrilateral,
tetrahedron, triangular prism, and hexahedron. The
Lagrangian, serendipity, and Gauss-Lobatto elements are
available up to the ninth, second, and sixth orders,
respectively. UNIC typically assumes an isoparametric
geometry input, but it can easily be used on subparametric
and superparametric geometric input definitions. The
vertex layout for the quadratic serendipity and cubic
Lagrange elements in the standard coordinate system are

shown in Fig. 3.
Both PN2ND and SN2ND assume a continuous finite

element formulation for the even-parity transport equation
and a discontinuous finite element formulation of the odd-
parity transport equation. This reduces Eq. (11) to a linear
algebra equation for the even-parity flux ψ+

g of the form: 

where Bg represents the within-group scattering matrix.
Arbitrarily oriented, reflected and vacuum boundary
conditions are included along with the ability to include
volumetric fixed sources. The odd-parity sources of Eq.
(16) are iteratively determined with the use of Eq. (10).
The coefficient matrix Ag is positive definite, and thus Eq.
(16) can be solved efficiently using the conjugate gradient
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method [26], when the source terms on the right hand side
lagged in the iterative approach discussed below. 

For PN2ND, the coefficient matrix Ag and the within-
group scattering matrix Bg exhibit the coupling of ψ+

glk with
ψ+

gl′k′ for l′ = l or l – 2, and k′ = k – 1, k, or k + 1. Because
these matrices have the same coupling, the within-group
scattering source W+

g is moved to the left hand side and Bg

is merged with Ag in PN2ND. Reflected boundary
conditions do not fundamentally change the coupling, but
vacuum boundary conditions couple all angular terms
together for those spatial vertices that lie along the boundary
in the PN2ND coefficient matrix.

In SN2ND, no coupling occurs between the angles
when no reflected boundary condition is present, and thus
the Ag matrix is block-diagonal with respect to angle. When
reflected boundary conditions are present, those vertices
that lie along a reflected boundary have coupling in angle,
which appears as a very sparse connection in Ag. When
reflected boundary conditions are present, experience has
shown that the angular cubature should display the
underlying symmetry in the problem, but SN2ND does
not impose this behavior and can use cubatures which do
not have the necessary symmetry. In general, Ag matrix
always remains nearly block diagonal with respect to angle
because the number of vertices that lie upon the reflected
surfaces of the domain is far fewer than the number that
are internal to the domain and the implemented angular
cubature generally matches the underlying symmetry of the
domain. Unlike the Ag matrix, the within-group scattering
matrix Bg is full with respect to angle. Thus Eq. (16) is
solved iteratively by estimating the within-group scattering
source using the most recent flux solution. While
convergence of this equation is generally guaranteed, the
speed of convergence strongly depends upon the ratio of
scattering to collision and the amount of leakage. As such,
acceleration schemes have been developed based upon the
diffusion equation. For the SN2ND solver, the diffusion
operator is a direct projection of the even-parity transport
operator and thus the diffusion synthetic acceleration (DSA)
scheme [27] is automatically fully consistent and not prone
to the weakened convergence properties observed in the
first-order discrete ordinates solvers. 

From a parallelization point of view, Ag – Bg in PN2ND
and Ag in SN2ND are both scalable operations because they
can both be solved via conjugate gradient (CG) methods
which have been shown to perform well on small- and large-
scale parallel machines. Others have reported in the literature
their application of CG methods to similar equations with
processor counts as high as 10,000 and with 70 to 80%
efficiency. To achieve such good performance, the literature
indicates that developers should create a preconditioner that
contains domain decomposition with multilevel p-refinement
in space in addition to multiple levels of h-refinement
and/or algebraic multigrid. In UNIC, to partially address
the memory issue, we employed parallelization by angle
rather than p-refinement or h-refinement. Thus for the

SN2ND solver with a block diagonal connection in angle, it
is not necessary to invest time defining a multigrid operation
in angle because the method is immediately scalable in
angle. It is expected that by incorporating the methodology
that other codes have been developed to apply the CG
method on up to 10,000 processors, the SN2ND solver
can efficiently use over 1,000,000 processors to solve a
problem with 100 discrete ordinate directions.

The within-group equations given in Eq. (16) are
coupled through the source Sg and form a multigroup
eigenvalue or fixed-source problem. The resulting
multigroup equation is solved using a standard fission
source iteration algorithm. To find the dominant eigenvalue,
the power method has been used with a Tchebychev
acceleration scheme. For a known fission source from the
previous power iteration, another level of iteration on the
multigroup scattering source is introduced because of the
energy-angle coupling that occurs in the scattering operator.
To decouple the group equations, a Gauss-Seidel procedure
in energy is typically employed. The ultimate intent with
UNIC is to implement a more general Krylov method where
the current Gauss-Seidel scheme would likely serve as some
part of a preconditioner where scalability in energy for time-
dependent problems is assumed. At this stage, we have Eq.
(16) with a known out-of-group source from the most recent
fission and multigroup scattering source iterations. To
solve Eq. (16) in a parallel environment, the parallel CG
implementation in PETSc [28] is used, where either the
incomplete Cholesky (ICC) or symmetric successive over-
relaxation (SSOR) preconditioner provided by PETSc was
used. Each of these levels of iteration has simple dynamic
error controls to minimize effort early in the calculation.

As mentioned above, SN2ND uses a conventional
iterative scheme on the within-group scattering source
(source or scattering iteration). Within each scattering
iteration, the entire space-angle system needs to be
solved using a CG operation because reflective boundary
conditions inherently couple the individual angular
systems together as mentioned earlier. Finally, the CG
preconditioner for each discrete ordinate direction uses a
preconditioned CG operation on the full spatial domain.
Thus, the solution methodology in SN2ND consists of
the following layers of iteration: 

At the lowest level, a parallel SSOR-preconditioned
CG methodology available in PETSc is used to solve the
full spatial domain for a given angle and energy group. This
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requires distributed sparse matrix storage of each symmetric
positive-definite matrix. A preconditioned CG iteration is
currently used for the second-lowest level, but a multigrid
preconditioner is being developed to reduce sparse matrix
storage requirements [29,30]. As mentioned above, DSA
is used at the third-lowest level to accelerate the within-
group scattering source iteration. 

With regard to parallelization, we employ the generic
decomposition of space, angle and energy shown in Fig. 4.
In the figure, the notation “S,A,G” represents parallelization
into S spatial segments, A angular segments, and G energy
segments. The main focus is to limit the communication
costs of the various source operations necessary in the
within-group formulations that are fundamental to modern
neutron transport solvers. In this approach, each MPI
process sees four communicators: space, angle, group, and
the global communicator. The advantage of this approach
is that the group and angle communication do not overlap
with respect to space, and thus communication in these
two directions can be done simultaneously on the parallel
machine. Parallel hierarchy proceeds as energy, angle, and
space in descending order. For the spatial part, classic
domain decomposition is used where weights are applied
to the vertices of elements to balance the local work with
the communication costs required to connect the domain.
Figure 5 shows an example of spatial domain decomposition
obtained with the MeTiS package [31]. No solver in UNIC
currently allows decomposition of the energy domain,
although UNIC itself has been built this way from the
beginning. It is important to note that the current space-
angle scheme in SN2ND is already enough to saturate
the available memory and processors of the largest
supercomputers available to open science research. In the
current SN2ND solver, any number of angles can be
distributed on a given process and it has been found that
two to three angles per process works best. 

2.2 MOCFE Solver
The MOCFE solver is based upon the first-order method

of characteristics (MOC) [32,33] and treats both two- and
three-dimensional geometries. The long-term development
goal for MOCFE is to use this solver on explicit geometry
problems for high-fidelity benchmark calculations. However,
the computational performance of MOC is too slow to be
applied for three-dimensional whole core problems, and
thus the short-term goal of MOCFE is to improve the cross-
section generation process. As an example, a whole core
planar two-dimensional MOC capability is a focused
development effort intended to improve the spectral
transition of the flux as it exits the core and enters the blanket
and reflector in global three-dimensional solutions.

The derivation of the MOC equations begins with the
first-order transport equation given in Eq. (7). Basically,
noting that the first term on the left hand side of Eq. (7)
is a directional derivative of ψg in the direction of Ω, the
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solution of Eq. (7) along a trajectory (ray) parallel to Ω
(i.e., a characteristic line) can be obtained analytically for
a given source distribution, assumed to be piecewise constant
for this derivation. Thus, by evaluating the angular fluxes
along the path of trajectories that are parallel to each
direction in a selected angular cubature (i.e., ray tracing),
the angular and scalar fluxes throughout the geometry on
a finite element grid can be determined. This leads to a
discrete form of the balance equation, which can be
iteratively solved by updating the scattering and fission
source terms with the most recent flux solution. The details
of the MOC formulation were discussed previously [34,35]
and thus not reproduced here.   

Unlike most MOC solvers, MOCFE is based on a finite
element discretization of the spatial domain rather than a
combinatorial geometry. This is done primarily to handle
truly arbitrary geometries that can account for structural
deformation feedback, which is not easy to achieve with
typical combinatorial geometry approaches. It is important
to note that for a given combinatorial geometry, one can
easily construct a finite element mesh, and thus the common
simplified geometrical reactor core descriptions can be
handled by the same rules under which existing MOC
solvers operate. The current MOCFE solver can assume
all finite elements supported by UNIC are cast onto the
five primary ray tracing finite elements shown in Fig. 6.
For two-dimensional elements, a standard line-intersection
algorithm is used, while a ray-triangle intersection algorithm
[36] is used for three-dimensional elements. This latter
algorithm requires breaking the surfaces of the finite
elements into triangles, the minimal decomposition of
which is shown for each element type in Fig. 6. A scalable
back projection algorithm has been constructed to define
the trajectories in such a way that every element in the
domain has crossing trajectories. 

In the original development [34], parallel versions of
MOCFE in two- and three-dimensional geometries were
created assuming long characteristics over the whole
domain. The trajectories were partitioned for each direction,
but it was assumed that all processors have access to the
full spatial domain. While this approach worked on a few
hundreds of processors, the parallel algorithm employed
was not scalable on petascale machines. After gaining
some experience in the field, it was concluded that domain
decomposition with per process segmentation of the
characteristic lines is essential to have a scalable algorithm
on petascale machines.

A new solver methodology has been developed using
a hierarchical GMRES solver of PETSc [28] over the entire
space-angle-energy system and thus a parallel decomposition
in space-angle-energy. In angle, a straightforward
partitioning of the discrete ordinates angles is used in a
manner similar to that done in SN2ND. In space, standard
spatial decomposition is used, which translates to the
splitting or segmentation of the trajectories. Figure 7 shows
an example of domain decomposition and trajectory
segmentation for a two-dimensional assembly. The left
hand picture shows a fuel assembly mesh decomposed
into six pieces where the colors indicate geometric
heterogeneity. In the left hand picture, the lower right
image only applies coloring to the elements assigned to
each processor and the upper image shows an uncolored
mesh matching the right hand picture. The right hand
picture shows the six-processor decomposed mesh
overlaid with the intersecting trajectories (parallel lines).
The breaking of each trajectory along the domain surface
is clearly identifiable and reentrant trajectories can be
identified on all six domains. 

Along the border of each processor domain, the
incoming and outgoing flux solution for each broken
trajectory must be stored and communicated to the
connected processor(s). One typically would consider the
incoming flux to be a boundary condition for any given
processor while the outgoing flux would be the boundary
condition for the downwind processors. Because each
domain can be reentrant with any given trajectory and
any given trajectory can be reentrant on multiple domains
with domain decomposition, the typical approach to
sequenced sweeping is not wise. In MOCFE, the linear
system of equations is recast into a form compatible with
a Krylov subspace solver such that the outgoing angular
trajectory flux on each domain is part of the Krylov
vector space. This approach entails certain memory and
computational costs and is currently being studied for use
as a possible petascale algorithm for MOC. Note that
MOCFE can incorporate the conventional sweep
methodology, but that is not the focus of the development
research.

The new version of MOCFE has been executed on
65,536 cores of BlueGene/P [37] for a mesh with 2.5
million elements. The observed strong and weak scaling
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is relatively poor primarily due to load balancing issues
caused by a different number of characteristic lines passing
through each subdomain. This load imbalance is directly
attributable to the geometric heterogeneity of the domain
(fuel assemblies have more geometry than shield assemblies)
and thus one can observe a strong variation in the number
of characteristic lines crossing any given domain with
respect to angle. Two possible ways to fix the load
imbalance are being examined at this point: one is to
increase the number of angles per process (maximize the
azimuthal angle between the directions) and the other is
to increase the number of domains per process. Research
into the first option is nearly complete with the general
conclusion that a minimum load imbalance of 6.0 is
achievable with low-order cubatures (20-50 directions), but
this is unacceptable because it strongly restricts scalability
(<40%). The second option is likely better since the
subdomains can be assigned based upon a combination of
mesh density, element count, and geometric location. In
the end, it is expected that a combination of the two will
be necessary to make the load imbalance under 2.0, which is
essential to obtain a scalability above 60%.

The most important research that needs to be carried
out for MOCFE is determining a better preconditioner on
the space-angle system along with one on the entire space-
angle-energy system. As mentioned, the new MOCFE
solver incorporates Krylov, specifically GMRES, on the
entire space-angle system for which a diffusion synthetic
acceleration system derived from the algebraic collapsing
algorithm (ACA) is used as a preconditioner. This
preconditioner is very cheap with respect to memory, but
that also appears to severely restrict its accuracy. In this

regard, a low-order PN system similar to the PN2ND solver
will be investigated. 

As a final note, this version of MOCFE is applicable
to small-scale parallel machines (100s of processors) with
parallelization in angle only. Most discrete ordinates solvers
have good strong (>50%) and weak (>70%) scaling in angle.
This should make the lattice calculations typically used
in cross-section generation feasible using the existing
solver scheme. 

2.3 Multigroup Cross Section Generation

The generation of multigroup cross sections from
evaluated nuclear data files remains one of the fundamental
problems in reactor physics because of the need for accurate
treatment of resonance effects. The methods used for cross-
section processing must take into account both the resonance
characteristics of intermediate nuclides (sodium, oxygen
in the case of oxide fuel, and structural materials like iron,
chromium, nickel, etc.) and the self-shielding in fissile
and fertile nuclides. The rapidly varying elastic scattering
cross sections of intermediate nuclides give rise to the fine
structure of a typical fast reactor spectrum and require
detailed treatment. The overlapping effect resulting from
neighboring resonances either from the same nuclide or
from different nuclides is another challenge in fast reactor
analysis. Inelastic scattering also plays an important role
in fast reactors, as it is the major cause of neutron slowing-
down at high energies. Resonance shielding is generally
treated using the Bondarenko self-shielding factor method
[38-40] and the subgroup method [41-45], these being
parameterizations of the resonance structure from which
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Fig. 7. Examples of Mesh Decomposition and Segmentation of Crossing Trajectories



effective cross sections can be calculated for particular
compositions and temperatures. An alternative approach
developed at Argonne National Laboratory (ANL) is based
on detailed spectrum calculations for specific compositions
and temperatures [16] by representing all the resonance
structures explicitly. At present, this approach is the most
widely used in the United States of America for fast reactor
modeling.

In the ETOE-2/MC2-2/SDX code system [16] developed
by ANL, the ETOE-2 code processes the ENDF/B data
and prepares the MC2-2 libraries, and the MC2-2 and SDX
codes perform spectrum calculations and generate group
constants for given compositions and temperatures. The
current ultrafine group (UFG) energy structure chosen to
form the MC2-2 libraries for smooth tabulated non-resonant
data is 2082 groups with constant lethargy from 14.19 MeV
to 0.4 eV, but the ETOE-2 code allows any number of UFG
lethargy intervals. Wide resonances are screened out and
added to UFG smooth cross sections. The resonance data
provided in the Reich-Moore formalism are converted into
the multipole formalism [46] that preserves the general
features required by the traditional resonance integral
concept and the Doppler-broadening algorithm in the
MC2-2 code without compromising rigor. 

The MC2-2 code solves the slowing-down equation
for specific compositions and temperatures with explicit
representation of resonances. It solves the extended transport
P1, extended transport B1, consistent P1, and consistent B1

fundamental mode UFG equations and accommodates high-
order anisotropic scattering representations. Resolved
and unresolved resonances are treated explicitly by the
generalized resonance integral formulation based on the
narrow resonance (NR) approximation including
overlapping and Doppler broadening effects [47]. A
fundamental mode homogeneous unit cell calculation is
performed by solving the multigroup slowing-down
equation above the resolved resonance energy and the
continuous slowing-down equation below this range [48].
Equivalence theory is used to treat the heterogeneity effect,
and isotropic approximation is used for fission, inelastic,
and (n,2n) sources. An alternative hyperfine group (HFG)
integral transport calculation (RABANL) is available as
an option to model the resolved resonances more accurately
in the low-energy ranges where the narrow resonance
approximation is not valid. Under this HFG method, every
resolved resonance is represented by multiple points,
which allows the neutron spectrum within a HFG to be
approximated as a constant. RABANL performs a
homogeneous or heterogeneous (pin or slab) unit cell
calculation over the resonance region using the isotropic
source approximation.

The SDX code is intended to supplement what is lacking
in MC2-2 for treating the detailed heterogeneity effects
associated with a complex reactor system. For each
heterogeneous unit cell, heterogeneous resonance cross
sections are computed in an intermediate group level of

230 groups for selected isotopes in the specified plate or
pin types using equivalence theory or the rigorous RABANL
heterogeneous treatment. These resonance cross sections
are combined with the intermediate-group library data
constructed from MC2-2 ultrafine group calculations, and
then an infinite slab or cylinder integral transport calculation
is performed in the intermediate group level for the unit
cell. The integral transport calculation is based on a modified
version of the CALHET code that applies the collision
probability methods developed for RABANL. Spatial
self-shielding factors and cell-averaged group cross sections
are calculated.

In recent studies with the ENDF/B-VII.0 data [49,50],
MC2-2 revealed some discrepancies. For example, the
increased importance of resolved resonances in the
ENDF/B-VII.0 data due to the extended upper energy
cutoff and significantly increased number of resolved
resonances required the use of RABANL for rigorous
treatment of resolved resonances. However, its use is
limited to the relatively low energy range where the
isotropic source approximation is valid. Therefore, in
order to generate the more accurate multigroup cross
sections required for high-fidelity simulation with UNIC,
MC2-3 has been developed by integrating the capabilities
of MC2-2 and SDX and by eliminating various limitations
and approximations of the current methods as discussed
below.

The generalized resonance integral method of MC2-2
for calculating self-shielded UFG cross sections is based
on the analytical integration of resonances over the entire
energy range rather than each UFG interval. The
approximate integration interval introduces the so-called
resonance tail effect, and thus wide resonances are screened
out and added to UFG smooth cross sections. The resonance
tail effect becomes more pronounced as the number of
energy groups in the target library increases, and thus the
analytic resonance integral method becomes less attractive
for the high-fidelity simulation with UNIC where the
number of energy groups is expected to increase with
increases in computing power. Therefore, a new approach
based on the numerical integration of pointwise cross
sections with the narrow resonance approximation has
been introduced in MC2-3. Doppler broadened pointwise
cross sections are reconstructed within the code using the
resonance parameters. The NR fluxes are obtained using
the pointwise total cross sections of a specified composition.
The self-shielded UFG cross sections are determined using
numerical integration over the exact energy interval of each
UFG as:

where σi
x (u) is the pointwise cross section of reaction type

x for isotope i in the lethargy interval ∆u and Σt (u) is
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the macroscopic total cross section of the composition. In
a similar way, the l -th order self-shielded cross sections
are calculated by weighting with the l -th order flux moment
approximated as 1/[Σt (u)]l+1. 

The continuous slowing-down method of MC2-2 used
for the UFG spectrum calculation in the resolved resonance
energy range becomes more approximate when light
elements (especially hydrogen) are included. In order to
minimize this approximate nature and to simplify the
program structure, the continuous slowing-down method
has been replaced with the multigroup method.
Consequently, the UFG spectrum is calculated by solving
the multigroup P1 equations for the entire energy range
with an extended transport approximation [15,17] up to
P9. The isotropic approximation of inelastic scattering
and (n,2n) reactions has also been removed by introducing
anisotropic scattering matrices. In addition, the isotopic
fission spectra depending on incident neutron energy are
available, and the resonance-like cross sections of the
intermediate mass nuclides such as iron, nickel, and
chromium above the resonance energy range are self-
shielded using the NR approximation. 

For the HFG spectrum calculation in the resolved
resonance range, the isotropic source approximation is
eliminated by incorporating anisotropic scattering sources.
This allows increasing the upper energy limit of HFG
calculation up to the top of the resolved resonance region
of intermediate mass nuclides (~1 MeV) where the isotropic
source approximation is not valid. As mentioned above,
the HFG structure is constructed in such a way that the
neutron spectrum within a HFG can be approximated to
be constant. Thus, if N is the scattering order in the center-
of-mass system (CMS) given in the ENDF/B data, the
scattering transfer cross section of order l from the source
group g to the sink group g′ in the laboratory system (LS)
is calculated using

where fn is the n -th order Legendre expansion coefficient in
CMS, u*

g′ and u*
g–1 are the reachable energy boundaries, and

α = (A–1)2 /(A+1)2 with A being the atomic mass. The
cosines of the scattering angles in LS and CMS are given
by

The heterogeneous cell calculation capability of SDX
for slab and cylindrical unit cells has also been integrated
into MC2-3 by extending the spatial transport calculation
from an intermediate group level to the ultrafine group
level. Either the collision probability method (CPM) or
the method of characteristics (MOC) can be used. The
UFG cross sections of each region are determined using
the equivalence theory. That is, the UFG cross sections
are self shielded using the composition-dependent potential
scattering cross section, augmented by the geometry-
dependent escape cross section. Region-wise or cell-
average broad-group cross sections are produced. A HFG
transport calculation capability with an anisotropic scattering
source representation is currently being implemented.
The MC2-3 code is also being built to use the MOCFE
solver of UNIC so that the approximations imposed by
the simplified one-dimensional cell calculations are reduced
and the material and temperature distributions that appear
in whole-core transport calculations are correctly
incorporated.

3. TEST RESULTS

To test the performance of MC2-3 and UNIC, we
analyzed several benchmark problems and fast critical
experiments. The experiments analyzed include eight
critical assemblies [51] of Los Alamos National Laboratory
(LANL), ZPR-6 Assemblies 6A (ZPR-6/6A) and 7 (ZPR-
6/7) [51,52], three loadings of ZPPR-15A [53], six phases
of ZPPR-21 [51], and three BFS assemblies [52,54]. Using
the ENDF/B-VII.0 data [55], isotopic multigroup cross
sections were generated for each composition using MC2-3.
The MC2-3 and UNIC results were compared with the
reference Monte Carlo solutions obtained with MCNP5
[56] or VIM [57]. For detailed as-built models, the results
were also compared against the experimental results.

The eight LANL critical assemblies include Godiva,
Bigten, Flattop-25, Flattop-Pu, Flattop-23, Jezebel, Jezebel-
Pu, Jezebel-23, three of which—Flattop-Pu, Jezebel, and
Jezebel-Pu—contain plutonium fuel. The core regions of
ZPR-6/6A and ZPR-6/7 are composed of uranium and
plutonium fuels, respectively. Of the six phases of ZPPR-
21, the first phase, ZPPR-21A, contains only plutonium
fuel to take advantage of the inherent neutron source of
Pu-240. The enriched uranium is then progressively
substituted for plutonium in Phases B through E so that
the final phase, ZPPR-21F, has only uranium fuel loading,
which requires an external neutron source to reach
criticality. Three loading configurations of the ZPPR-15A
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experiments tested in this study are the initial criticality
configuration (loading 15), a reference configuration for
sodium void worth measurement (loading 16), and a
configuration with an 18-inch sodium void in part of the
inner core (loading 20). Among the three BFS assemblies,
the BFS-75-1 assembly consists of two enriched uranium
fuel zones and two composite radial blankets (U-238 metal
and UO2), while BFS-73-1 has only a single enriched
uranium fuel zone and one radial blanket (UO2). The
difference in composition between the two assemblies is
that zirconium metal disks are included in the unit fuel
cell of BFS-75-1 but not in that of BFS-73-1. A unit fuel
cell of the BFS-75-1 critical assembly is more heterogeneous
in configuration than that of the BFS-73-1 since a highly
enriched uranium disk is placed between medium enriched
metal uranium disks. Similar to BFS-73-1, the BFS-55-1
assembly has a single enriched uranium fuel zone and one
radial blanket, containing plutonium disks in the unit fuel
cell unlike the other two assemblies. 

3.1 Homogeneous Medium and Unit Cell 
Calculations
Using the improved methods of MC2-3, the previously

observed discrepancies of MC2-2 with the ENDF/B-VII.0
data and with the increased number of broad groups were
first examined by performing homogeneous medium
calculations. The neuron spectra were calculated by solving
three different slowing-down equations: the UFG equation
with anisotropic scattering sources, the HFG equation with
isotropic (in CMS) sources as in RABANL, and the HFG
equation with anisotropic sources. For the UFG calculation,
the self-shielded cross sections were obtained by the
numerical integration of pointwise cross sections with the
narrow resonance approximation as discussed earlier. Figure
8 compares the UFG spectra obtained from the three
slowing-down calculations for the inner core composition of
ZPR-6/6A. The HFG calculations were applied to the energy
range below 1 MeV because the highest resolved resonance
energy of Cr-52 included in the composition is 980 keV
in the ENDF/B-VII.0 data. As can be seen, the UFG
spectrum agrees well with the reference HFG spectrum
obtained with an anisotropic source. This result indicates
that the numerical integration of pointwise cross sections
with the narrow resonance approximation is sufficiently
accurate for self-shielding the UFG cross sections. Thus,
it can be concluded that the required use of RABANL in
MC2-2 calculations with the ENDF/B-VII.0 data is largely
due to the increased resonance tail effects of the analytic
resonance integral method. This conclusion is also supported
by the observation that without the RABANL hyperfine
group calculation, MC2-2 produces large errors in UFG
total cross sections even at the infinite-dilute condition,
whereas MC2-3 generates accurate infinite-dilute UFG
cross sections. 

It can also be seen from Fig. 8 that the HFG spectrum

obtained with isotropic (in CMS) sources is noticeably
different from the reference spectrum above 100 keV
because of the increased importance of anisotropic
scattering due to p-, d-, and f-wave scattering. This result
suggests that in this energy range, anisotropic scattering
in the CMS should be accounted for. As expected, it was
also observed that for low-energy groups around a relatively
wide actinide resonance that spans several ultrafine groups,
the UFG cross sections obtained with the NR approximation
show non-negligible differences from those collapsed with
the HFG flux solution. As an example, Fig. 9 compares the
NR approximation flux superimposed on the UFG flux
with the HFG flux around a U-238 resonance at 189.68 eV.
A noticeable difference can be seen below the resonance
peak. As a result, for the UFG between 186.2 to 186.7 eV,
the total cross section based on the NR approximation
shows ~5% deviation from that obtained with the HFG
solution. As can be seen in Fig. 8, the neutron flux in this
low energy range is generally very low in fast reactors,
and thus the impacts of the UFG cross section errors are
negligible. However, this epithermal energy range could
be important for certain applications such as the steam-
flooded, gas-cooled fast reactor analysis.    

Table 1 compares the infinite multiplication factors
obtained with MC2-3 with MCNP5 or VIM Monte Carlo
solutions for the various homogenized compositions and
unit cells of the ZPR-6/6A, ZPR-6/7, ZPPR-15A, and ZPPR-
21 assemblies. Based on the aforementioned observations,
the default UFG slowing-down option was used for MC2-3
calculations. The ZPR-6 and ZPPR fast critical assemblies
are split-table machines holding lattices of stainless steel
tubes with a square cross section of 5.5 cm outside
dimension. These tubes are loaded with stainless steel
drawers filled with plate-type unit cell loadings, as depicted
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Fig. 8. Comparison of UFG Spectra Obtained with Three
Different Slowing-Down Calculations 



in Fig. 10 for the loading 106 of ZPR-6/7. The unit cell
loadings are approximately one-dimensional (1-D), but
the variations in plate dimensions make them three-
dimensional (3-D) as shown in Fig. 11. Since the MC2-3
unit cell calculation is based on 1-D slab geometries, the
3-D matrix tube loading was transformed to an equivalent
1-D computational model by smearing the structural
materials from the periphery of the physical cell into the
regions that do not include heavy elements. It can be seen
that the infinite multiplication factors of MC2-3 agree well
with the Monte Carlo solutions, but MC2-3 consistently
underestimates the infinite multiplication factor compared
to MCNP5 or VIM. It is also noted that the local
heterogeneity effect is very large for ZPR drawers (e.g.,
3,744 pcm for the ZPR-6/7 inner core drawer, 1,829 pcm
for the ZPPR-15A inner core drawer, and 1,009 pcm for
the ZPPR-15A outer core drawer), and this large local
heterogeneity effect is accurately accounted for in the 1-
D cell model of MC2-3. 
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Fig.9. Comparison of NR Approximation Fluxes
Superimposed on UFG Flux and HFG Flux around U-238

Resonance at 189.68 eV

Table 1. Infinite Multiplication Factors of Homogenized Compositions and Unit Cells

Model

Homogenized 
Composition

1-D Unit Cell

Assembly

ZPR-6/6A

ZPR-6/7

ZPPR-15A

ZPPR-21A

ZPPR-21B

ZPPR-21C

ZPPR-21D

ZPPR-21E

ZPPR-21F

ZPR-6/7

ZPPR-15A

Drawer

Inner core

Outer core

Radial blanket

Axial blanket

Inner core

Outer core

Radial blanket

Axial blanket

Inner core

Outer core

Inner core

Inner core

Inner core

Inner core

Inner core

Inner core

Inner core

Inner core

Outer core

MC2-3 a)

7

-31

-59

-22

-87

-128

10

-27

-247

-284

-55

-77

-76

-104

-108

-121

286

-54

-29

Monte Carlo

1.22945 ± 0.00038

1.22482 ± 0.00048

0.33513 ± 0.00043

0.33215 ± 0.00048

1.24366 ± 0.00046

1.23802 ± 0.00047

0.33445 ± 0.00042

0.32975 ± 0.00043

1.17243 ± 0.00018

1.65167 ± 0.00019

2.49784 ± 0.00013

2.38138 ± 0.00012

2.27032 ± 0.00012

2.16489 ± 0.00010

2.08656 ± 0.00011

2.04243 ± 0.00011

1.28110 ± 0.00028

1.19072 ± 0.00021

1.66176 ± 0.00021
a) Difference from Monte Carlo solution in ∆k pcm



3.2 Simplified Benchmark Problems
As a next step to test the performance of MC2-3, the

simplified benchmark problems for the experiments
discussed above were analyzed. The benchmark models
in spherical or cylindrical (R-Z) geometries with
homogenized compositions were used. For each distinct
composition, 230-group cross sections were generated with
MC2-3 using the default UFG slowing-down calculation
option. The core calculations were performed using the
TWODANT discrete ordinate code [27] with S24 angular
quadrature and P3 or P5 anisotropic scattering order.
Table 2 compares the effective multiplication factors
obtained from MC2-3/TWODANT calculations with
MCNP5 or VIM Monte Carlo solutions. As can be seen,
the MC2-3/TWODANT results agree well with the Monte
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Assembly

GODIVA

BIGTEN

FLATTOP-25

FLATTOP-Pu

FLATTOP-23

JEZEBEL

JEZEBEL-Pu

JEZEBEL-23

ZPR-6/6A

ZPR-6/7

ZPPR-15A L15

ZPPR-15A L16

ZPPR-15A L20

ZPPR-21A

ZPPR-21B

ZPPR-21C

ZPPR-21D

ZPPR-21E

ZPPR-21F

BFS-55-1

BFS-73-1

BFS-75-1

Monte Carlo

0.99996 ± 0.00032

0.99513 ± 0.00027

1.00212 ± 0.00035

1.00072 ± 0.00034

0.99921 ± 0.00034

1.00028 ± 0.00030

0.99944 ± 0.00031

1.00007 ± 0.00031

0.99609 ± 0.00023

0.98671 ± 0.00022

0.98386 ± 0.00026

0.98081 ± 0.00028

0.98413 ± 0.00025

0.99869 ± 0.00020

0.99293 ± 0.00020

0.99923 ± 0.00018

1.00345 ± 0.00020

1.00485 ± 0.00020

1.00612 ± 0.00020

0.97511 ± 0.00016

0.99553 ± 0.00017

0.99349 ± 0.00017

MC2-3/
TWODANT a)

5

187

101

-134

-26

-129

-27

-14

-15

-18

-23

-11

-46

-133

70

-90

141

49

-123

197

149

139
a) Difference from Monte Carlo solution in ∆k pcm

Table 2. Effective Multiplication Factors of Simplified Benchmark
Problems with Homogenized Compositions

Fig. 10. Schematics of ZPR-6/7 Loading 106

Fig. 11. Typical ZPR Drawer (top) and Cross Section of Core
Unit Cell Showing Matrix and Plate-loaded Drawer of ZPR-

6/7 (bottom)



Carlo solutions: within ~200 pcm for the LANL critical
assemblies and three BFS experiments; within ~150 pcm
for six loadings of the ZPPR-21; within ~50 pcm for three
loadings of ZPPR-15A; and within ~20 pcm for the ZPR-
6/6A and ZPR-6/7. No obvious trend is observed in the
differences. 

The differences from Monte Carlo solutions of the
TWODANT multiplication factors obtained with MC2-2
and MC2-3 cross sections are also compared in Fig. 12.
The figure shows that the MC2-3 cross sections improve
the multiplication factors significantly. In particular, the
solutions for LANL assemblies improved markedly, mainly
due to the new capability of treating anisotropic inelastic
scattering.

Fission reaction rates of major isotopes for six LANL
critical assemblies were calculated at the center of the
assemblies, and compared with the measured values and
MCNP results. As shown in Table 3, the fission reaction
rate ratios of U-233, Np-237, U-238, and Pu-239 to U-235
calculated with MC2-3/TWODANT agree very well with
those of MCNP, although all the calculated values with
ENDF/B-VII.0 are smaller than the measurements by up
to ~4%. These results indicate that the deviations from
the measurements are mostly due to the ENDF/B-VII.0 data
itself rather than the multigroup cross sections generation
method of MC2-3. 

3.3 Three-Dimensional Homogenized Core 
Benchmarks
The three solver modules of UNIC were first tested

using three-dimensional homogenized benchmark problems
with given sets of group cross sections. One such series

of benchmarks applicable to both thermal and fast reactors
was proposed by Takeda [58]. The first three benchmarks
are Cartesian, PWR-like thermal reactors while the fourth
is a hexagonal configuration representative of a fast reactor.
The original purpose of the benchmark was to compute
the control rod worth. The first and fourth benchmarks
were solved with UNIC. The first benchmark proposed is
a small cubical reactor 50 cm on a side. The geometry has
1/4 symmetry in the radial plane and 1/8 symmetry overall.
The fourth benchmark is a medium-sized fast reactor 105
cm tall with an assembly pitch of 12.99038 cm and a full 8-
ring geometry definition. The geometry has 1/12 symmetry
in the radial plane. For the first and fourth benchmarks,
two- and four-group macroscopic cross sections were
respectively provided for each region in the problem in
addition to a reference Monte Carlo solution.  

Two sets of meshes were used for PN2ND and SN2ND
calculations. For benchmark 1, hexahedron meshes of
4,352 and 15,625 elements were used, resulting in 19,079
and 24,362 vertices, respectively. A tetrahedral mesh of
11,812 elements (19,079 vertices) and hexahedral mesh
of 5,240 elements (24,362 vertices) were used for
benchmark 4. MOCFE calculations were performed with
linear tetrahedral meshes upwards of 496,979 and 3,448,832
elements for benchmarks 1 and 4, respectively. The angular
approximation varied from P1 through P11 for PN2ND, and
up to 288 discrete angles on the sphere were used for
SN2ND and MOCFE. Tables 4 and 5 summarize the
eigenvalue results for benchmark 1 and 4, respectively,
showing the results of each solver in UNIC in addition to
solutions from VARIANT. Although the eigenvalue results
are somewhat scattered, the calculated control rod worths
are within one standard deviation of the reference solutions,
except for the full control rod worth of the fourth benchmark.
The convergence behavior of the solutions indicated that
more mesh refinement is necessary in all solvers of UNIC
to converge to the reference solution. For example, Table 6
shows the eigenvalue solution of MOCFE for the mesh
refinement study for the benchmark 4, where the angular
cubature was fixed at 18 directions and a maximum
trajectory area of 0.05cm2 was used. An asymptotic
convergence toward the reference solution is observable,
but the last two meshes still result in nearly a 40 to 50
pcm change in the eigenvalue. It is also noted that MOCFE
requires many more spatial elements than SN2ND for these
homogenized problems, a typical by-product of the flat
source approximation in MOC.

Assembly homogenized benchmark calculations
were also performed for the Advanced Burner Test
Reactor (ABTR) design [59,60]. Using the MC2-3 code,
composition-dependent isotopic cross sections were
generated in 9- and 33-group structures. The reference
eigenvalue solutions obtained with 9- and 33-group MCNP
calculations were 1.00813 ± 0.00004 and 1.01406 ±
0.00004, respectively. PN2ND and SN2ND calculations
were performed with various angular approximations and
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Fig. 12.  Differences from Monte Carlo Solutions of
TWODANT Multiplication Factors Obtained with MC2-2 and

MC2-3 Cross Sections



hexahedral meshes, one of which is shown in Fig. 13.
PN2ND and SN2ND eigenvalue solutions are summarized
in Tables 7 and 8, respectively. The asymptotic convergence
toward the reference solution is clearly seen for both PN2ND
and SN2ND solutions, but a residual of ~50 pcm is
observable in each of the two codes. A similar residual
was observed in the VARIANT solution obtained with a
P7 angular approximation and a spatial approximation of
eighth-, fourth- and third-order polynomials for flux, source,
and leakage, respectively, which are usually sufficient for
most problems. The residual error is associated with the
leakage and source approximation in addition to the angular
variable (primary source). In previous work [61], it has
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Reference

VARIANT

PN2ND

SN2ND

MOCFE

Control Rod In

0.96240 ±
0.00071

0.96240

0.96239

0.96245

0.96171

Control Rod
Out

0.97760 ±
0.00069

0.97699

0.97649

0.97717

0.97686

Control Rod
Worth

0.01616 ±
0.00099

0.01552

0.01501

0.01565

0.01613

Table 4. Summary of Eigenvalue Results for Takeda
Benchmark 1

Table 3. Comparison of Measured and Calculated Spectral Indices for LANL Assemblies

Assembly

GODIVA

JEZEBEL

JEZEBEL -23

FLATTOP-25

FLATTOP-Pu

FLATTOP-23

Experiment

C/E
MCNP

MC2-3

Experiment

C/E
MCNP

MC2-3

Experiment

C/E
MCNP

MC2-3

Experiment

C/E
MCNP

MC2-3

Experiment

C/E
MCNP

MC2-3

Experiment

C/E
MCNP

MC2-3

0.1643
± 0.0018

0.960

0.958

0.2133
± 0.0023

0.978

0.968

0.2131
± 0.0026

0.989

0.988

0.1492
± 0.0016

0.968

0.966

0.1799
± 0.002

0.984

0.970

0.1916
± 0.0021

0.976

0.976

1.59
± 0.03

0.987

0.987

1.578
± 0.027

0.986

0.987

1.608
± 0.003

0.975

0.975

0.8516
± 0.013

0.975

0.974

0.9835
± 0.016

0.988

0.986

0.9970
± 0.015

0.984

0.998

0.7804
± 0.01

0.988

0.988

0.8561
± 0.012

0.996

0.992

0.9103
± 0.013

0.997

0.998

1.4152
± 0.0250

0.977

0.977

1.4609
± 0.013

0.975

0.975

1.3847
± 0.012

0.982

0.982

a) MCNP results are from Reference 55
b) MC2-3 rows denotes results from MC2-3/TWODANT calculation

Data σU
f
238 / σU

f
235 σNp

f
237/ σU

f
235 σU

f
233/ σU

f
235 σPu

f
239/ σU

f
235



been shown that all such errors in VARIANT can be
removed by full space-angle refinement.

The finite element methodologies in PN2ND and
SN2ND have made space-angle refinement much more
difficult. The SN2ND results indicate angular convergence
using the S10 Carlson even-moment cubature, but clearly
residual error is still present. Unlike the VARIANT code,
with the finite element methodology, the mesh must be
carefully refined near the steep gradients observed in the
even-parity flux solution (or the large discontinuities
observed in the odd-parity flux solution). Such mesh
refinement is tedious and typically leads to many more
spatial degrees of freedom than an equivalent VARIANT
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Reference

VARIANT

PN2ND

SN2ND

MOCFE

Reference

VARIANT

PN2ND

SN2ND

MOCFE

Half Control Rod Worth

0.10376 ± 0.00056

0.10400

0.10420

0.10426

0.10423

Full Control Rod Worth

0.22323 ± 0.00054

0.22414

0.22446

0.22466

0.22453

Control Rod In

0.88001 ±
0.00038

0.88009

0.87960

0.87877

0.87796

Control Rod
Half

0.98340 ±
0.00039

0.98415

0.98365

0.98275

0.98164

Control Rod
Out

1.09515 ±
0.00040

1.09636

1.09599

1.09494

1.09353

Table 5. Summary of Eigenvalue Results for Takeda
Benchmark 4

Number of
Elements

85,538

194,833

386,650

897,248

2,113,902

3,448,832

Control 
Rod In

1496

919

662

426

310

261

Control Rod
Half

1472

872

596

346

223

176

Control Rod
Out

1474

854

575

329

209

162

Table 6. Spatial Refinement Results of MOCFE for Takeda
Benchmark 4

*  Errors in pcm from reference solutions

Angular
Order

P1

P3

P5

P7

P9

P11

78243

-1660

-366

-254

-228

-220

-217

113873

-1655

-359

-246

-219

-211

461219

-1594

-249

-109

-70

-55

Table 7. PN2ND Eigenvalue Solutions for ABTR Benchmark

Spatial Mesh Approximation (vertices)

Angular
Directions

32

50

72

98

288

78243

-241

-220

-225

-216

-216

785801

-59

-37

113873

-233

-210

-217

-207

461219

-69

-47

-51

-43

671219

-64

-40

Table 8. SN2ND Eigenvalue Solutions for ABTR Benchmark

Spatial Mesh Approximation (vertices)

Fig. 13. . Hexahedron Mesh Used for ABTR Benchmark 



calculation. Combined with the advantages of the structured
geometry treatment over an unstructured one, the PN2ND
and SN2ND solvers require more computational time on
assembly homogenized problems, and in many cases can
require several thousand processors to produce the same
solution in a comparable time. From this study, it is
concluded that the finite element-based SN2ND and
PN2ND solvers are not the most efficient methodologies
for treating assembly homogenized problems, especially
when compared with a traditional nodal approach.  However,
nodal formulations typically become less attractive for
smaller mesh sizes and require error-prone homogenization
and dehomogenization techniques, which complicate
multiphysics coupling.  

3.4 ZPR-6 and ZPPR Critical Experiments
Combined performance of MC2-3 and UNIC was tested

against the ZPR-6 and ZPPR critical experiments. The one-
dimensional ultrafine group transport capability of MC2-3

was first tested by analyzing the three loadings of ZPPR-15A
and comparing the results to those of a previous study [50].
Figure 14 shows the geometrical layout for the ZPPR-15A
Loading 15. Cell-averaged drawer cross sections were
generated based on the ENDF/B-VII.0 data in a 230-group
structure using the 1-D transport capability of MC2-3, while
in the previous study they were generated based on the
ENDF/V.2 and ENDF/VII.0 data using the MC2-2 and SDX
codes. To compare with the previous results, the core
calculations were performed with the DIF3D nodal transport
option [62], whose accuracy is comparable to S4 discrete
ordinate solutions with P1 scattering approximation. It is
noted that the VARIANT option cannot be used for these
calculations because the ~5 cm node leads to convergence
problems. (While these issues can be fixed, it is not the
focus of our development.)

Table 9 compares the calculated multiplication factors
with the experimental values and VIM Monte Carlo
solutions. The VIM Monte Carlo solutions were obtained
using the as-built plate-by-plate models. It can be seen
that MC2-3 cross sections improve the DIF3D solutions
by ~150 pcm relative to MC2-2/SDX cross sections.
However, MC2-3/DIF3D solutions still underestimate the
multiplication factor by ~300 pcm ∆k compared to VIM.
A previous, unpublished study with the PN2ND solver
and ENDF/B-V.2 data showed that the multiplication factor
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Table 9. Multiplication Factors of ZPPR-15A Experiments

Loading

15

16

20

Experiment a)

1.00046

0.99627

0.99853

VIM

0.99985 ± 0.00020

0.99571 ± 0.00021

0.99742 ± 0.00019

MC2-2/SDX/DIF3D 

0.99593 (-453)

0.99178 (-449)

0.99426 (-427)

MC2-3/DIF3D

0.99740 (-306)

0.99327 (-300)

0.99550 (-303)
a) A maximum uncertainty of ~180 pcm was estimated for the experimental values.
b) Numbers in parenthesis indicate pcm difference from experimental values.

Angular Flux
Expansion Order

P1

P3

P5

Scattering 
Order

P1

P3

P5

Multiplication
Factor

0.99258

0.99640

0.99651

Table 10. PN2ND Multiplication Factors for ZPPR-15A
Loading 15 (ENDF/B-V.2 Data)

VIM Monte Carlo 0.99616 ± 0.00010

Fig. 14. Geometrical Layout of ZPPR-15A (Octant Core) 



of the ZPPR-15A Loading 15 almost converged using a
P3 angular flux approximation and a P3 scattering order
as shown in Table 10. It can be seen that the multiplication
factor increases by ~400 pcm when the angular
approximation order for flux and scattering is increased
to P3 from P1. Thus, it is expected that the calculated
multiplication factor would be close to the experimental
value, when the higher order angular approximations are
applied.

To validate the accuracy of the SN2ND solver in
addition to the cross section generation algorithms of MC2-3,
the uranium-fueled ZPR-6/6A and the high Pu-240 core
of ZPR-6/7 that includes a high Pu-240 zone at the center
of the plutonium-fueled core were analyzed. The ZPR-6/6A
assembly was slightly simplified by modeling similar
drawers by a representative one, whereas the as-built
models were used for ZPR-6/7 by modeling more than
100 drawer types explicitly. Cell-averaged drawer cross
sections were generated based on the ENDF/B-VII.0 data
in 9-, 33-, 70-, 116-, and 230-group structures using the
1-D transport capability of MC2-3. Several meshes and
angular cubatures were implemented at each energy
resolution. 

For ZPR-6/6A, it was determined that a mesh with
about 470,000 vertices and an S6 angular cubature provided
sufficient space-angle convergence (within 10 pcm). The
reference continuous-energy VIM Monte Carlo solution
of the plate-by-plate heterogeneous problem was 0.99981
± 0.00025. The SN2ND solutions obtained with 9-, 33-,
116-, and 230-energy groups showed eigenvalue errors
of 26, -15, -16, and -15 pcm, respectively. That is, after
an initial adjustment of 41 pcm from 9- to 33-energy groups,
no further changes are observed in as many as 230 groups.
Since these eigenvalues were generated with full space-
angle convergence (496,496 quadratic vertices and 48

discrete ordinates), these results successfully indicate the
accuracy of MC2-3 and SN2ND. 

Table 11 summarizes the SN2ND eigenvalue results
for the loading 104 of ZPR-6/7. The results were obtained
using the PN2ND solver in diffusion theory (with transport
cross sections provided by MC2-3). The experimental value
was 1.00072 ± 0.00085, where the uncertainty was estimated
by adding the measurement uncertainty of 4.6 pcm to the
combined uncertainty of 80.4 pcm for geometry and
composition uncertainties. The results in Table 11 show
the convergence of SN2ND solutions with respect to energy,
mesh, and angular cubature, along with the importance of
anisotropic scattering. Hexahedral meshes were used for
all of these calculations where the 57,132 vertex mesh is
considered a test case since it uses linear hexahedral trial
functions. The 223,928 vertex mesh assumes ~8 cm axial
element sizes and one hexahedron per homogenized drawer.
The 805,185 vertex mesh also uses ~8 cm axial element
sizes but it defines 4 hexahedrons per homogenized drawer,
which yields about 9 pcm compared with the 223,928 vertex
mesh. The 1,467,429 vertex mesh also uses 4 hexahedrons
per homogenized drawer but targets a ~5 cm axial mesh
size which yields no significant improvement over the
805,185 vertex mesh. In general, the 805,185 vertex mesh is
considered sufficiently refined for our needs. The angular
cubature has virtually no impact on this homogeneous core,
but a ~40 pcm error associated with anisotropic scattering
occurs. No attempt was made to use P5 anisotropic
scattering, but experience indicates that not much difference
exists between P3 and P5 scattering on these types of
problems. The convergence with respect to energy is quite
curious because the 70- and 230-group solutions appear
identical while the 116-group result is not consistent. This
same behavior was not observed in the loading 106 results
shown below, but it is worth investigating in the future.
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Table 11. SN2ND and Diffusion Multiplication Factors for ZPR-6/7 Loading 104

Mesh
Vertices

57,132

223,928

805,185

805,185

805,185

805,185

1,467,429

1,467,429

Angular
Directions

32

32

32

32

72

72

32

Diffusion

Scattering
Order

P1

P1

P1

P3

P1

P3

P1

P0

9

0.99676

0.99845

0.99854

0.99888

0.99853

0.99887

0.99855

0.99911

33

0.99828

1.00001

1.00010

1.00044

1.00009

1.00044

1.00011

1.00065

70

0.99905

1.00080

1.00089

1.00123

1.00088

1.00122

1.00090

1.00145

116

0.99880

1.00055

1.00064

1.00063

1.00065

1.00105

230

0.99905

1.00081

1.00090

1.00089

1.00092

1.00130
*  Experimental value = 1.00072 ± 0.00085

Number of Energy Groups



The reaction rate distributions measured with activation
foils were also calculated by superimposing the local flux
shapes from MC2-3 to the global flux distributions from
SN2ND. Figure 15 shows a preliminary result for the
normalized radial distributions of enriched uranium (EU)
fission, depleted uranium (DU) capture and fission, and
Pu-239 fission reactions. All data are arbitrarily normalized
to unity at the 66.2 cm radial position.  The maximum
deviation of the calculated values (C in Fig. 15) from the
experimental values (E in Fig. 15) was 2.7 % for EU fission,
1.7% for DU capture, 3.5% for DU fission, and 3.4% for
Pu-239 fission, while the estimated measurement
uncertainties were 1.6, 2.0, 2.8, and 1.5%, respectively.  

Table 12 summarizes the SN2ND eigenvalue results
for the loading 106 of ZPR-6/7. The experimental value
was 1.00091 ± 0.00086, where the uncertainty was
determined by adding the measurement uncertainty of 5.8
pcm to the combined uncertainty of 80.4 pcm for geometry
and composition uncertainties. The continuous-energy
Monte Carlo solution obtained from MCNP5 was 1.00049 ±
0.00007. Again, it can be seen that the SN2ND solution
converges with refined energy, mesh, angular cubature
and scattering order. Figure 16 shows some selected flux
plots from the 70-group calculation of the loading 106 of
ZPR-6/7. As shown in Fig. 10, beryllium oxide was loaded
in the four drawers surrounding the sodium drawer at the
core center to enhance the worth of the simulated B4C
control rod. This causes significant localized flux changes
with respect to those drawers without beryllium. For each
group plot in Fig. 16, the right hand picture displays the
face of the movable matrix half as displayed in Fig. 10,
while the left hand picture shows the flux solution for the

active core of the stationary side (everything inside the
depleted uranium blanket). For the stationary side, the
high Pu-240 zone is separated to display the axial flux
solution along with the central BeO modified drawers,
allowing the axial flux variation to be observed. As can
be seen, the BeO drawers yield only modest impacts on
the high-energy and unresolved resonance regions. In the
epithermal range, a substantial peak is observed in the
flux solution due to the improved scattering source derived
from the BeO drawer. To validate the calculated flux
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Table 12. SN2ND Multiplication Factors for ZPR-6/7 Loading 106

Mesh
Vertices

103,684

299,276

408,112

408,112

408,112

408,112

1,001,437

1,001,437

1,001,437

1,001,437

Angular
Directions

32

32

32

32

72

72

32

32

72

72

Scattering
Order

P1

P1

P1

P3

P1

P3

P1

P3

P1

P3

9

0.99739

0.99851

0.99852

0.99887

0.99851

0.99886

0.99822

0.99856

0.99822

0.99856

33

0.99920

1.00037

1.00037

1.00072

1.00036

1.00070

1.00006

1.00039

1.00006

1.00040

70

0.99954

1.00071

1.00071

1.00105

1.00070

1.00105

1.00040

1.00074

1.00040

116

0.99973

1.00091

1.00092

1.00126

1.00091

1.00125

1.00060

1.00093

1.00060

1.00094

230

1.00123

1.00123

1.00157

1.00122

1.00091

1.00091

*  Experimental value = 1.00091 ± 0.00086; MCNP5 result = 1.00049 ± 0.00007

Number of Energy Groups

Fig. 15.  Radial Distributions of Reaction Rates for Loading
104 of ZPR-6/7



distribution, the reaction rate distributions measured with
activation foils are being analyzed.

3.5 Parallel Computation Performance
All three solvers of UNIC can run on small- and large-

scale parallel machines. The PN2ND, MOCFE, and
SN2ND solvers have been executed on thousands, tens
of thousands, and hundreds of thousands of processors,
respectively, but the parallel performances of PN2ND
and MOCFE have not been studied systematically. Thus,
this subsection focuses on the parallel performance of the
SN2ND solver, which recently merited finalist consideration
for the 2009 Gordon Bell Supercomputing Prize [63]. This
parallel performance study was performed using a plate-
by-plate model of ZPR-6/6A. Since the goal was to
investigate parallel performance, drawer-averaged cross
sections were used rather than regenerating plate-wise
cross sections for all drawer types included in the assembly.

With regard to parallel calculations, two measures of
performance are typically considered: strong and weak
scalabilities. Strong scalability shows how well time-to-
solution can be reduced by increasing the number of
processors. Weak scalability shows how efficiently the
methodology can solve ever larger problems with
proportionally larger processor counts. The weak and

strong scalabilities of SN2ND were studied on three
high-performance computers. Two of the machines are
the IBM BlueGene/P architectures hosted by ANL (40
racks with a total of 163,840 cores) [37] and by Jülich
Supercomputing Center (JSC) in Germany (72 racks with
a total of 294,912 cores) [64]. The third machine is the
Cray XT5 hosted by Oak Ridge National Laboratory
(225,000 cores) [65]. 

The Oak Ridge machine has the fastest individual
processors and highest memory per core of the three
machines, but the network speed on the IBM machine is
notably more efficient for our calculations. Because of
the low memory capabilities of the IBM machines, the
scalability studies were generally limited to 9 or 33 energy
groups, although larger group calculations were performed
using as many as 116 groups but with coarser space-angle
representations. Because UNIC can handle parallelization
by space, angle, and energy, strong and weak scalabilities
can be considered for each variable both separately and
together, but this analysis was restricted to parallelization
by space and angle separately.

Table 13 shows the strong scalability results in space
on Blue Gene/P. A 15 million vertex mesh was used with
1.8 million hexahedral elements, a 9-group cross-section
set, and an S6 angular cubature. Because of the memory
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Fig. 16. Selected Flux Plots for Loading 106 of ZPR-6/7



limitations on BlueGene/P (512 MB per core), it was
difficult to get a large number of vertices per core, and
thus this study was performed by spreading the mesh over
4,096 cores yielding ~7,324 vertices per core. The mesh
was further partitioned over 8 times as many processors
leading to ~1,831 vertices per process. Below 800 vertices
per process, extremely diminished performance was
typically seen due to the increased communication and
iteration requirements. This type of behavior is not unusual
for the SSOR preconditioner used for the conjugate gradient
solver in PETSc (where the iteration count increases as
the space gets partitioned over more subdomains), and
thus it is not necessarily indicative of the parallel machine
or the SN2ND methodology. Note that the set of angular
directions is spread into two sets of 4,096 cores. Each such
set has the mesh replicated, thus giving a hierarchical
division of work.

Because the synthetic diffusion equation has not been
partitioned over the full space-angle set of processors yet,
the strong scalability in angle (<75%) is not as good as that
in space. Future development is focused on distributing
the diffusion system and implementing spatial multigrid
methods such that the number of vertices per core can be
increased and the memory problems currently being
experienced can be reduced. Spatial multigrid, when
effective, has been shown to maintain the high scalability
shown above when applied to similar equations to those
solved by SN2ND.

Because space-angle convergence studies often
necessitate increasing space-angle resolutions until a
desired accuracy is achieved, weak scaling studies and
performance are more important than strong scalability.
In fact, several of the ZPR-6 calculations employed the
maximum number of processors and memory available
on the parallel machines, despite the fact that none of these
studies had indicated full space-angle convergence (even
without considering parallelization by energy). Table 14
gives the weak scaling performance for calculation with
9 energy groups on Blue Gene/P. As can be seen, the
performance is excellent up to 131,072 cores, but beyond
this a rapid drop-off is observable. An inspection of the
timing history indicates that this is mostly attributable to a
breakdown in performance of the “global reduce” operation
associated with the within-group scattering source update.
This operation on user-defined communicators is not
expected to be implemented optimally in vendor-supplied
MPI libraries. Currently, various approaches to mapping
MPI processes to cores are being explored to obtain better
performance for high core count cases. 

Table 15 gives the weak angle scalability of SN2ND
on XT5 for a calculation with 33 energy groups. Similar
to the BlueGene/P results, it shows an observable drop in
performance, but this time it occurs at 100,000 cores, which
is associated with the different network characteristics of
the two machines. However, it is important to note that the
faster processor speed and larger memory per core of the

XT5 machines allows the 33-group problem to be solved
in a comparable amount of time to the 9-group calculation
on Blue Gene/P. Using XT5, it was possible to obtain ZPR-
6/6A results containing over 0.9 trillion degrees of freedom.
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Total
Cores

8,192

16,384

24,576

32,768

Vertices
Per Process

7,324

3,662

2,441

1,831

Total
Time (sec)

2,402

1,312

873

637

Strong
Scaling

100%

92%

92%

94%

Table 13. Strong Spatial Scalability of SN2ND on BlueGene/P
at ANL

Total
Cores

32,768

73,728

131,072

163,840

294,912

Angular
Directions

32

72

128

160

288

Total
Time (sec)

579

572

581

691

763

Weak
Scaling

100%

101%

100%

84%

76%

Table 14. Weak Angle Scalability of SN2ND on BlueGene/P
(Combined ANL and JSC)

Total
Cores

16,512

37,152

66,048

103,200

148,608

222,912

Angular
Directions

32

72

128

200

288

432

Total
Time (sec)

1891

1901

1829

2050

2298

2517

Weak
Scaling

100%

99%

103%

92%

82%

75%

Table 15. Weak Angle Scalability of SN2ND on XT5 (ORNL)



For spatial weak scaling, the previous calculations with
assembly-homogenized problems indicated weak scalability
between 70 and 80%, but these numbers do not extend
past a few thousand processors. For the plate-by-plate
heterogeneous problems used in this study, the required
degree of mesh refinement is somewhat fixed because of
the physics in the problem (optical thickness of regions).
Unlike the assembly-homogenized problems, mesh
refinement in heterogeneous problems can easily change
the condition number of the coefficient matrix and thus
pollute the timing data. As an example, finite elements
can be defined with very bad aspect ratios that yield a
poor coefficient matrix condition number. More vertices
introduced with mesh refinement would typically translate
to a decreasing weak scalability, but in our case with axial
mesh refinement, it generally improves the condition number
of the coefficient system so that it appears to obtain greater
than 100% weak scaling. However, if the mesh is artificially
refined past the point of asymptotic convergence, the
condition number becomes worse and it appears to have
very poor weak scaling. Neither of these scenarios tells
much about the actual weak scaling performance of the
coding. In the future, it will be necessary to devise contrived
heterogeneous benchmark problems that retain the same
physics properties but allow the domain size to be increased
in some regular fashion.

4. CONCLUSION

As part of U.S. DOE’s NEAMS program, ANL is
developing a suite of modern fast reactor simulation tools.
The general goal is to reduce the uncertainties and biases
in various areas of reactor design activities by providing
enhanced prediction capabilities. Under this fast reactor
simulation program, a high-fidelity deterministic neutron
transport code UNIC and a multigroup cross section
generation code MC2-3 are being developed. The end goal
of this development is to produce an integrated neutronics
code that enables the high-fidelity description of a nuclear
reactor and simplifies the multistep design process by direct
and accurate coupling with thermal hydraulics and structural
mechanics calculations.

The application scope targeted for UNIC ranges from
the homogenized assembly approaches prevalent in current
reactor analysis methodologies to explicit geometry, time-
dependent transport calculations that are directly coupled
to thermal-hydraulics and structural mechanics calculations
in reactor accident simulations. Three transport equation
solvers have been developed based upon the unstructured
finite-element mesh representation: PN2ND, SN2ND, and
MOCFE. PN2ND and SN2ND solve the second-order
even-parity transport equation with spherical harmonics
and discrete ordinates angular approximations, respectively.
MOCFE is a method of characteristics solver for the first-
order transport equation, of which targeted application is

for explicit geometry, fine-group problems. The nodal
transport code VARIANT is also being rebuilt in UNIC
as NODAL which is focused on solving modern assembly
homogenized problems. To generate multigroup cross
sections in fast reactor applications, MC2-3 has been
developed by improving the resonance self-shielding and
spectrum calculation methods of MC2-2, and by integrating
the one-dimensional cell calculation capabilities of SDX.

The solution methods and modeling capabilities of
the three transport solvers of UNIC were briefly discussed.
The finite element discretization of spatial domain and
the spherical harmonics and discrete ordinates angular
approximations implemented in UNIC solvers were
discussed along with the iterative solution methods for
the resulting system of discretized equations. The space-
angle-energy domain decomposition approach for massively
parallel computations was also discussed. It is noted that
SN2ND can already be used on both the world’s largest
and the world’s fastest machines (Top 500 in November
2009) using space-angle partitioning alone. The slowing-
down calculation methods of MC2-3 were also discussed,
focusing on enhanced methods for resonance self-shielding
and spectrum calculations.  

The performances of MC2-3 and UNIC were tested
using several well known benchmark problems and fast
critical experiments. The MC2-3 results for homogeneous
medium and unit cell calculations and the transport solutions
obtained with MC2-3 cross sections for simplified
benchmark problems derived from fast critical experiments
were compared to MCNP and VIM Monte Carlo solutions.
The results indicated that MC2-3 produces accurate
multigroup cross sections for homogeneous media and
heterogeneous unit cells. The UNIC calculations for three-
dimensional homogenized benchmark problems with given
sets of group cross sections showed that for all three solvers,
asymptotic convergence toward the reference multigroup
Monte Carlo solutions was observable. This paper also
discussed the fact that for assembly-homogenized problems,
the performance of nodal spatial discretization is quite
superior in performance and accuracy to a low order finite
element method. Combined tests of MC2-3 and UNIC for
the ZPR-6 and ZPPR critical experiments also showed
that MC2-3/SN2ND calculations are sufficiently accurate
for analyzing these experiments. Some timing results for
the SN2ND solver on the ZPR-6 critical assembly
benchmarks were also discussed. While they can only
give a snapshot of the solver performance in this phase of
its development, these numbers indicate successful parallel
performance, achieving 76% weak angle scaling on 294,912
cores and 94% strong spatial scaling on 32,768 cores. 

Most of the UNIC calculations were performed on
high performance computers unavailable to most reactor
designers, and substantial research and development is
still required to make UNIC applicable to practical design
calculations. The most important research that remains is
to develop a better preconditioner on the space-angle system
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along with one on the entire space-angle-energy system,
in particular for MOCFE. Other improvement needs for
each solver of UNIC were discussed in Sections 2 and 3
while discussing the solution methods and initial test results.
Our current efforts are focused on developing a multigrid
preconditioner in SN2ND and a HFG transport calculation
capability with anisotropic scattering sources in MC2-3.
We also are integrating the MOCFE solver into the MC2-3
code to improve the accuracy of the cross section generation,
and we are building a nodal transport solver in UNIC for
application to assembly homogenized problems. 

Our future efforts will include carrying out time-
dependent multi-physics calculations for full reactor
core-sized problems on current and future large-scale
architectures, simulating various accident scenarios such
as control rod ejections and loss of flow without scram.
The higher fidelity solution capability will not only allow
us to better understand the behavior of existing reactor
systems, but also predict the behavior of many advanced
design concepts.
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