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1. INTRODUCTION

For the past two decades, the nuclear industry has
attempted to move toward a condition-based maintenance
philosophy using new technologies developed to monitor
the condition of plant equipment during operation. Specifically,
techniques have been developed to monitor the condition
of sensors and their associated instrument loops while a
plant is operating. Traditionally, instruments must be
recalibrated at each refueling outage in accordance with
nuclear regulations. One concern with periodic calibrations
is that only the sensor’s operating status is checked at
every fuel outage, meaning that faulty sensors may remain
undetected for periods of up to 24 months. Also, the
traditional periodic maintenance method can lead to
equipment damage, incorrect calibrations due to adjustments
made under nonservice conditions, increased radiation

exposure of maintenance personnel, and possibly, increased
downtime. In fact, recent studies have shown that less
than 5% of the process instruments are in a degraded
condition that requires maintenance [13]. Therefore, plant
operators are interested in finding ways to monitor sensor
performance during operation and to manually calibrate
only sensors that require correction. Hence, in this study
we developed an OLM model for tracking instrument
performance.

Considerable research efforts have been devoted to
the development of OLM algorithms. The application of
artificial intelligence techniques to NPPs was investigated
for instrument condition monitoring [1]. The Multivariate
State Estimation Technique (MSET) was developed in
the late 1980s [2], and Plant Evaluation and Analysis by
Neural Operators (PEANO) was developed by researchers
at the Halden Reactor Project in Norway [4]. The underlying

In nuclear power plants (NPPs), periodic sensor calibrations are required to assure that sensors are operating correctly.
By checking the sensor’s operating status at every fuel outage, faulty sensors may remain undetected for periods of up to 24
months. Moreover, typically, only a few faulty sensors are found to be calibrated. For the safe operation of NPP and the
reduction of unnecessary calibration, on-line instrument calibration monitoring is needed. In this study, principal component-
based auto-associative support vector regression (PCSVR) using response surface methodology (RSM) is proposed for the
sensor signal validation of NPPs. This paper describes the design of a PCSVR-based sensor validation system for a power
generation system. RSM is employed to determine the optimal values of SVR hyperparameters and is compared to the genetic
algorithm (GA). The proposed PCSVR model is confirmed with the actual plant data of Kori Nuclear Power Plant Unit 3 and
is compared with the Auto-Associative support vector regression (AASVR) and the auto-associative neural network (AANN)
model. The auto-sensitivity of AASVR is improved by around six times by using a PCA, resulting in good detection of
sensor drift. Compared to AANN, accuracy and cross-sensitivity are better while the auto-sensitivity is almost the same.
Meanwhile, the proposed RSM for the optimization of the PCSVR algorithm performs even better in terms of accuracy,
auto-sensitivity, and averaged maximum error, except in averaged RMS error, and this method is much more time efficient
compared to the conventional GA method.
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algorithm for PEANO is AANN, and it has been tested
by several nuclear facilities throughout Europe.

The SVR algorithm developed by Vapnik [5,6] is
based on the statistical learning theory. The support vector
machine (SVM) method was applied for data-based state
estimation in nuclear power reactors [7,8,19]. In these
papers, the Vector State Estimation Technique (VSET)
kernel and Hermitian kernel were implemented, yielding
promising results. Meanwhile the fuzzy SVR was developed
for an inferential modeling of the feedwater flow rate in
pressurized water reactors [16,17]. Recently, PCA-SVR
was applied to many prediction areas and showed good
performance [9-11]. In this paper, we applied the PCA-
SVR algorithm for an auto-associative model for instrument
calibration monitoring. The objective of the present study
is to propose a very efficient and accurate optimization
method for the hyperparameters of SVR.

In this paper, we propose a PCSVR for OLM and signal
validation, expanding the concept of PCA-SVR for an auto-
associative model. This approach exploits the attractive
merits of a principal component analysis (PCA) for extracting
predominant feature vectors and AASVR. Moreover,
RSM is proposed to optimize the SVR hyperparameters
and is compared to the conventional GA. With the use of
real plant startup data from the Kori NPP Unit 3, the
model’s performance was compared with those of AANN,
which is a fundamental algorithm of PEANO, and AASVR
in terms of accuracy and sensitivity.

2. PCSVR MODEL

The outputs of an auto-associative model are trained
to emulate its inputs over an appropriate dynamic range.
An auto-associative model will estimate the correct input
values using the correlations embedded in the model
during its training. The estimated correct value from the
auto-associative model can then be compared to the actual
process parameter to determine if a sensor has drifted or
has been degraded by another fault type. 

Figure 1 shows a schematic diagram of the proposed
PCSVR algorithm for modeling measurements in NPPs.
The PCSVR is composed of PCA and AASVR. A PCA
is first applied to extract principal components from the

input measurements for dimensionality reduction. The
predominant feature vectors in conjunction with the input
measurements are then fed into the AASVR algorithm to
formulate regression models. Each SVR model in PCSVR
has the same three hyperparameters determined by GA
and RSM.

Two parameters, accuracy and sensitivity, were used
for the performance evaluation of the algorithm [3]. The
accuracy metric is simply defined as the mean squared
error (MSE) between the model’s predictions and the
target values. The equation for a single variable is simply

where N is the number of test observations, x̂i is the model
prediction of the ith test observation, and xi is the ith
observation of the test data. Although this metric is termed
“accuracy,” it is actually a measure of error, and a low
value is desired. A robust model would produce few to no
changes in any of its outputs for errors in each of its inputs. 

Model sensitivity is generally defined as a measure of
the change in the prediction of the ith variable (x̂i) produced
by a change in its respective input (xi): 

Auto-sensitivity (SA) is a measure of an empirical
model’s ability to make correct sensor predictions when
its respective input sensor value is incorrect due to some
sort of fault. Therefore, this metric involves the following
values: sensor i’s prediction with no fault in the input x̂i,
sensor i’s prediction with a faulted input x̂i

drift, sensor i’s
unfaulted input value xi, and sensor i’s drifted input value
xi

drift. Using these definitions, the auto-sensitivity for sensor
i is found in Eq. (2).

The next performance metric is cross-sensitivity (SC).
This value measures the effect a faulty sensor input (i)
has on the predictions of sensor (j). This is illustrated in
Eq. (3), in which j is the index of the unfaulted variable
whose spillover metric is being calculated.

2.1 Principal Component Analysis
In multivariate regression, highly correlated data could
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Fig. 1. Schematic Diagram of PCA-AAVSR
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result in a multicolinearity problem and are prone to
producing unstable regression estimates. It is, therefore,
desirable to reduce the data to a smaller subset of predominant
feature vectors, which give rise to more stable estimates
of regression coefficients [14].

The PCA method involves linearly transforming the
input space into an orthogonal space that can be chosen
from a lower dimension with a minimal loss of information
and is used to reduce the dimension of input space into
the AASVR system. A lower dimensional input space will
reduce the time necessary to train the AASVR system. The
PCA method can be chosen as a method of preprocessing
data to extract uncorrelated features from the data. 

Given a signal vector x of m dimensions, x = [x1 x2…
xm]T, its true mean and covariance matrix are replaced
with the sample mean m and the sample covariance matrix
S because they are seldom known. The eigenvalues λ1,
λ2, …, λm and the corresponding orthonormal eigenvectors
p1, p2, …, pp of the covariance matrix S are calculated and
then arranged according to their magnitude: λ1≥λ2≥…≥λm.

The eigenvectors p1, p2, …, pp are called the principal
components. The eigenvalues are proportional to the
amount of variance represented by the corresponding
principal component. The transformation to the principal
component space can be written as:

where P = [p1, p2, …, pp].
The feature vector θ can be transformed back into the

original data vector x without a loss of information as
long as the number of features, p, is equal to the dimension
of the original space, m. For p<m, some information is
usually lost. The objective is to choose a small p that does
not lose much information. Generally, there is variability
in the data with random noise; in most cases, this variability
is of no concern and, by transformation to a lower dimensional
space, this noise can sometimes be removed [15].

2.2 Auto-Associative SVR 
In this paper, the SVM regression method is used for

signal validation of the measurements in NPPs. The SVM
regression entails nonlinearly mapping the original data
into a higher dimensional feature space. Hence, given a
set of data {(xi, yi)}n

i=1 ∈ Rm Rm, where xi is the input
vector to SVMs, yi is the actual output vector, and n is the
total number of data patterns. The multivariate regression
function for each output signal is approximated by the
following function:

where wk=[w1,w2,…,wn]T, φ=[φ1,φ2,…,φn]T, k=1,2,…,m,
and m is the number of sensor measurements. Also, the

function φi(x) is called a feature. Equation (5) is a nonlinear
regression model because the resulting hyper-surface is a
nonlinear surface hanging over the m-dimensional input
space. The parameters w and b are a support vector weight
and a bias that are calculated by minimizing the following
regularized risk function:

where 

The first term of Equation (6) characterizes the complexity
of the SVR models. Ck and εk are user-specified parameters,
and Lk(yk,i) is called a ε-insensitive loss function [12]. The
loss equals zero if the estimated value is within an error
level, and for all other estimated points outside the error
level, the loss is equal to the magnitude of the difference
between the estimated value and the error level. That is,
minimizing the regularized risk function is equivalent to
minimizing the following constrained risk function:

subject to the constraints
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Fig. 2. Parameters for the SVR Models
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where the constant C determines the trade-off between
the flatness of f(x) and the amount up to which deviations
larger than ε are tolerated, and ξ and ξ * are slack variables
representing upper and lower constraints on the outputs
of the system and take positive values.

The constrained optimization problem can be solved
by applying the Lagrange multiplier technique to (8) and
(9), followed by the use of a standard quadratic programming
technique. Finally, the regression function of (5) becomes

where K(xi,x)=φT(xi)φ(x) is called a kernel function.
By using different kernel functions for inner product

evaluations, various types of nonlinear models in the
original space can be constructed. The kernel function
used in this study is the following radial basis function:

where σ is the kernel function parameter.
The bias, b, is calculated as follows:

where xr and xs are called support vectors (SVs) and are
data points positioned at the boundary of the ε-insensitivity
zone. 

2.3 PCA-Based AAVVR
By replacing θ derived from Section 2.1 with x, we

can combine PC and AASVR as follows:

The three most relevant design parameters for the
PCSVR model are the insensitivity zone, ε, the regularization
parameter, C, and the kernel function parameter, σ. An
increase in the insensitivity zone, ε, reduces the accuracy
requirements of the approximation and allows a decrease
in the number of SVs. In addition, an increase in the
regularization parameter, C, reduces larger errors, thereby
minimizing the approximation error. The kernel function
parameter σ determines the sharpness of the radial basis
kernel function [16].

2.4 Model Regularization by Response Surface
Methodology
The PCSVR model was optimized by a process of

learning from available data. As mentioned, the performance
of the PCSVR model depends strongly on the three major
design parameters: the insensitivity zone, ε, the regularization
parameter, C, and the kernel function parameter, σ.
Therefore, these parameters must be optimized in order
to maximize the performance of the PCSVR model.
Response surface methodology (RSM) is a good alternative
to efficiently determine the optimal values of SVR
hyperparameters [6]. This method is very efficient in terms
of time compared to the genetic algorithm.

2.4.1 Conventional Genetic Optimization
The genetic algorithm is widely used for the optimization

of SVR parameters. Although the GA is less susceptible
to being stuck at local minima than other search methods
since it starts from many points, simultaneously climbing
many peaks in parallel, it requires too much time for the
process, especially when the amount of observation data
increases. We used the GA for comparison with our
proposed RSM method.

To optimize three parameters in SVR, we encoded
them as a bit string in each chromosome of the genetic
algorithm. Our specified multiple objectives were to
minimize the root mean squared (RMS) error and the
maximum error, and we achieved these objectives by
maximizing the following fitness function [16]:

where w1, w2, w3, and w4 are the weighting coefficients
and E1, E2, E3, and E4 are defined as follows:

The variable yi(k) denotes the measured (target) output of
sensor i, and the variable ŷi(k) denotes the output predicted
from the PCSVR model. The superscripts, t and o, indicate
the training and optimization data, respectively, and Nt
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and No represent the number of training and optimization
data points. Meanwhile m denotes the number of sensors
of input and the subscript i indicates the sensor number.
The design parameters of the genetic algorithm that
optimizes the PCSVR model are the crossover probability,
the mutation probability, and the population size. Note
that our objectives are different from those in [16] in
minimizing the RMS error and the maximum error for all
sensor outputs.

2.4.2 Proposed RSM Optimization
The method we proposed is a statistical design of

experiments called RSM to optimize the design parameters
of the PCSVR model. RSM is an efficient method, which
involves a reduced number of experiments, for fitting a
second-order multiple regression model and then finding
an optimum parameter setting. 

Central composite design (CCD) is the most popular
among all the experimental designs for RSM. CCD usually
consists of three types of experimental points: 2k factorial
points, 2k axial points, and nc center points, where k implies
the number of parameters. These points are illustrated in
Figure 3. For the sake of constructing a rotatable design,
α is typically chosen as α=4 2k.

Note that, because k=3, the axial value is obtained by
k=23/4=1.6818 and there are three repetitions at the center
point. 

For every experimental point, each PCSVR model was
constructed, optimization data were inputted into the model,
and then the corresponding MSE was measured by

where zij is the jth input value of the ith sensor in the
normalized scale and ẑij is its PCSVR estimator. The MSE
above is a measure of model accuracy; therefore, a smaller
MSE implies better accuracy.

3. APPLICATION OF THE PCSVR 

The proposed algorithm was confirmed with the real
plant startup data of the Kori Nuclear Power Plant Unit 3.
These data are values measured from the primary and
secondary systems of the NPP. The data is derived from
the following 11 types of measured signals: the reactor
power (Sensor 1), the pressurizer water level (Sensor 2),
the steam generator (SG) steam flow rate (Sensor 3), the
SG narrow range level (Sensor 4), the SG pressure (Sensor
5), the SG wide-range level (Sensor 6), the SG main
feedwater flow rate (Sensor 7), the turbine power (Sensor
8), the charging flow rate (Sensor 9), the residual heat
removal flow rate (Sensor 10), and the reactor head coolant
temperature (Sensor 11). All 11 signals were the target
output of the PCSVR model, and these were input signals
for the PCSVR model.

The data were sampled every 1 minute for about 38
hours. The total observation number of measurement
data is 2,290, which were divided into five subsets of
equal size, i.e., one training subset, one test subset, and
three optimization subsets. The total dataset was indexed
using Arabic numerals, i.e., i = 1, 2, …, 2,290. 458 patterns
with indices, i=5j+3, j=0,1,…,457, named KR3 were used
to train SVRs to capture the quantitative relation between
11 inputs and outputs. The first subset KR1, which has
indices of 5j+1, was used to test the model, while the
remaining three subsets (KR2, KR4, KR5), which have
indices of 5j+2, 5j+4, 5j+5, were used for the optimization.
Note that data in all subsets were sampled every 5 minutes
because the original dataset was divided into five subsets.
All the data subsets were normalized in each dimension
for modeling and were named z1 through z5. They were
de-normalized after the prediction process for the original
signals.

Let (θ1,θ2,…,θ11) denote PCs obtained by applying
PCA to the above plant data. As noted earlier, variance is
used in selecting dominant PCs. We found that θ1 is the
most dominant PC and explains about 84.12% of the total
variation in the original data. However, in order to minimize
loss of information, seven PCs are considered in this study.
The selected PCs explain more than 99.98% of the total
variation. The loss of information is less than 0.1%.

3.1 Optimization Using the Genetic Algorithm
The first method we adopted to optimize the design

parameters of the PCSVR model was the conventional
genetic algorithm. In order to optimize the proposed
PCSVR model with the genetic algorithm (GA-PCSVR),
we set the parametric values of the genetic algorithm as 1
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for the crossover probability, 0.05 for the mutation
probability, and 20 for the population size. The optimized
parameters are as follows:

ε = 4.8283 10-4, C = 122.8180, σ = 0.8568.

3.2 Optimization Using RSM
Experimental ranges of σ, ε, and C for the RSM are

0.2-2.0, 0.0005-0.05, and 0.1-10.0, respectively. The
experimental design for PCSVR parameter regularization
is shown in Table 1.

In order to check the statistical significance of the fitted
model, an analysis of variances (ANOVA) is conducted,
and the results are shown in Table 2. Note that for the
sake of convenience for the statistical data analysis, a
natural log of MSE is used rather than the original MSE.
Since P-value approaches zero, we can conclude that,
although three interaction terms are pooled into the error

term, the second order regression model between MSE
and model parameters is statistically very significant. This
suggests that, prior to evaluating the model performance,
parameter regularization is of high importance. Though
not shown in the table, the coefficients of determination
can be obtained as R2=94.9% and R2

adj=91.8%, respectively.
From the subsequent analysis results, it is shown that

σ and ε have a significant effect on MSE, while C is of
little significance. A response surface plot of log(MSE)
versus σ and ε is depicted in Figure 4. From the plot, we
can find where the MSE is minimized. The optimized
parameters are as follows:

σ=1.4909, ε=0.0005, C=7.60.

3.3 PCSVR Modeling Using RSM
Empirical model building was carried out for the

proposed PCSVR using RSM (RSM-PCSVR). This was
accomplished with the parameter settings found in Section
3.2. The numbers of support vectors needed for each
SVR are 383 (83.6%), 222 (48.5%), 378 (82.5%), 101
(22.1%), 332 (72.5%), 207 (45.2%), 418 (91.3%), 383
(83.6%), 162 (35.4%), 102 (22.3%), and 433 (94.5%).
The average number of support vectors is 283 (61.8%).
Data subset z3 was used for the training of the PCSVR
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No Sigma Epsilon C

1 0.564856 0.010534 2.1067

2 1.635144 0.010534 2.1067

3 0.564856 0.039967 2.1067

4 1.635144 0.039967 2.1067

5 0.564856 0.010534 7.9933

6 1.635144 0.010534 7.9933

7 0.564856 0.039967 7.9933

8 1.635144 0.039967 7.9933

9 0.2 0.02525 5.05

10 2.0 0.02525 5.05

11 1.1 0.0005 5.05

12 1.1 0.05 5.05

13 1.1 0.02525 0.1

14 1.1 0.02525 10.0

15 1.1 0.02525 5.05

16 1.1 0.02525 5.05

17 1.1 0.02525 5.05

Table 1. Experimental Design for SVR Parameter
Regularization

Table 2. Analysis of Variances

Source Degrees of freedom Sum of squares Mean of squares F P

Total 18 4.9420

Regression 6 4.6883 0.7814 30.80 0.000
Residual 10 0.2537 0.0254

Fig. 4. Response Surface Plot of log(MSE) Versus σ and ε
when C is Fixed at 7.6 for PCA-AAVSR



model, and subset z1 was used for testing. 
Table 3 summarizes the prediction accuracy of 11

signals for the RSM-PCSVR model. The relative RMS
errors are compared with the rated values (100%, 100%,
2.0Mkg/hr, 100%, 100Kg/cm2, 100%, 2.0Mkg/hr, 1000Mw,
30m3/hr, 100m3/hr, 330ºC). The averaged relative RMS
errors for the 11 sensors are 0.132% for the training data,
0.143% for the optimization data, and 0.154% for the test
data. From Table 3 we can observe that the prediction
accuracy of sensor 4 for the test data is the best among
the 11 sensors, except for sensor 10, for which two-thirds
of the data are zeros, while sensor 7 performs the worst.

Figure 5 shows the measured, predicted, and estimated
errors of the SG narrow range water level by the RSM-
PCSVR model. The predicted signal is accurate to a degree
that we can hardly distinguish it from the measured signal.

Figure 6 shows the histograms of the estimation errors
for the training data, the optimization data, and the test
data, respectively. In Fig. 6, it is shown that the relative
RMS errors of sensor 4 compared with the rated value
(100 %) are 0.0133%, 0.0183%, and 0.0103% for the
training data, the optimization data, and the test data,
respectively. The maximum relative RMS errors are
0.2494%, 0.4369%, and 0.0987%, respectively.
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Table 3. RMS Error of the PCSVR Model Using RSM

1 2 3 4 5 6 7 8 9 10 11 AVG

383 222 378 101 332 207 418 383 162 102 433 283

458 458 458 458 458 458 458 458 458 458 458 458

0.239 0.024 0.372 0.013 0.014 0.005 0.399 0.319 0.008 0.007 0.051 0.132

1.671 0.187 4.391 0.249 0.064 0.051 3.238 3.276 0.066 0.053 0.231 1.225

1374 1374 1374 1374 1374 1374 1374 1374 1374 1374 1374 1374

0.252 0.027 0.359 0.018 0.019 0.010 0.495 0.318 0.012 0.008 0.057 0.143

1.741 0.237 3.993 0.437 0.328 0.252 10.09 3.181 0.129 0.066 0.332 1.889

458 458 458 458 458 458 458 458 458 458 458 458

0.259 0.025 0.407 0.010 0.018 0.014 0.549 0.334 0.013 0.009 0.059 0.154

1.511 0.168 4.938 0.099 0.207 0.289 5.213 3.047 0.204 0.051 0.454 1.471

Sensor No.

No. of SVs

No. of data

RMS error (%) 

Max error (%)

No. of data

RMS error (%) 

Max error (%)

No. of data

RMS error (%) 

Max error (%)

Training
data

Test data

Optimization
data

Fig. 5. Prediction of Sensor 4 Using RSM-PCSVR



4. AASVR AND AANN

For the performance comparison, we constructed
AASVR and AANN and tested them with the same datasets
used for PCSVR.

4.1 AASVR Modeling Using GA
A schematic of the AASVR is shown in Fig. 7. Three

parameters of AASVR were optimized by the genetic
algorithm (GA-AASVR), and the parametric values of
the genetic algorithm were set to the same values as those
for the PCSVR described in Section 3.1. 

The optimized parameters for GA-AASVR are as
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Fig. 6. SG Narrow Range Level Estimation Error Histogram for Training, Optimization and Test Data for Training, 
Optimization and Test Data

Fig. 7. Schematic Diagram of AASVR



follows:
σ=7.0145, ε=1.0207 10-4, C=2.7973 103.
Note that the σ and C values are much bigger than

those of GA-PCSVR, while ε is almost the same. This set
of the three parameters was used for all 11 SVRs in GA-
AASVR, as they were for the GA-PCSVR.

4.2 AASVR Modeling Using RSM
AASVR parameters were optimized by the RSM

(RSM-AASVR) over the same ranges with RSM-PCSVR
described in Section 3.2. The response surface plot of
log(MSE) versus σ and ε for the RSM-AASVR is depicted
in Figure 8. The optimum point of the response surface
for RSM-AASVR is obtained as follows:

σ=1.40, ε=0.0005, C=6.30.

4.3 AANN
The architecture of the AANN underling algorithm of

PEANO is presented in Fig. 9 along with neurons. AANN
is composed of four major neuron layers, specific mapping,
bottleneck, de-mapping, and output layers. The activation
functions used in the processing elements are a hyperbolic
tangent sigmoid function in the input layer and three
hidden layers, whereas a linear activation function is used
in the output layer. A rule of thumb that prevents the
model from overfitting the data is that the total number of
weights should be less than the number of patterns. The
maximum number of neurons in each layer of AANN
that meets this rule is [6,11,13], and, hence, we performed
a combinatorial grid search of the model architectures for
the optimum number of neurons in each layer using the
optimization data. We found that the best architecture of
the AANN model is [6,11,12], which gives the smallest
error for the optimization data.

5. PERFORMANCE COMPARISON 

Accuracy and sensitivity were used as measures to
compare the performance of the three algorithms. Figure
10 shows the accuracies of the 11 sensors for the AANN,
GA-AASVR, RSM-AASVR, GA-PCSVR, and RSM-
PCSVR models using the normalized test data.

Figure 11 shows the averaged accuracies of the 11
sensors for the five algorithms. They are 1.363 10-5,
5.195 10-9, 0.126 10-5, 1.148 10-5, and 1.039 10-5

for AANN, GA-AASVR, RSM-AASVR, GA-PCSVR,
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Fig. 8. Response Surface Plot of log(MSE) Versus σ and ε
when C is Fixed at 6.3 for RSM-AASVR

Fig. 9. AANN Architecture Fig. 10. Accuracy Comparison



and RSM-PCSVR, respectively. As shown in Figure 11,
the GA-AASVR model gives the best accuracy among
the five algorithms. This good accuracy of GA-AASVR
is supposedly caused by the large bandwidth of the Gaussian
radial basis kernel (σ).

One major purpose of OLM is to detect sensor drift
as early as possible. This can be achieved by constructing

an auto-association model that is insensitive to drifted
sensor input. The model sensitivity, which is a critical
performance index for instrument calibration monitoring,
therefore, should be sufficiently low. In order to investigate
model sensitivity, we artificially degraded the SG feed
water flow rate channel (unit: Mkg/hr). The degraded
signal, shown in Fig. 12, linearly increases at a rate of
3.14% per day from the first observation, i.e. 5% positive
drift at the end of the observation. Residuals are usually
used to detect sensor drift. For example, when a residual
exceeds a predetermined interval, it can be determined
that a drift has occurred. The residuals (x̂7–x7) produced
by five algorithms are depicted in Fig. 12.

We can see that AANN, GA-PCSVR, and RSM-PCSVR
successfully detected the drift. On the contrary, the residuals
of GA-AASVR and RSM-AASVR stay around zero for
all of the drifted test data, which suggests that AASVR is
relatively incapable of detecting a sensor drift at an early
point in time. 

Figure 13 presents a sensitivity comparison of the
five algorithms. Fig. 13(a) shows the sensitivities of all
the sensors caused by the artificially degraded SG feed
water flow rate. Figs. 13(b) and (c) show the auto-
sensitivities and the cross-sensitivities, respectively. The
auto-sensitivities are 0.1408, 0.9972, 0.9205, 0.1516, and
0.1461 for AANN, GA-AASVR, RSM-AASVR, GA-
PCSVR, and RSM-PCSVR, respectively. The auto-
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Fig. 11. Averaged Accuracies of Three Models

Fig. 12. Residuals of Five Algorithms



sensitivities of GA-AASVR and RSM-AASVR are almost
1, and this means that the drifted input and predicted output
are almost the same as shown in Fig. 12. The averaged

cross-sensitivities are 0.0999, 0.0016, 0.0129, 0.0845, and
0.0826 for AANN, GA-AASVR, RSM-AASVR, GA-
PCSVR, and RSM-PCSVR, respectively. The cross-
sensitivity of GA-AASVR is the lowest.

The AASVR suffers from high auto-sensitivity, and
PCA is helpful in improving the auto-sensitivity of AASVR;
however, it would be difficult to attain cross-sensitivity
improvement by using a PCA. Both GA-AASVR and RSM-
AASVR provided low cross sensitivity and high auto-
sensitivity. This means the prediction outputs of healthy
sensors are not affected by the drifted sensor signal but the
model output of the drifted sensor is very sensitive to the
drifted input, i.e. the predicted output of the drifted sensor
follows the drifted input, resulting in a residual of zero, and
the fault cannot be detected. Such a model would be of little
use in instrument calibration validation because its predictions
follow the faulted inputs rather than correcting them.

Table 4 summarizes the performances of the fives
algorithms. Comparing the optimization methods of GA
and RSM for PCSVR, RSM performs better in terms of
accuracy, auto-sensitivity, and averaged maximum error,
except in averaged RMS error. Most of all, RSM is more
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Table 4. Performance Comparison

Optimi-zation Exec. Time Acc.*10-5 Auto Sens. RMS err. (%) Avg. Max. Err.(%)

1.363 0.1408 0.167 1.263

GA 83hr 0.00052 0.9972 0.0029 0.0182

RSM 8hr 0.126 0.9205 0.0330 0.3010

GA 84hr 1.148 0.1516 0.149 1.618

RSM 8hr 1.039 0.1461 0.154 1.471

AANN

AASVR

PCSVR

(b) (c)

Fig. 13. Sensitivity Comparison. (a) Sensitivity of All Sensors. (b) Auto-sensitivities. (c) Cross-sensitivities

(a)



efficient in execution time, as shown in Table 4.
In conclusion, AASVRs using GA and RSM performs

best in terms of accuracy and cross-sensitivity among the
five algorithms, but the auto-sensitivity is almost 1. This
implies that the AASVR is not suitable for sensor drift
detection. Meanwhile, the proposed PCSVR shows a
similar auto-sensitivity to the AANN, and its accuracy is
better than that of the AANN. Moreover, the proposed
RSM-PCSVR is more efficient than the conventional GA-
PCSVR for the OLM.

6. CONCLUSIONS 

In this paper, a PCSVR algorithm using RSM for
optimization is proposed for the signal validation and
instrument calibration monitoring of NPPs. The proposed
algorithm utilizes PCA for extracting predominant feature
vectors, auto-associative SVR for database statistical learning,
and RSM for the optimization of SVR hyperparameters.
The RSM-PCSVR model was applied to the data of Kori
Nuclear Power Plant Unit 3, and the performance was
compared with that of the AASVR using GA and RSM
for optimization, and AANN models in terms of accuracy
and sensitivity. The auto-sensitivity of AASVR is improved
by around six times by using a PCA, resulting in good
detection of sensor drift. Compared to AANN, accuracy
and cross-sensitivity are better while the auto-sensitivity
is almost the same. The proposed RSM for the optimization
of PCSVR algorithm shows better performances in accuracy,
auto-sensitivity, and averaged maximum error except in
averaged RMS error, and this method is very time efficient
compared to the conventional GA method. To increase
the performance of the RSM-PCSVR, we can consider
using other kernel functions or clustering methods, and
this is a potential direction for future research.
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