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The Monte Carlo method for solving heat conduction problems [1-3] is extended for non-constant temperature boundary
conditions in this study. The new method can treat problems with any given non-constant boundary temperatures, including
heat convection problems with non-constant fluid bulk temperature. A set of problems, particularly the heat transfer problem
in a pebble fuel, is analyzed by this new method. In addition, a new method to reduce the statistical errors in kernel fuel
regions is introduced when the Monte Carlo method is applied to a pebble fuel.
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1. INTRODUCTION

The Monte Carlo method [1-3] that was developed to
solve heat conduction problems is “meshless” and thus
can treat problems with very complicated geometries.
However, the usual numerical methods in heat transfer
problems, such as the finite difference or finite element,
are based on discretized mesh systems, thus they are
inherently limited in the geometry treatment. The Monte
Carlo method is based on the observation that heat
conduction is a diffusion process whose governing equation
is analogous to the neutron diffusion equation under no
absorption, no fission and one speed condition, which is
a special form of the particle transport equation. The
method was applied to a pebble fuel to be used in very
high temperature gas-cooled reactors (VHTGRs). Typically,
a single pebble houses ~10,000 particle fuels randomly
dispersed in graphite—matrix. Each particle fuel is in turn
comprised of a fuel kernel and four layers of coatings. Such
a level of geometric complexity and material heterogeneity
defies the conventional mesh—based computational methods
for heat conduction analysis.

Currently, the Monte Carlo method deals only with
constant temperature boundary condition [1-3]. This paper
extends the method to deal with, 1) non-constant temperature
boundary condition, ii) convection boundary condition,
and, in addition, iii) provides a hybrid method of Monte
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Carlo and analytic solutions usefully applied to the pebble
fuel problem.

2. METHOD DESCRIPTION

2.1 Non-constant Temperature Boundary Condition

The steady state heat conduction equation for a stationary
and isotropic solid is given by [4]

V-k(FVT () +q"(F) =0, €))

where K(T) is the thermal conductivity, q”(r) is the internal
heat source.

The first kind of the boundary conditions is the
prescribed surface temperature:

T(r)=f(1,), @)

where T; is on a boundary surface. Since the current Monte
Carlo method can treat only zero temperature boundary
condition (or equivalently constant temperature boundary
condition), let T be decomposed into T* and T:
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() =T"(r)+T(r), ©)

where T" satisfies the zero boundary condition, and Tis
chosen such that it satisfies the given boundary condition
(2). Eq. (1) can then be rewritten as :

—V-(k(F)VT) = -V -(k(FWV(T" +T)) = ¢"(7), (4a)
or
—V-(K(rVT') = g*" (r), (4b)
where the new source q*”(r) is defined by
g*" (r)=V-k()VT(r)+4"(r). (40)

Eq. (4b) is to be solved for T* by the Monte Carlo
method [1-3]. The Monte Carlo method cannot deal easily
with the gradient term, V-(K(F)VT(T)), in Eq. (4c) when
the boundary condition temperature is not a constant and
k(r) is not smooth enough. In order to evaluate the new
source term as simply as possible, let T be zero in internally
complicated thermal conductivity region as shown in
Figure 1. In addition, T and VT must be continuous in the
whole problem domain to render the Vv-(k(r) VT(F)) term
treatable. B

In this work, the following T is chosen for a three-
dimensional spherical model :

(’”_’”0)2
(rs—ro)z '

r,—r<r<r,

T:U(r)f(rx,ﬁ,(p)

o
Ur) =

0, otherwise

®

where f(rs,6,¢) is the given boundary condition (2), 6 and
@ indicate polar and azimuthal angle, respectively. r; is
radius to the boundary surface, and there may be internally
complicated thermal conductivity region inside ry.

2.2 Convection Boundary Condition
A convection boundary condition is usually given by

K or(r,) = (T, - T(Z))’ ©
on »

where K; is the thermal conductivity of medium 1 (solid),
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Fig. 1. Solution Decomposition T=T+T

Table 1. k; for Several Geometries

Geometry Kk,
Slab h(Xo—xs)
Cylinder hr, ln(r—b)
¥,

s

Sphere

- n)[iJ
Ty

h and T, are the convective heat transfer coefficient and
the bulk temperature of the convective medium, respectively.
This condition can be equivalently transformed to a given
temperature (Ty) boundary condition of a related problem,
in which the convective medium is replaced by a conduction
medium with thermal conductivity

k= hAn(%), @

b

where An is additional thickness beyond ry(An=ry—rs) in a
spherical geometry. Here, I, is the radius where T, occurs.
k. involves a geometry factor and k;’s for several geometries
are shown in Table 1 (see Appendix for the derivation).
There is no approximation in the k. expressions for given h
if there is no heat source in the fluid. The transformed
problem can then be solved by the Monte Carlo method
in Section 2.1 with replacement of I, by rs and r; by r.

2.3 Hybrid Method

When the Monte Carlo method is applied to a pebble
fuel problem, the fuel kernel temperatures have large
standard deviations (or would require exorbitant computer
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Fig. 2. A Fuel Particle in Graphite-matrix

Table 2. Problem Description

Ll
senasesass

Pt

Fig. 3. CLCS Distribution

Material Kernel Buffer Inner PyC SiC
Thermal Conductivity (W/cm'K) 0.0346 0.0100 0.0400 0.1830
Radius (cm) 0.02510 0.03425 0.03824 0.04177
Material Outer PyC Graphite-matrix Graphite-Shell
Thermal Conductivity (W/ecm-K) 0.04000 0.2500 0.2500
Radius (cm) 0.04576 2.5000 3.000

Number of triso particles 9315

Power/pebble 1893.94 W

time) due to their very small tally volumes. Typically,
one standard deviation in the fuel kernel temperatures is
around 5 K, while that of graphite-matrix regions is around
0.6 K. We note that a particle fuel consists of several
spherical shell layers with a fuel kernel at the center (see
Figure 2), in which geometry analytical solutions to the
heat conduction equation are available. Therefore, we
propose a hybrid method, in which the graphite-matrix
temperature is calculated by the Monte Carlo method but
the fuel kernel and layers temperatures are calculated
analytically using the temperature of the graphite-matrix
surrounding the fuel particle as the boundary condition.
This is justified, because the thermal conductivity of the
graphite-matrix is high and the radius of a typical fuel
particle is small.

3. APPLICATIONS

The method is applied to a pebble fuel with Coarse
Lattice with Centered Sphere (CLCS) distribution of fuel
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particles [5]. The description of a pebble fuel is shown in
Figure 3 and Table 2. The pebble fuel is surrounded by
helium at given bulk temperature with convective heat
transfer coefficient h=0.1006(W/cm*-K). To apply the
method, HEATON [6] based on MCNP was slightly
modified. The number of histories used in the Monte
Carlo calculation was 107.

3.1 Results of Non-constant Bulk Temperature
Problems

Test Problem 1 is defined by the following bulk
temperature of the helium coolant :

1173+10(1+cos 0) K, (83

where 6 is the polar angle, or equivalently

z

T (6
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where

FHyirzi=nl,

with r,=3.1, X, y and z in centimeters.

The results are shown in Figures 4, 5, and 6.
Test Problem 2 is defined by the following bulk
temperature of the helium coolant :

1173+10+(x+y+2) K, 9
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Fig. 5. Temperature Distribution along z-direction with x=y=0 in Test Problem 1
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where 3.2 Results of Hybrid Method
., Test Problem 3 is defined by constant bulk temperature
Xy tz=ns, of the helium coolant at 1173K. Recall that the particle
consists of fuel kernel, buffer, inner PyC, SiC and outer
with r,=3.1, X, y and z in centimeters. PyC layers. Material properties of a triso particle are
The results are shown in Figures 7, 8, and 9. shown in Table 2. The fuel kernel generates heat at the
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Fig. 9. Temperature Distribution along y-direction with x=z=0 in Test Problem 2

rate, ”=3069.51 W/cm’. The analytical solutions are J' T(r)dnr’dr
shown in Figure 10 with the outer surface temperature of kemel
the particle set equal to zero.

In the hybrid method, the volume-average fuel kernel
temperatures from analytical solutions are superposed on
the graphite-matrix temperatures that are obtained by the
Monte Carlo method. The volume-average fuel kernel
temperatures are calculated by : The results are shown in Figure 11.

(10)

4nridr

kernel
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4. CONCLUSIONS

The Monte Carlo method for the heat conduction
problems was extended to treat i) non-constant temperature
boundary condition, ii) heat convection boundary condition,
and iii) provide a hybrid method, and application results
on three test problems were presented in the paper. For
the fuel pebble problem, the Monte Carlo method provides
fuel kernel temperatures with large standard deviations
due to their very small tally volumes (unless exorbitant
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computer times are used), therefore a hybrid method
based on Monte Carlo and analytic solutions was proposed
to reduce the computing time without sacrificing accuracy.
This was borne out by an example problem in the paper,
where the fuel-kernel temperatures were calculated
analytically (without statistical errors) and superposed on
the graphite-matrix temperatures that were calculated by
the Monte Carlo method with small statistical errors. The
results of these heterogeneous calculations are to be used
to construct the two-temperature homogenized model [7],
as an example.

APPENDIX

The expressions of k, (equivalent thermal conductivity)
for the convective medium are derived in this Appendix
for three (sphere, cylinder, slab) geometries.

A. Sphere Geometry

The heat conduction equation in spherical coordinates is,
in a region free of heat source,

k, d ,dT
=2 P —=0. Al
r*dr " dr ( )
Thus,
dT
r LY (A2)
dT <
ar (A3)
r=-2+c, (A%)
.
From Eq. (A4),
1 1 —
T-T,=¢(———)=¢ 2, (A5)
b ’jv s'h
and thus
¢ =T, -T)). (A6)

L=
The convective boundary condition equation for spherical
geometry is,

4L _wer -1,
dr|. ;

r
s

(A7)

Substituting Egs. (A3) and (A6) into (A7), we have

Al
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(A8)

k, =h(rb—rx)[ij-
7

B. Cylinder Geometry

The heat conduction equation in cylindrical coordinates
is, in a region free of heat source,

k, d dT
2 —r—=0.
r dr " dr BD
Thus,
dT
r; =C, (BZ)
dT ¢
—=-1, B3
dr r (B3
T=clnr+c,. (B4)
From Eq. (B4),
I.-T,=¢(Inr,—Inr)=¢ ln(:_s)s (B5)
b
and thus
__L-T,
“ TG 1) (B0)

The convective boundary condition equation for cylindrical
geometry is,
dT
—k,—| =h(T,-T,).
2 d]" ( s b) (B7)

T

Substituting Egs. (B3) and (B6) into (B7), we have

k, = hr. ln(:—”). (B8)

K

C. Slab Geometry

The heat conduction equation in slab geometry is, in a
region free of heat source,

d’T
k, o =0. (C]_)
Thus,
dT
s =6, (C2

72

T=cx+c,. (C3)
From Eq.
T =T, =c(x,—x,), (C4
and thus

The convection boundary condition equation for slab
geometry is,

T
k| =TT, (Ce)

X

Substituting Egs. (C2) and (C5) into (C6), we have

ky =h(x, —x,). cn
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