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1. INTRODUCTION

The OECD Best Estimate Methods–Uncertainty and
Sensitivity Evaluation (BEMUSE) Programme [1,2] has
been performed: (1) to evaluate the practicability, the
quality, and the reliability of the Best-Estimate (BE) methods,
including uncertainty evaluation in applications relevant
to nuclear reactor safety and (2) to promote the use of
BE-methods within the regulatory bodies and the industry.
When applying these methods to a transient of type Large-
Break Loss of Coolant Accident (LBLOCA), the BEMUSE
activity consists of two main steps: (1) Best-estimate and
uncertainty and sensitivity evaluations of the LOFT L2-5
test (Phases 2 [1] and 3 [2]), with an a priori knowledge
of the uncertainty methodologies presented in Phase I.
The LOFT experiment L2-5 experiment was configured
to simulate a double-ended 200% cold leg break (LBLOCA);
(2) Step 2: Best-estimate and uncertainty and sensitivity
evaluations of a nuclear power plant (Phases 4-5).

One of the key issues of the BEMUSE Phases 2 & 3
is to determine the appropriate number of statistical samples
that must be evaluated for the PCT uncertainty. More
specifically, one of the observations at the end of BEMUSE
Phase 2 was that the 59-run utilized as a reference case
(i.e., the first order of Wilks’ formula [3,4]) was found to
be too small to obtain a robust conclusion in the PCT
statistics. Thus, the number of code runs needed to be
increased from over 150 to 200 code runs (i.e., Wilks’
formula at the order 4 or 5 for the estimation of the 95%
percentile) in order to reduce the dispersion of the uncertainty
in the prediction, and consequently, to obtain a more robust
conclusion. 

The Wilks’ formula is a kind of statistically sound
nonparametric order statistics, which provides a useful
tool for estimating the relevant output uncertainty (mainly
fractiles), especially when there is little information on
the output PDF and a small sample size is available for
code runs. For this approach, all uncertainty contributors

As pointed out in the OECD BEMUSE Program, when a high computation time is taken to obtain the relevant output
values of a complex physical model (or code), the number of statistical samples that must be evaluated through it is a critical
factor for the sampling-based uncertainty analysis. Two alternative methods have been utilized to avoid the problem associated
with the size of these statistical samples: one is based on Wilks’ formula, which is based on simple random sampling, and the
other is based on the conventional nonlinear regression approach. While both approaches provide a useful means for drawing
conclusions on the resultant uncertainty with a limited number of code runs, there are also some unique corresponding limitations.
For example, a conclusion based on the Wilks’ formula can be highly affected by the sampled values themselves, while the
conventional regression approach requires an a priori estimate on the functional forms of a regression model. The main
objective of this paper is to assess the feasibility of the ACE-RSM approach as a complementary method to the Wilks’ formula
and the conventional regression-based uncertainty analysis. This feasibility was assessed through a practical application of
the ACE-RSM approach to the LOFT L2-5 LBLOCA PCT uncertainty analysis, which was implemented as a part of the OECD
BEMUSE Phase III program. 
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are sampled simultaneously in each run, and the number of
code runs needed is only determined by both the requested
coverage of the population (i.e., tolerance limit) and the
confidence level. In real situations, however, the fractiles
estimated by the approach also has a greater or lesser
dependency on the size of samples because it employs
random sampling schemes. As such, a concern often
expressed about the sampling-based uncertainty analysis
is how to determine the appropriate number of samples
so that a statistical meaning could be obtained within a
reasonable cost of the analysis.

From this point of view, the Response Surface Model
(RSM) [5-7] has been used to give an appropriate surrogating
model to an original model by using several kinds of
experimental designs (such as fractional factorial designs
or central composite designs) or a limited number of
statistical samples (such as Latin Hypercube Samples)
over all possible ranges of inputs, regression techniques,
and optimization methods. This approach becomes very
useful when it takes a long time for a code run to obtain
the relevant output values (such as a physical trend of
performance parameters in a complex physical model),
and thus, the number of evaluations through such a model
is limited to, at most, from tens to hundreds. The resultant
model is a simple and high speed alternative model that
can best describe the trend of the relevant output variables
with the specified inputs. Since the functional form of the
RSM is generally not known for many cases, it requires a
tedious and time-consuming process to obtain the most
relevant functional form between input and output parameters
(coupled with multivariate nonlinear regression analysis). 

The above limitation involved in the traditional RSM
approach can be greatly reduced by employing the

Alternating Conditional Expectation (ACE) method [8-11].
The ACE method is a generalized regression algorithm
that yields an optimal relationship between a dependent
variable and multiple independent variables by maximizing
the statistical correlation between the transformed dependent
variable and the sum of transformed independent variables.
This fundamental feature of the ACE algorithm requires
an iterative convergence to the transformations for
independent and dependent variables, while it does not
require an a priori estimate of the functional forms of
transformed variables. Once the optimal transformations
are obtained, a simple regression analysis can be performed
to determine the functional forms for the transformed
dependent and independent variables. Thus, the ACE
method offers two distinctive advantages over the traditional
nonlinear regression analysis. First, while nonlinear
regression analysis an a priori estimate of functional forms
and sufficiently estimates accurately the fitting coefficients
to arrive at a converged solution, the ACE algorithm
guarantees the convergence of the transformations. Once
the ACE iteration is converged, a simple regression analysis
usually suffices for generating actual analytical functional
forms for the transformed variables. Second, the ACE
algorithm cannot produce a worse fit than the traditional
RSM, because if no transformations are found to be
necessary, then the ACE would simply suggest nearly
linear transformations for all the variables, indicating at
least equal or much greater data fitting than the traditional
RSM. While the ACE algorithm provides the several
aforementioned advantages, it has not been applied recently
to the field of thermal-hydraulic uncertainty analysis [12,13].

The main objective of this paper is to assess the feasibility
of the ACE-RSM approach as a complementary method
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Fig. 1. A Statistical Uncertainty Assessment Process Linked with the ACE-RSM Approach



to the Wilks’ formula and the conventional regression-
based uncertainty analysis through an example application
of it to the OECD BEMUSE Phase III-LOFT L2-5 LBLOCA
PCT uncertainty analysis. It should be noted that the term
‘uncertainty’ mentioned in this paper mainly focuses on
the 5%/95% statistical bounds for the calculated PCT
values, in particular, the confidence limit in the case that
the Wilks’ formula is applied, or otherwise, the empirical
percentiles. Figure 1 shows the whole process of the ACE-
RSM-based LBLOCA PCT uncertainty analysis employed
in this paper.

2. BRIEF SUMMARY OF THE ACE ALGORITHM

For a dependent variable and multiple independent
variables (Xi,i=1,...,p), the objective of the ACE algorithm
[8-11] is to find the most optimal transformations θ(Y)
and φi(Xi) that maximize the statistical correlation between
θ(Y) and ∑p

i φi(Xi), by treating each value of the transformed
variable θ(Y) as the expectation of several realizations of
the sum of transformed independent variables ∑p

i φi(Xi).
The resulting ACE regression model can be expressed as:

where θ is a function of the response variable, Y, and φi

are functions of the independent variables, (Xi,i=1,...,p),
α0 is the regression constant, and ε is an error term that is
not explained by the regression. Thus, the ACE model
replaces the problem of estimating a linear function of a
p-dimensional variable X=(Xi,X2,...,Xp) by estimating p
separate one-dimensional functions, φi(Xi) and θ(Y) with
an iterative method. These transformations are achieved by
minimizing the unexplained variance of a linear relationship
between the transformed response variable θ(Y) and the
sum of transformed independent variables ∑p

i φi(Xi). Eq.(2)
indicates the error variance (ε2) that is not explained by
the regression (under the constraint, E[θ 2(Y)]=1):

The minimization of ε2 with respect to φ1(X1),φ2(X2),
...,φp(Xp) and θ(Y) is carried out through a series of single-
function minimization, involving the following conditional
expectation and minimization 

with the square-norm ||·|| introduced such that E(θ2(Y)]=1.
That is, the ACE algorithm consists of an iterative use of
Eqs.(3) in alternating directions in order to obtain the most
optimal transformations of φi(Xi) and θ(Y), requiring a
step-by-step computational job (please see References 8-
10 for its formal operation). Then, the transformations
φi(Xi) and θ(Y) after the minimization are estimates of the
optimal transformations φi

*(Xi) and θ*(Y), leading to the
following relationship:

Here, ε* is the error that is not captured by the use of
the ACE transformations, which is assumed to have a
normal distribution with zero mean. In that case, the
minimum regression error, ε*, and the maximum multiple
correlation coefficient, ρ*, are related by ε*2=1–ρ*2. However,
the minimization of ε2 cannot be obtained directly because
Eqs.(3a) and (3b) are coupled for each other. Thus, the
ACE algorithm necessitates an iterative use of the two
smoothing operations of Eqs.(3) in alternating directions
in order to obtain transformed independent and dependent
variables. When a convergence is attained with an iterative
scheme, the data in each transformed variable are usually
smooth and they vary slowly. While the ACE-transformation
itself does not produce explicit mathematical forms on
Y-θ*(Y) and X-φi

*(Xi), the ACE transformed data plots
generated as a result of the above iteration provides an
essential information to estimate those mathematical forms.
This means that as a further step, it is necessary to derive
explicit mathematical forms for the transformed variables
with the data plots. Once the explicit functional forms for
the transformations are estimated with the ACE-transformed
data plots, we can perform a standard regression analysis for
these transformations to obtain θ*(Y)=α0+∑p

i=1αiφi
*(Xi)

with the corresponding regression coefficients αi. Then,
the final functional form of Y versus X1,...,Xp, i.e., ACE-
RSM model, is given in the form of Y=θ*–1[α0+∑p

i=1αiφi
*(Xi)].

Here, θ*–1[·] indicates an inverse function of θ*(Y).
On the other hand, it should also be noted that the

error in Eq.(2) could vanish with a judicious choice of
θ(y), if θ(yj) equals φi(xi,j) for every point in a set of N
data {(xi,j,yj),j=1,2,...,N}. In practice, however, this idealized
situation does not occur because the data contain a greater
or lesser randomness and so do θ(yj) and φi(xi,j) As in
conventional regression analysis, thus, θ(yj) in the ACE
algorithm is also estimated to the expectation of several
realizations of φi(xi) for the j’th point, rather than a single
unique realization φi(xi,j). In most regression problems,
there is usually only one value yj, and hence one value
φi(xi,j), for the j’th data point, and the conditional expectation
θ(yj) has to be evaluated with the neighboring values
{φi(xi,k),k=j–M,...,j+M}, for some M, which is treated as
realizations of φi(xi,j), for the j’th data point. Thus, data
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smoothing operation over the dependent and independent
variables plays a primary role in the ACE algorithm [8-11].

3. MARS SIMULATION FOR THE PCT UNCERTAINTY
ANALYSIS

In order to assess the PCT uncertainty for a LBLOCA
blowdown phase, the sampling-based method [14] was
applied to the MARS code (version 2.3) [2,15]. As the
first step for the uncertainty analysis, 14 uncertainty
parameters were chosen based on the result of the
Phenomena Identification and Ranking Table (PIRT) on
LBLOCA. As given in Table 1, the chosen parameters
cover (a) physical models employed in the code and (b)
initial and boundary conditions for the LBLOCA simulation.
The state of knowledge about all uncertain parameters
has been described by the ranges and subjective probability
distribution (see also Table 1). Second, the random
variance of each uncertain parameter was determined by
a crude Monte Carlo sampling method, which is based on
the combined probability distribution of the uncertain
parameters. For uniform distribution, the minimum and
maximum values are the boundaries of sampling. For
normal distribution, the sampling boundaries were truncated
at its mean value ±2σ. Any dependency between parameters
was not considered in the sampling process. Then, the
MARS code calculations were performed with sampled
sets of parameters. In order to limit the number of samples

for the MARS code calculations to a reasonable level, a
set of 93 samples were required to apply Wilks’ formula
unilaterally at the 2nd order (for 95% tolerance limit and
95% confidence interval of the code results), but 100
samples were sampled to get sufficient calculation numbers
that can cover the unexpected run errors. Finally, multiple
input decks (each input deck has 100 statistical inputs)
were implemented to identify the effect of different sets
of random samples on the PCT value, consequently
resulting in several thousands of PCT values for its
statistical analysis. The short transient time (i.e., 100
seconds in case of LOFT L2-5) was enabled to perform
the multiple sets of these 100 cases.

For each input deck (composed of 100 statistical inputs),
the ratio of the failed runs (i.e., crash of the simulation
code) was 7% (i.e., 7 out of 100 runs were failed). The
failure was random and its reasons were not known
(maybe due to a combination of physically unreasonable
random values). The failed calculations were discarded
manually. The remaining outputs are the final result of
the propagation of input uncertainties through the specified
number of code calculations. According to a recommendation
from the BEMUSE Phases III, in order for the Wilks’
formula to be properly used, all the code runs must be
successful or corrected in the case of failure. For a small
number of code failures, the BEMUSE Phases III also
recommends that a conservative approach be used by
performing more code runs, which is similar to the present
approach. For a typical input deck with 93 samples,
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Table 1. MARS Input Parameters Employed for PCT Uncertainty Analysis

1 D-B Liquid HT multiplier ± 20% Normal

2 Chen’s Nucleate boiling HT multiplier ± 23.2% Normal

3 AECL lookup CHF multiplier (Bowdown CHF) ± 74% Normal

4 Transition boiling multiplier ± 32% Normal

5 Film boiling HT multiplier ± 36% Normal

6 D-B Vapor HT multiplier ± 20% Normal

7 Peaking factor(Fq) ± 14.96% Normal

8 Cold gap size ± 20.98 µm Uniform

9 Gap conductance multiplier ± 80% Uniform

10 Fuel conductivity ± 10% Normal

11 Decay heat ± 6.6% Normal

12 Break area ratio 0.7~1.15 Uniform

13 Pump two-phase performance 0.0~1.0 Uniform

14 Downcomer lateral loss coeff. 0.0~1.0 Uniform

Component

Core

Fuel rod

PDFs
Independent parameters and their ranges: 

±2σ (or min/max)
Code 

input xi

Associated
Phenomena

Reflood heat transfer

Stored Energy 

Decay Heat

Critical flow

Two-phase performance

ECC Bypass

Break

Pump

Down comer

Note HT: Heat Transfer; D-B: Dittus–Boelter correlation



Figure 2 shows the 5%/95% PCT bounding of the MARS
calculations compared with the LOFT experimental results.

4. FORMULATION OF ACE-RSM MODELS AND
RESULT ANALYSIS

Based on the MARS input xi (p=14) and output values
for the PCT (y) uncertainty analysis, the corresponding
ACE-RSM models can be formulated through the following
procedures:
(Step-1): Derive two types of the ACE-transformed
functional forms for independent and dependent variables
with the prepared N sample input and output values: xi ~
φ̂i(xi) and y ~ θ̂(y)
(Step-2): Perform a (piece-wise) linear regression between
the transformed variables, φ̂i(xi) and θ̂(y):

Here, it should be noted that when a convergence is
well attained with an iterative scheme, a regression of the
transformed dependent variable on all the transformed
covariates results in all of the parameter coefficients of
the independent variables (αi,i=1,2,...,p) being positive
and close to 1 and the regression constant α0 ≈ 0.
(Step-3): Derive the final functional form between the
original input and output variables, xi and y

Using the foregoing process, 4 typical ACE-RSM
models on the PCT were formulated based on a limited
number of sample runs: (1) one from N=93: ACE-RSM-
Model-1, (2) two from N=124: ACE-RSM-Model-2(a)
(Random Set-1) and ACE-RSM-Model-2(b) (Random Set-
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Fig. 2. The 5%/95% PCT Bounding Values (MARS Calculations) Compared with the LOFT L2-5 Experimental Data 

(5)

(6)

1st order 59 yN y1

2nd order 93 yN–1 y2

3rd order 124 yN–2 y3

4th order 153 yN–3 y4

Wilks’
formula

# of
samples (N)

For N ordered output values obtained
N random samples, y1<y2,...,<yN

Rank corresponding
to 95% value

Rank corresponding
to 5% value

Table 2. Wilks’ Statistical Samples Based Confidence and
Tolerance Limit (α = β =95%)

Note: Confidence interval bounds a population parameter
(e.g., mean) with some confidence, while a tolerance interval
bounds percentile range that represents a specified proportion
of the population. In simpler terms, the confidence interval
characterizes the behavior of the average while the tolerance
interval characterizes the behavior of a range of individuals. 



2), and (3) one from N=300: ACE-RSM-Model-3. As
shown in Table 2, the number of selected samples, N=93
and N=124, correspond to the 2nd and 3rd orders of Wilks’
formula (subject to a tolerance limit of 95% and a confidence
level of 95% for the code results), respectively, and N=300
corresponds to twice the number of samples (N=153) at
the 4th order of Wilks’ formula. 

As a result of the Step-1, Figure 3 shows the functional
relations between xi and φ̂i(xi) suggested by the ACE
plots: the piece-wise linear (or polynomial) format of xi

in the case of φ̂i(xi) and the piece-wise linear (or quadratic)
format of y in case of θ̂(y). As a result of the Step-2,
Table 3 and Figure 4 show the ACE-transformed regression
coefficients (αi,i=1,2,...,p) between φ̂i(xi) and θ̂(y) and the
relative differences between a sum of the transformed

inputs ∑p=14
i=1   φi(xi) and the transformed PCT variables θ̂(y),

respectively. As shown in Figure 4, the plots of transformed
variables θ̂

*
(y) and φ̂*

i(xi) that were subjected to a higher
R2, explain a good regression between θ

*
(y) and φi

*(xi)
with the present ACE algorithm. The foregoing results are
also justified by the regression coefficients (αi,i=1,2,...,p)
between φ̂i(xi) and θ̂(y) in Table 4, approaching 1 for most
φ̂*(xi). As mentioned before, αi=1.0 means a perfect
correlation (or regression) between φ̂i(xi) and θ̂(y). This is
especially true when several kind of linear regressions
(including partial correlation and standardized regression
[16,17]) were applied, as shown in Table 4, where the
resultant R2 values were much lower than those of the
corresponding ACE-RSM cases, thereby explaining a
much worse performance for the regression.
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Fig. 3. Functional Forms of the ACE-Transformed PCT Variable θ̂(y)

(a) ACE-RSM-1 (b) ACE-RSM-2(a)

(c) ACE-RSM-2(b) (d) ACE-RSM-3
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Fig. 4. Relationships between the ACE-Transformed Inputs θ̂i(xi) (p=14) and PCT θ̂(y)

Table 3. Regression Coefficients between the ACE-Transformed Inputs and Output

i=0 α0 = -1.73E-07 α0 = -6.93E-07 α0 = -6.93E-07 α0 = -2.03E-06

i=1 α1 = 1.08 α1 = 1.17 α1 = 1.67 α1 = 1.05

i=2 α2 = 1.09 α2 = 1.08 α2 = 1.39 α2 = 1.50

i=3 α3 = 1.08 α3 = 1.27 α3 = 1.17 α3 = 1.14

i=4 α4 = 1.02 α4 = 1.08 α4 = 0.909 α4 = 1.01

i=5 α5 = 1.04 α5 = 1.18 α5 = 1.04 α5 = 0.987

i=6 α6 = 1.22 α6 = 1.21 α6 = 1.48 α6 = 1.17

i=7 α7 = 1.02 α7 = 1.00 α7 = 1.02 α7 = 1.01

i=8 α8 = 0.99 α8 = 1.01 α8 = 0.979 α8 = 0.993

i=9 α9 = 1.00 α9 = 0.979 α9 = 0.970 α9 = 0.985

i=10 α10 = 1.11 α10 = 1.06 α10 = 1.10 α10 = 1.14

i=11 α11 = 1.16 α11 = 1.14 α11 = 0.956 α11 = 1.15

i=12 α12 = 0.99 α12 = 1.01 α12 = 1.00 α12 = 1.01

i=13 α13 = 1.01 α13 = 1.01 α13 = 1.07 α13 = 1.04

i=14 α14 = 1.16 α14 = 0.992 α14 = 1.21 α14 = 1.10

R2 0.98 0.96 0.96 0.93

φ̂*(xi)
Regression coeff. (αi)and the square of the multiple correlation coefficient

ACE-RSM-1 ACE-RSM-2(a) ACE-RSM-2(b) ACE-RSM-3
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Table 4. Linear Regression Coefficients between the Original Inputs and Output

R2 : RSM-1 0.80 0.80 0.80 0.85 0.85

R2 : RSM-2(a) 0.85 0.85 0.85 0.81 0.81

R2 : RSM-2(b) 0.84 0.84 0.84 0.82 0.82

R2 : RSM-3 0.81 0.81 0.81 0.79 0.79

Coefficient of 
determination

Linear regression between original inputs and output

1st order RSM(1)

Standardized
Regression Coeff.

(SRC)(2)

Partial Correlation

Coeff. (PCC)

Partial rank
Correlation Coeff. 

(PRCC)

Standardized Rank
Regression

Coeff. (SRCC)

Note 
1. Superscripts   

2. SRC: the regression coefficient of standardized data points.
3. PCC: the degree of correlation between two random variables, with the effect of a set of controlling random variables removed
4. SRCC/PRCC: the regression coefficient of ranked data points

Fig. 5. Comparison of the ACE-RSM Results with the Corresponding MARS Results

(a) ACE-Model-1: R2=0.9622, Normalized
RMS=0.044 (4.4%)

(b) ACE-Model-2(a): R2=0.9260, Normalized
RMS=0.037 (3.7%)

(c) ACE-Model-2(b): R2=0.9257, Normalized
RMS=0.044 (4.4%)

(d) ACE-RSM-3: R2=0.8612, Normalized 
RMS=0.051 (5.1%)



As a result of the Step-3, Figure 5 shows a one-to-one
comparison of the ACE-RSM-based PCT for the four
ACE-RSM models with the corresponding MARS results
based on the corresponding R2 and Root Mean Square
(RMS) (or normalized RMS) error as the performance
criteria on the regression. 

Table 5 shows the 5% and 95% PCT values for the
ACE-RSM models and the corresponding MARS values
with a different set of samples. 

A careful investigation of Figure 5 and Table 5 shows
that with the exception of the lower PCT values, (which
is subject to highly nonlinear thermal-hydraulic behavior),
the ACE-RSM PCT traced relatively well the corresponding
MARS results. From the qualitative aspect, the ACE-RSM-
Model-3 (based on a larger number of samples) was quickly
converged to the original results, compared to the ACE-
RSM-Model-2(a) and Model-2(b) that were subjected to
higher values of R2. This fact indicates that although the

RSM itself is well fitted to the original code results, a
smaller number of samples may not trace the whole trend
of the original MARS code results that were not explained
due to their random variation. In order to cover such a
random variation that may not be explained by the limited
number of samples, it is better to employ an appropriate
number of samples. From the quantitative aspect, the
accuracy bound for ACE- Model-3 was in between
∆T|MARS-ACE|=5K for 95% PCT and 20K for 5% PCT
(e.g., see the case of N=3000 of Table 5). The above results
indicated that the ACE-RSM models could be an appropriate
surrogate model to the original MARS code, although
they also showed a greater or lesser dependency on the
utilized number of samples, as in the conventional RSM.

Finally, a variation of the Cumulative Distribution
Function (CDF) according to the increase of sample size
was investigated in order to estimate the final form of the
corresponding probability distribution. Figure 6 shows
that in the case of ACE-RSM-2(a), the PCT approaches
the normal PDF as the sample size N increases from 124
to 3000.

5. SUMMARY AND CONCLUSIONS

In this paper, the ACE-RSM approach was applied to
assess the blowdown PCT uncertainty for the LOFT L2-5
Experiment as a complementary work to the OECD
BEMUSE Phase-III program. Two decision parameters
were taken into account in order to assess the performance
of the estimated ACE-RSM models: R2 and RMS/NRMS
errors. While the R2 summarizes the information on the
general tendency (i.e., average behaviour) of the estimated
regression models, the RMS/NRMS errors cover the impact
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Table 5. 5%/95% Bounds on PCT (K) Values Based on the ACE-RSM Models

93(1) 759.2 1217.5 747.0 1218.7 - - - - - -

124(2) 790.0 1286.5 - - 824.3 1200.8 846.1 1212.0 794.0 1204.8

300(3) 817.7 1171.3 - - 884.8 1189.5 886.9 1178.5 852.6 1182.2

500 805.8 1172.1 - - 881.7 1182.6 883.0 1176.6 846.7 1173.4

1000 810.7 1173.5 - - 864.8 1181.4 867.7 1177.4 835.0 1173.7

3000 815.5 1174.4 - - 861.2 1179.0 867.8 1177.7 834.4 1176.0

6000 N/A N/A - - 859.3 1179.3 867.5 1178.6 834.8 1177.1

N
MARS

ACE-RSM-1
(R2=0.9622)

ACE-RSM-2(a)
(R2=0.9260)

ACE-RSM-3
(R2=0.8612)

ACE-RSM-2(b)
(R2=0.9257)

5% 95% 5% 95% 5% 95% 5% 95% 5% 95%

(7)

(8)

(9)

Note superscript 
(1) Based on the 2nd order of Wilks’ formula (N=93), i.e., 5% bound = y(2) & 95% bound = y(92).
(2) Based on the 3rd order of Wilks’ formula (N=124), i.e., 5% bound = y(3) & 95% bound = y(122).
(3) Except for (1) and (2), the remaining ones are based on the 5%/95% empirical percentiles.



of local variations. 
A comparison with the original MARS code results

showed that except for the lower (or 5%) PCT values
(which was subject to highly nonlinear thermal-hydraulic
behavour), the formulated ACE-RSM Models relatively
traced the original code results well, even with a limited
number of code runs. Since the aforementioned nonlinear
thermal-hydraulic behavior is highly dependent on the
physical domain of a system, rather than a random error,
its impact on the final results should be explained by
other means in more detail (e.g., physical models employed
in the thermal-hydraulic system code). In addition, it
should be noted that since the ACE-RSM approach was
also a kind of regression technique, its performance might
be not good when data points are scattered in highly
nonlinear ways. In that case, the best way to obtain a
better performance (i.e., curve fittings) is to control data
smoothing in various ways. 

Based on the foregoing results, the present ACE-
RSM approach could be effectively utilized in the field
of best estimate and uncertainty analysis, with a balance
of accuracy/robustness in predicted uncertainty and
computational demands if the data smoothing factor is
appropriately controlled. A greater or lesser dependency
of the regression performance on the number of samples
could be reduced further by employing more efficient

sampling schemes, such as the Latin Hypercube Sampling
(LHS) approach [18,19]. The LHS method selects N
values randomly from N equally spaced intervals of the
cumulative distribution, thereby ensuring good sampling
of the distribution tails with a minimum number of samples,
and much less dependency on the size of statistical samples
than random sampling. 
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NOMENCLATURE
E[·] Expectation Operator
E[·|Y] Expectation Conditional on Y
M Neighboring Data Index (or Value)
N Number of Data Points (or Samples)
p Number of Input Variables
R2 Coefficient of Determination (Regression)
Xi;xi Original Uncertainty Input Variables
Y;y Original Input Variables

Greek Symbols
α Confidence limit of the Wilks’ formula
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Fig. 6. An Example of CDF Variation According to the Increase of Samples (ACE-RSM-2(a) Case)



αi Regression Coefficient for the ith ACE-transformed
Variable

β Tolerance limit of the Wilks’ formula
βi Regression Coefficients for the ith Original Variable
ε Regression Error Term
φ(X) ACE-transformed Input Variables (= phi(x) in Figures)
θ(Y) ACE-transformed Output Variable (= Theta(y) in

Figures)
θ1,θ2 Two Variables Used in Evaluation of RMS Error
ρ Multiple Correlation Coefficients
σ Standard Deviation
||·|| Square Norm (Normalization Operator)

Superscripts
* Variables after Optimal transformation
^ Estimated Form of Transformed Variables
- Average of Data Points
-1 Inverse (Function) Operator

Subscripts
max Maximum Value
min Minimum Value
ref Reference Variable

ABBREVIATION
ACE Alternating Conditional Expectation
BE Best Estimate
BEMUSE Best Estimate Methods & Uncertainty and

Sensitivity Evaluation
CDF Cumulative Distribution Function
CHF Critical Heat Flux
CSNI Committee on the Safety of Nuclear Installations
HT Heat Transfer
LBLOCA Large Break Loss of Coolant Accident
LHS Latin Hypercube Sampling
LOCA Loss of Coolant Accident
LOFT Loss Of Fluid Test
MARS Multi-Dimensional Analysis of Reactor Safety
NRMS Normalized Root Mean Square
OECD Organisation for Economic Cooperation and

Development 
PCC Partial Correlation Coefficient
PCT Peak Cladding Temperature
PDF Probability Density Function
PIRT Phenomena Identification and Ranking Table
PRCC Partial Rank Correlation Coefficient
PWR Pressurized Water Reactor
RMS Root Mean Square 
RSM Response Surface Model
SRC Standardized Regression Coefficient
SRCC Standardized Rank Regression Coefficient
SRS Simple Random Sampling
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