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A Binary Decision Diagram (BDD) is a graph-based data structure that calculates an exact top event probability (TEP). It
has been a very difficult task to develop an efficient BDD algorithm that can solve a large problem since it is highly memory
consuming. In order to solve a large reliability problem within limited computational resources, many attempts have been
made, such as static and dynamic variable ordering schemes, to minimize BDD size. Additional effort was the development
of a ZBDD (Zero-suppressed BDD) algorithm to calculate an approximate TEP. The present method is the first successful
application of a BDD truncation. The new method is an efficient method to maintain a small BDD size by a BDD truncation
during a BDD calculation. The benchmark tests demonstrate the efficiency of the developed method. The TEP rapidly

converges to an exact value according to a lowered truncation limit.

KEYWORDS : Binary Decision Diagram, BDD, Fault Tree, Truncation, Top Event Probability

1. INTRODUCTION

1.1 BDD Algorithm

A Binary Decision Diagram (BDD) [1-3] provides an
efficient representation and manipulation of Boolean
formulae, and it was shown that a BDD is effective in the
diverse fields of computer science and reliability [4].
Bryant [3] popularized the use of a BDD by developing a
set of algorithms for an efficient construction and
manipulation of BDDs. The BDD algorithm was applied
to a reliability analysis [5,6] and has been investigated to
solve large fault trees and importance measures [7-10].
The BDD algorithm has become a very popular method
to calculate an exact top event probability (TEP) of a
small or intermediate size reliability problem [5-10].

Figure 1 displays the relations among fault tree
solving methods, such as a BDD algorithm, a ZBDD
(Zero-suppressed BDD) algorithm, and an algorithm
based on traditional Boolean algebra. The BDD algorithm
generates a BDD structure by solving a fault tree. On the
other hand, an algorithm based on traditional Boolean
algebra generates minimal cut sets (MCSs). An MCS is a
minimal combination of basic events that causes a top
event. The MCSs could be expressed by a ZBDD structure,
which is a factorized form of MCSs [11]. As shown in
Fig. 1, a BDD structure could be reduced to a ZBDD
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structure by truncating and subsuming the BDD structure.
However, there had been no method to generate a ZBDD
structure directly from a fault tree before the development
of the ZBDD algorithm [12].

The BDD algorithm calculates an exact TEP since it
does not employ any approximations such as a truncation, a
rare-event approximation, and a delete-term approximation.
All details regarding a BDD and a ZBBD are explained
in Sections 1.2 and 1.3, and the delete-term approximation
is illustrated in Appendix A. Since the BDD algorithm is
highly time and memory consuming, especially for large
problems, it has been difficult to solve large reliability
problems such as fault trees for accident sequences in a
Probabilistic Safety Assessment (PSA). In order to solve
a large complex problem with limited computational
resources, numerous attempts have been made to minimize
BDD size, which is measured by the number of nodes in
the BDD structure (see Sections 1.2 to 1.4). The BDD
size is heavily dependent on the choice of the variable
ordering for a BDD construction (see Section 1.3 and
Appendix B). As shown in Fig.1, a BDD truncation
cannot be applied to the BDD algorithm (see Section 2.2).

1.2 ZBDD Algorithm

ZBDD structure was proposed as an efficient data
structure that encodes minimal cut sets (MCSs) [11]. The
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Fig. 1. Fault Tree Solving Methods

ZBDD structure is interpreted as a factorized form of
MCSs. By optimally choosing the factorization order,
that is, a ZBDD variable ordering, the ZBDD size could
be significantly minimized. A new ZBDD algorithm was
developed by using special formulae of Boolean operations
on two ZBDDs [12]. The ZBDD algorithm is an important
variation of the BDD algorithm since it solves a large
fault tree with a truncation limit in a short time. If an
MCS probability is less than a truncation limit, the MCS
is deleted during the calculation. The ZBDD algorithm
and its software FTREX (Fault Tree Reliability Evaluation
eXpert) were developed to overcome the massive memory
requirements and a long run time [12-14]. Benchmark
tests [12,13] were performed to demonstrate the efficiency
of the ZBDD algorithm over an algorithm that is based
on traditional Boolean algebra. The ZBDD algorithm
showed a fast calculation speed for various fault trees
and truncation limits. Due to the nature of the ZBDD,
MCSs could be calculated easily with a given truncation
limit. In terms of computation time and memory usage,
the ZBDD algorithm is much more efficient than MCS
algorithms that are based on classical Boolean algebra.

1.3 Comparison of the BDD and ZBDD Algorithms
If a fault tree in Fig. 2 is solved in a bottom-up way

by the BDD algorithm with an alphabetical variable
ordering a< b < c <d<e, the final BDD structure becomes
alb+b(c+cld +de)))+ab. (@)

The derivation of Eq. (1) is explained in Appendix B.
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Fig. 2. Sample Fault Tree

The BDD structure in Eq. (1) is depicted in Fig. 3.
Variables a and e are located in the highest and lowest
positions in the BDD structure according to the variable
ordering a <b <c < d<e, respectively.

As shown in Fig. 3, the BDD structure consists of
nested nodes. The BDD algorithm solves the fault tree in
Fig. 2 in a bottom-up way and generates the BDD
structure in Fig. 3. Each BDD node that has a circular
shape in Fig. 3 has a pair of failed and successful states.
The solid and dashed lines from a node denote the failed
and successful states of a node, respectively. The terminal
nodes are always one of two terminal nodes labeled 0 or
1, and they are represented by square boxes in Fig. 3.
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Fig. 3. BDD Solution

Here, 1 and O denote the failed and successful states,
respectively. As shown in Fig. 3, the first node a is
connected to two child nodes with solid and dashed lines.
The solid and dashed lines from the node a denote failed
Boolean symbols a and &, respectively. The terminal nodes
are depicted with square boxes in Fig. 3.

As illustrated in Fig. 3, the probability of the BDD
structure is calculated recursively [6], and the resultant
probability is an exact TEP. The mathematical expression
for the recursive probability calculation is

P(ab +abc+abcd +abcde+ a_b)
=Pl + PudyPe ¥ Pu9y4:Pa + Pudyd.9aPe +4aP)
=p.(py+a,(p. +a.(ps +a,p. )+ a.p, . @

where p,=P(x) and gx=1-px.

As shown in Fig. 1, the ZBDD structure can be obtained
in two ways. First, it could be calculated directly by solving
a fault tree by the ZBDD algorithm [12]. Second, it could
be obtained indirectly by ignoring the successful events
in the final BDD structure and employing the subsuming
operation in Ref. 6. If the fault tree in Fig. 2 is solved
with the alphabetical variable orderinga<b<c<d<e
by the ZBDD algorithm [12], the final ZBDD structure is

a(c+d+e)+b. €©)

The ZBDD structure in Fig. 4 has the form of factorized
MCSs.
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Fig. 4. ZBDD Solution

Before the development of the ZBDD algorithm [12],
the ZBDD structure should be obtained indirectly by the
following two steps [6]: (1) a BDD structure is generated
by solving a fault tree, and (2) a ZBDD structure is
calculated by ignoring the successful events in the BDD
structure and employing a subsuming operation [6]. By
using these two indirect steps, the BDD structure in Fig.
3 could be reduced to the ZBDD structure in Fig. 4. The
BDD structure in Eq. (1) is reduced to a(b+c+d+e)+b by
ignoring the successful events. Then, by deleting the
subset ab of b, the equation a(b+c+d+e)+b becomes the
ZBDD structure in Eq. (3) as

alb+b(c+eld+de))+ab— alb+(c+(d+e))+b
=alc+d+e)+b. 4

1.4 Static and Dynamic Variable Ordering of the
BDD Algorithm

In order to solve a large reliability problem within
limited computational resources, numerous attempts have
been made to minimize a BDD size. The size of a BDD
structure (measured by the number of nodes) is drastically
dependent on the choice of the variable ordering for a
BDD construction (see Appendix B). Finding the optimal
variable ordering is an NP-hard (nondeterministic
polynomial-time hard) problem [15]. That is, if a fault
tree has N basic events as variables, all possible 2" variable
orderings should be tried to find and confirm the optimal
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variable ordering. Bryant [3] showed that the importance
of a desirable variable ordering may lead to a small size
of a BDD structure. All BDD methods for finding a better
variable ordering are based on static and dynamic variable
ordering heuristics [16-21]. These heuristics are based on
a decision for a trade-off between a fast calculation and a
small BDD structure. Dynamic variable reordering methods
using variable sifting [18-21] are considered as significant
improvements in the BDD technology. However, the
current static and dynamic variable ordering methods are
still inefficient for solving large problems.

1.5 Objectives of this Study

In order to calculate an exact TEP of a large fault tree
with a BDD algorithm, some approaches have been
investigated, such as the static and dynamic variable
ordering approaches in Section 1.4. The BDD truncation
algorithm in this study is a new approach. It is also well
known that a BDD truncation cannot be applied to a BDD
algorithm (see Section 2.2). The objective of this study is
to develop a special BDD truncation method to accelerate a
BDD calculation without sacrificing the solution probability
accuracy. The developed method is described in Section
2 and the benchmark test results to demonstrate the
efficiency of the developed method are listed in Section 3.

2. METHODS

2.1 BDD Algorithm

A BDD is a directed acyclic graph where a Shannon
decomposition is implemented at every node. The Shannon
decomposition is succinctly defined in terms of the ternary
If-Then-Else (ITE) connectives as

F =ite(x,F,,F,) = xF, + xF,
G=ite(y,G,,G,) = yG, + 3G,

®

where x and y are two variables with the variable
ordering x <y. The Shannon decomposition is a method
by which a Boolean function can be represented by the
sum of two sub-functions of the original Boolean function.
For example, the Boolean function F in Eq. (5) is divided
into two sub-functions, xF; and xF,, where F,and F; are
created from F by setting the variable x to TRUE and
FALSE, respectively [12]. The BDD operation is recursively
performed on the higher priority variable x as

ite(x,F;, <>G,F, <>G,) if x=y
ite(x,F, <>G, F, <>G) if x<y

©)

H:F<>G:{

where <> is an AND or OR Boolean operator. The
recursive BDD operation in Eq. (6) is illustrated as follows:
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H=F+G

=ite(a,l,ite(b,ite(c,1,0),0)) +ite(d,1,0)

=ite(a,l +ite(d 1,0),ite(b,ite(c,1,0),0) + ite(d,1,0))
=ite(a,l,ite(b,ite(c,1,0) +ite(d,1,0),0 +ite(d,1,0)))
=ite(a,l,ite(b,ite(c,1 +ite(d,1,0),0 +ite(d ,1,0)),ite(d,1,0)))
= ite(a,l,ite(b,ite(c,l, ite(d,1,0)),ite(d,1,0))) , @

where F=ite(a,1,ite(b,ite(c,1,0)0)) and G=ite(d,1,0). An
alphabetical variable ordering is used in Eq. (7).

A recursive BDD operation is listed in the left
column of Fig. 5, which is explained only for AND or OR
Boolean operations. For suppressing the repetition of the
same operation H=F<>G, the BDD operation results
{hash_key(<>, F, G), H} are stored in an operation hash
table (OHT) and reused. Furthermore, a unique ITE is
maintained during the calculation by storing and
retrieving {hash_key(x, Hi:, Hz), H} to and from an ITE
hash table (IHT). Here, hash_key(<>, F, G) and
hash_key(x, Hi, H,) are hash functions that map a triple
into a single location in the hash tables. For example, the
BDD operation ite(c,1,0)+ite(d,1,0) and its resultant
BDD ite(c,1,ite(d,1,0)) in Eq. (7) are stored in the OHT,
and the stored BDD is reused when the BDD operation
ite(c,1,0)+ite(d,1,0) is requested.

A hash table is an important data structure in computer
science that associates keys with values. For example,
the hash function hash_key(<>, F, G) and hash_key(x,
Hi, Hz) calculate a specific key by using tripe values
(<>, F, G) and (x, Hi, Hy), respectively. The key is a
specific memory location of a hash table. The BDD
operation H=F<>G is stored in the OHT as follows.

1. Calculate a key by the hash function hash_key(<>,

F, G).

2. Go to the specific location of the hash table that
has the key.

3. Save {hash_key(<>, F, G), H} at the OHT. That is,
the information {<>, F, G, H} is stored in the data
storage that has hash_key(<>, F, G).

When a BDD operation F<>G is requested, the pre-

calculated H is retrieved from the hash table as follows.

1. Calculate a key by the hash function hash_key(<>,
F, G).

2. Go to the specific location of the hash table that
has the key.

3. Retrieve H if the hash table has {hash_key(<>, F,
G), H}, that is, if the hash table has stored {<>, F,
G, H} at the location of hash_key(<>, F, G).

2.2 BDD Algorithm with Truncation

The developed recursive BDD operation is listed in
the right column of Fig. 5. The BDD truncation and the
use of OHT were mutually exclusive, and they could not
be used together. That is, the BDD truncation could not
be applied to the BDD algorithm.
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bdd_operation(<>, F, G)
Output: H = F<>G

bdd_operation(<>, F, G, p)
Output: H = F<>G

/* Step 1. terminal_case */
if ((F=0or 1) or (G=0 or 1) or (F=G) )
return terminal_case(<>, F, G)

[* Step 2. OHT has F<> G ? */

k= hash_key(<>, F, G)

if ( OHT_has_member (k,H) )
return H

/* Step 3. solve F <> G */
if (x>y ) swap(F,G)
if(x=y){
H1 < bdd_operation(<>, F1, G1)
H2 < bdd_operation(<>, F2, G2)
Jelse { I x<y*/
H1 < bdd_operation(<>, F1, G)
H2 < bdd_operation(<>, F2, G)
}

/* Step 4. IHT */
H < IHT_find_or_add(x,H1,H2)

/[* Step 5. OHT */

if (OHT_has_member(k, H) ) {
return H

} else {
OHT _insert_member(k, H)
return H

}

/* Step 1. terminal_case */

if ( p < truncation_limit ) return 0

if ((F=0or 1) or (G=0 or 1) or (F=G) )
return terminal_case(<>, F, G)

/* Step2. OHT has F<> G ? #/

k= hash_key(<>, F, G)

if (OHT _has_member (k,H,q) )
if (q >=p) return H

/* Step 3. solve F<> G */
if (x>y ) swap(F,G)
if (x=y){
HI < bdd_operation(<>, FI, G1, p X p,)
H2 < bdd_operation(<>, F2, G2, p x (1-p,))
Jelse { /*x<y*/
H1 < bdd_operation(<>, F1, G, p X p,)
H2 < bdd_operation(<>, F2, G, p X (1-p,))
}

/[* Step 4. IHT */
H < IHT_find_or_add(x,H1,H2)

/* Step 5. OHT */

if (OHT _has_member(k, H,q) ) {
/* update OHT */
if (p>q) {k. T.q} < {k. H, p}
return H

} else {
OHT _insert_member(k, H, p)
return H

}

(a) Traditional BDD algorithm

(b) New BDD algorithm for truncation

IHT = ITE hash table, OHT = operation hash table

Fig. 5. Truncation Implementation to the BDD Algorithm

However, in this study, a method to incorporate the
truncation limit into the OHT was developed by employing
an upper probability p in the hash_key(<>, F, G, p). As
shown in Step 3, px or (1.0-p,) is multiplied to the upper
probability p for a new recursive BDD operation. Here, px
denotes the probability of an event x. The upper probability
is calculated as

1. p<1 when the BDD operation starts.

2. p—p x px when the first Boolean operation

F.<>G; or F;<>G of ITEs in Eq. (6) is started.
3. p<p x (1.0-p,) when the second Boolean operation
F.<>G; or F,<>G of ITEs in Eq. (6) is initiated.

The BDD operation in Eq. (7) is constructed recursively
in a top-down way by constructing a top-level BDD
structure first and then solving the remaining low-level
BDD structure later. For example, the BDD operation
ite(b,ite(c,1,0),0)+ite(d,1,0) in Eq. (7) is performed under
the upper logic a. That is, the BDD operation has an
upper probability P(a). Similarly, the BDD operation
ite(c,1,0)+ite(d,1,0) in Eq. (7) is performed with the upper
logic ab and the upper probability P(a)P(b).

NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.40 NO.7 DECEMBER 2008

Whenever the upper probability is less than the
truncation limit during the recursive BDD operation, the
remaining recursive BDD operations are cancelled and
the calculation returns with a terminal node 0. The new
BDD operation in Fig. 5 can be summarized as

1. If the probability p is less than the truncation limit,
the operation is stopped and returns with a terminal
node 0.

2. If {hash_key(<>, F, G), H, q} exists in the OHT
and the stored upper probability q is larger than or
equal to the current upper probability p, the current
operation F<>G is not performed and the calculation
returns with H. The condition g > p guarantees that
the stored H is bigger than the BDD to be calculated
since the stored H was calculated with a larger
upper probability g. That is, the stored H is a
superset of the BDD to be calculated. Thus, the
OHT is maintained at a small size. By maintaining
supersets in the OHT when a truncation is applied,
the correct solution could be obtained.

3. The calculated H=F<>G and p are stored in the
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OTH if {hash_key(<>, F, G), H, p} is not in the
hash table.

4. The resultant H=F<>G and p updates the stored
values in the OHT if they satisfy the inequality condition
g <p. T and g are replaced with H and p, respectively,
since the calculated H is a superset of the stored T.

As explained, the BDD truncation is applied efficiently
to all BDD operation levels by using the upper probabilities.
The algorithm in this Section provides a new BDD
truncation algorithm where the BDD truncation is applied
efficiently to all BDD operation levels and the BDDs are
stored properly in the OHT. The new method guarantees
that the correct BDD calculations could be performed in
a short time with less memory.

If the calculations and comparisons of the upper
probabilities are not performed and the calculated BDDs

Table 1. Benchmark Test A

are stored to the OHT during the recursive BDD operations,
the BDDs that are reused from the OHT might be much
smaller or unnecessarily larger than the required BDDs.
If smaller BDDs are reused, the correct BDDs cannot be
calculated. In most cases, unnecessarily large BDDs are
frequently stored in the hash table and reused, and a large
number of unnecessary recursive BDD calculations
should be performed. Hence, these operations consume
all the available memory or take infinite calculation time
and the calculations.

3. BENCHMARK TESTS

Two benchmark problems were solved, and the
results are listed in Tables 1 and 2 and plotted in Figs. 6

Fault tree = CEA9601 (http://iml.univ-mrs.fr/~arauzy/aralia/benchmark.html)

201 gates, 186 events, 26 negates, 4 complemented events
All event probabilities = 0.001

Without fault tree restructuring and modules

Pentium 4 3.0 GHz, 2 GB RAM

. BDD FTREX [14]
Truncation - -
TEP BDD size Run time (seconds) TEP Cutset number

1.00E-11 1.059240E-06 12,349 0.88 1.143904E-06 1,144
1.00E-12 1.092776E-06 19,090 147 1.170891E-06 28,132
1.00E-13 1.176633E-06 54,280 1.77 1.197163E-06 54,436
1.00E-14 1.180200E-06 154,728 311 1.197163E-06 54,436
1.00E-15 1.181040E-06 200,157 4.36 1.198107E-06 999,676
1.00E-16 1.182503E-06 320,805 4.67 1.198723E-06 1,615,876
1.00E-17 1.182611E-06 703,816 7.77 1.198723E-06 1,615,876
1.00E-18 1.182618E-06 811,113 9.94 1.198723E-06 6,390,196
Exact TEP 1.182622E-06 1,250,725 6.22

Table 2. Benchmark Test B

Fault tree = HPSI3.FTP

571 gates, 421 events, 0 negates, 0 complemented events

With fault tree restructuring and modules

Pentium 4 3.0 GHz, 2 GB RAM

. BDD FTREX [14]
Truncation - -
TEP BDD size Run time (seconds) TEP Cutset number

1.00E-11 1.076139E-03 130,013 2.15 1.082535E-03 5,096
1.00E-12 1.076293E-03 274,187 3.78 1.082557E-03 11,354
1.00E-13 1.076325E-03 573,908 6.76 1.082561E-03 24,381
1.00E-14 1.076332E-03 1,131,067 12.60 1.082562E-03 45,688
1.00E-15 1.076334E-03 2,051,615 21.87 1.082562E-03 86,748
Exact TEP 1.076334E-03 2,497,172 21.31
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Fig. 7. BDD Size of Benchmark Test A

to 9. The first problem in Table 1 is a non-coherent fault
tree and the second problem in Table 2 is a relatively large
coherent fault tree. The fault tree in Table 1 is known as
one of the most difficult and complex Benchmark fault
trees since it has a relatively large number of negates. The
fault tree in Table 2 is a fault tree for a High Pressure
Safety Injection (HPSI) system in a nuclear power plant. It
is one of the biggest system-level fault trees since it has
many supporting-system fault trees. The exact TEPs are
calculated by the BDD algorithm and listed in the bottom
rows of Tables 1 and 2. The other results are calculated
by the new BDD algorithm with various truncation limits.
The BDD node number denotes the required computational
memory. The BDD sizes in Tables 1 and 2 are measured
by the number of nodes in a final BDD structure.

The TEPs in the second columns of Tables 1 and 2
are depicted in Figs. 6 and 8, respectively. Figs. 6 and 8
show that the TEPs calculated with the nonzero truncation
limits are very close to the exact TEPs. As shown in Fig.
6, the TEP at the truncation limit 1.0E-13 is very close to
the exact TEP. As shown in Fig. 8, the TEP at the
truncation limit 1.0E-11 has a negligible difference with
the exact TEP. Thus, these Benchmark tests A and B show
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Fig. 9. BDD Size of Benchmark Test B

that the exact TEPs could be estimated with a relatively
high truncation limit.

The BDD sizes in the third columns of Tables 1 and
2 are depicted in Figs. 7 and 9, respectively. As shown in
Figs. 7 and 9, the proposed method uses much less
memory than the BDD algorithm. Thus, these benchmark
tests show that the exact TEPs could be estimated with a
relatively small amount of memory.

As listed in the fourth columns of Tables 1 and 2, the
TEPs are calculated rapidly by the proposed method. The
calculation results with FTREX [14], which is a cutest-
based ZBDD algorithm, are listed in the last two columns
in Tables 1 and 2. The approximate TEPs by the cutest-
based algorithm never converge to the exact TEPs.

As listed in Table 3, further tests were performed.
Fifteen difficult fault trees were selected with two criteria
from the problems in the website http://iml.univ-
mrs.fr/~arauzy/aralia/lbenchmark.html. First, a fault tree
should be solved with a BDD algorithm. Second, the
running time should exceed one second. The fault trees
are solved with three different calculations:

1. Exact TEP calculations by the BDD algorithm. The

results are listed in the eighth to tenth columns of
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Table 3. Benchmark Test C

Fault trees (http://iml.univ-mrs.fr/~arauzy/aralia/benchmark.html)

All event probabilities = 0.001
Without fault tree restructuring and modules
Pentium 4 3.0 GHz, 2 GB RAM

Proposed BDD truncation Proposed BDD truncation

algorithm algorithm BDD algorithm for an exact
Fault tree (truncation limit = 1.0E-05 x | (truncation limit = 1.0E-10 x TEP Relative | Relative
exact TEP) exact TEP) error (d) error (e)

TEP (3) BF)D Run time TEP (b) B!DD Runtime TEP (0) BF)D Run time

size  (seconds) size  (seconds) size  (seconds)
DAS9601 | 4.651006E-05 1,756 0.78 | 4.652488E-05 7,415 1.14 | 4652500E-05 21,192 155 | 0.032% 0.000%
EDF9202 | 1.289224E-01 671 055 | 1.304794E-01 10,388 0.88 | 1.304825E-01 9,600 230 | 1.196% 0.002%
EDF9203 | 4.308621E-02 9,410 0.73 | 4.391692E-02 116,340 2.98 | 4.392265E-02 306,265 5.86 | 1.904% 0.013%
EDF9204 |3.797168E-02 6,300 0.67 | 3.833556E-02 117,569 3.30 | 3.833615E-02 209,855 14.01 | 0.951% 0.002%
EDFPA14B | 2.004268E-02 6,500 0.55 | 2.027975E-02 63,577 1.00 | 2.028067E-02 224,303 3.56 | 1.173% 0.005%
EDFPA140 | 2.013442E-02 6,916 0.69 | 2.033033E-02 112,427 1.36 | 2.033145E-02 931,057 11.90 | 0.969% 0.006%
EDFPA14P | 6.226406E-03 ~ 3,538 055 | 6.238446E-03 78,100 0.88 | 6.238447E-03 201,626 2.74 | 0.193% 0.000%
EDFPA14Q | 2.007533E-02 2,078 0.53 | 2.028978E-02 48,157 0.98 | 2.029115E-02 273,308 3.72 | 1.064% 0.007%
EDFPA14R | 1.108374E-03 617 050 | 1.112773E-03 25,009 0.69 | 1.112774E-03 163,657 1.86 | 0.395% 0.000%
EDFPAL5B | 2.359133E-02 3,367 0.63 | 2.383538E-02 33,926 0.77 | 2.383546E-02 49,865 1.30 | 1.024% 0.000%
EDFPA150 | 2.355147E-02 7,525 0.58 | 2.384528E-02 74,399 1.08 | 2.384561E-02 187,230 3.32 | 1.234% 0.001%
EDFPAL5P | 6.148855E-03 1,982 052 | 6.154896E-03 27,989 0.86 | 6.154896E-03 51,078 1.14 | 0.098% 0.000%
EDFPA15Q | 2.351724E-02 985 0.64 | 2.383475E-02 24,718 0.83 | 2.383546E-02 143,016 192 | 1.335% 0.003%
EDFPA15R | 1.089150E-03 409 052 | 1.091837E-03 9,968 0.55 | 1.091837E-03 59,665 1.14 | 0.246% 0.000%
JBD9601 | 1.042598E-01 1,347 0.61 | 1.084826E-01 38,445 0.72 | 1.084934E-01 81,371 1.01 | 3.902% 0.010%

(d) Relative error = ( (c)-(a) ) / (c) x 100
(e) Relative error = ( (c)-(b) ) / (c) x 100

Table 3.

2. TEP calculations by the proposed BDD truncation
method with truncation limits that are 10° times
smaller than the exact TEPs. The truncation limits
are calculated by the multiplication of the scaling
factor 10° and the exact TEPs. For example, a
truncation limit 4.6525E-10 for a fault tree DAS9601
is obtained by the multiplication of a scaling factor
10 and the exact TEP 4.6525E-05. The approximate
TEP calculation results are listed in the second to
fourth columns of Table 3.

3. TEP calculations by the present BDD truncation
method with truncation limits that are 10° times
smaller than the exact TEPs. The truncation limits
are calculated by the multiplication of a scaling factor
10 and the exact TEPs. The calculation results
are listed in the fifth to seventh columns of Table 3.

As shown in the last two columns of Table 3, the

proposed method estimates the exact TEPs with negligible
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errors. Furthermore, as shown in the third and sixth
columns, the proposed method uses much less memory
than the BDD algorithm for an exact TEP calculation. As
listed in the fourth and seventh columns, the current
BDD truncation method estimates the exact TEPs very
quickly. Thus, these Benchmark tests in Table 3
demonstrate the efficiency of the developed method where
the exact TEPs of various fault trees could be estimated
with a negligible error rate in a short time.

As listed in the bottom rows of Tables 1 and 2 and in
the ninth and tenth columns of Table 3, the BDD algorithm
is highly time and memory consuming. Thus, it shows
that it is a very difficult task to solve a large fault trees
with a BDD algorithm. When it is impossible to calculate
an exact TEP of a huge fault tree with a BDD algorithm,
the proposed BDD truncation algorithm could be an
excellent method to estimate an exact TEP. The amount
of truncated information is negligible from the perspective
of the TEPs.
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4. CONCLUSIONS

In order to solve a large reliability problem with
limited computational resources, numerous attempts have
been made to minimize BDD size. The traditional
approach was to find out an optimal variable ordering by
using some heuristics. An additional attempt was the
development of a ZBDD algorithm to calculate an
approximate TEP.

This study presents an efficient method to maintain a
small BDD size by a BDD truncation during a BDD
calculation. The new method provides an accurate TEP
in a reasonably short time. The present method is the first
successful application of a BDD truncation. The
benchmark tests in Section 3 demonstrated the efficiency
of the developed method. The TEP converged rapidly to
an exact value when the truncation limit was lowered. The
present method is very fast and uses much less memory
than the BDD algorithm.

For future research, the effect of a BDD truncation on
the exact importance measures should be investigated.
Furthermore, these truncated BDD importance measures
should be compared with those from cutest based methods.

APPENDIX A. DELETE-TERM APPROXIMATION
A fault tree T=G,G,, G,=abc+bcd, and G,=ab+ac
has an exact solution

T = (abc + bed)(ab + ac) = (abc + bed)a(b + ¢)

= (abc+bed)(a+be) = abed, (A

where DeMorgan’s law is applied when a(b+c) is
expanded. Cutsets that have impossible state combinations
such as aa and bb are deleted when (abc+bcd)(a+bc) is
expanded.

Instead of the complex Boolean algebra in Eq. (A.1), a
delete-term approximation [22] is employed in the
conventional fault tree analysis for the fast calculation. The
delete-term approximation is based on the fact that the top
event T=G,G; cannot occur when G is in a TRUE state.
The following are delete-term approximations.

1. The G; cutest {abc} is deleted since its propagation
makes G; in a TRUE state and the top event T in a
FALSE state. When the G, cutest {abc} is propagated
to the fault tree, G; is in a TRUE state since G, has
a cutset {ab} and {ac}.

2. The G; cutest {bcd} is selected as a cutest of the

top event T since it does not make G, in a TRUE state.
Finally, {bcd} remains as a final cutest as

T = (abc + bed)(ab + ac) = bed (A_Z)

Itis a typical example of a delete-term approximation.
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APPENDIX B. BDD CALCULATION

A fault tree is solved in a bottom-up way by using
Eq. (6). If a fault tree in Fig. 2 is solved with an alphabetical
variable ordering a < b < ¢ < d < e, the gate G; has the
following solution:

Gy=c+d+e
=ite(c,l,ite(d,ite(e,1,0))) .

:c+E(d+ge) (B.1

The solution of the gate G; is obtained by combining
ite(a,1,0) and ITE in Eq. (B.1) as

G,=a-G,

=ite(a,1,0)-ite(c,l,ite(d,ite(e,1,0)))
=ite(a,ite(c,l,ite(d,ite(e,1,0))),0) '
= a(c+E(d +c?e)) B2

The gate G; is solved by combining ite(b,1,0) and
ITEinEq. (B.2) as

G =b+G,

=ite(b,1,0) +ite(a,ite(c,l,ite(d,ite(e,1,0))),0)
=ite(a,ite(b,1,0) +ite(c,l,ite(d,ite(e,1,0))),ite(b,1,0))
=ite(a,ite(b,l,ite(c,l,ite(d,ite(e,1,0)))),ite(b,1,0))
=alb+b(c+c(a +de)))+av. (B.3)

If the fault tree in Fig.2 is solved with the other
variable orderings, the final BDD structure varies as

b+ B(a(c + E(d + Je)))
with a variable orderingb<a<c<d<e (B4
e(b+l;a)+5(d(b+l;a)+ g(c(b+l;a)+5b))
(B.5)

with a variable orderinge < d<c<b<a.

Please note that the three BDD structures in Egs.
(B.3), (B.4), and (B.5) are identical Boolean expressions.
The BDD size in Eg. (B.4) is much smaller than those in
Egs. (B.3) and (B.5). As illustrated in these examples, the
BDD size is drastically dependent on the choice of the
variable ordering for a BDD construction.
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