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1.  INTRODUCTION

Thermal nuclear reactor power is typically evaluated
with secondary system calorimetric calculations based on
feedwater flow rate measurements. The feedwater flow rate
should therefore be measured accurately. Venturi meters
are currently used to measure the feedwater flow rate in
most pressurized water reactors (PWRs). The long-term
operation of a nuclear power plant causes a buildup of
corrosion products near the orifice of the meter. This fouling
increases the measured pressure drop across the meter,
thereby causing an overestimation of the feedwater flow
rate. Whenever calorimetric calculations are conducted
during an operating cycle, the thermal reactor power must be
decreased to match the false feedwater flow rate overestimated
by the Venturi meter. This requirement means that a nuclear
power plant must be operated at a lower-than-planned power
level. 

The fouling phenomenon of Venturi meters is the most
significant contributor to PWR derating, which ranges from
0.5% to 3%. The most common practice for resolving this
problem at PWRs is to inspect and clean the Venturi meters
during every refueling period. However, fouling can reappear
in as quickly as a month. With time, the accuracy of the
existing hardware sensors becomes degraded due to the

fouling phenomena of the Venturi meter. Many researchers
have therefore been interested in resolving the inaccurate
measurements of the feedwater flow rate [1-4]. Hence, in
this study we developed a soft-sensing model for predicting
the feedwater flow rate.

Recently, many researchers have paid considerable
attention to soft-sensing, which uses other readily available
on-line measurements. This type of soft sensor can either
replace existing hardware sensors or be used in parallel
to provide redundancy and to verify whether the sensors
are drifting [4-10]. The problem can be resolved by using
learning and soft computing techniques if the process
dynamics for evaluating the process variables is a priori
unknown or difficult to model. We therefore developed a
fuzzy support vector regression (FSVR) model that can
increase the thermal efficiency of a nuclear power plant
by making accurate on-line predictions of the feedwater
flow rate. 

2. A SOFT-SENSING MODEL FOR THE
FEEDWATER FLOW RATE

Venturi flow meters measure the flow rate by developing
a differential pressure across a physical flow restriction.

Most pressurized water reactors use Venturi flow meters to measure the feedwater flow rate. However, fouling phenomena,
which allow corrosion products to accumulate and increase the differential pressure across the Venturi flow meter, can result
in an overestimation of the flow rate. In this study, a soft-sensing model based on fuzzy support vector regression was developed
to enable accurate on-line prediction of the feedwater flow rate. The available data was divided into two groups by fuzzy c-
means clustering in order to reduce the training time. The data for training the soft-sensing model was selected from each
data group with the aid of a subtractive clustering scheme because informative data increases the learning effect. The proposed
soft-sensing model was confirmed with the real plant data of Yonggwang Nuclear Power Plant Unit 3. The root mean square
error and relative maximum error of the model were quite small. Hence, this model can be used to validate and monitor existing
hardware feedwater flow meters.
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The differential pressure is then multiplied by a calibration
factor that depends on various flow conditions in order to
calculate the feedwater flow rate. The calibration factor
is determined by the feedwater temperature and pressure,
which are measured with resistance thermometers and
pressure transmitters, respectively.

The original thermal power margin needed to evaluate
an emergency core cooling system (ECCS) is 2%, regardless
of the demonstrated instrument accuracy. A revision to
10CFR50 Appendix K for the ECCS evaluation model was
recently modified to allow a margin equal to the actual
instrument accuracy. Thus, the thermal power of a nuclear
power plant can be increased by 1% or more than its licensed
power through the use of advanced and more accurate
instruments [11]. The recent revision to 10CFR50 Appendix
K encourages the use of advanced feedwater flow instruments
in real nuclear power plants. 

To predict the feedwater flow rate, we developed a
soft-sensing model based on a support vector machine
(SVM) equipped with a fuzzy concept. Soft-sensing
techniques generally require learning and soft computing
-based approaches, such as neural networks (NNs) and
SVMs, because they can easily represent complicated
processes that are difficult to model with analytical and
mechanistic models. These approaches, known as data-
based methods, utilize the available data. Even if the methods
based on NNs and SVMs yield results that are comparable
to the results of the most popular benchmark, the theoretical
status of SVMs is an attractive and promising area of
research [12]. 

2.1  Soft-Sensing by FSVR
We used an FSVR method for the soft-sensing

measurements of the feedwater flow rate of a PWR. A
regression problem approximates an unknown function
that can be expressed as a linear expansion of basis functions.
The regression problem is transformed to determine the
coefficients of the basis function of linear expansion. The
support vector regression (SVR) nonlinearly maps the
original input data, x, into a higher dimensional feature
space. Thus, in the given set of data {(xk, yk)}N

k=1 Rm R,
where xk is the input vector of an  SVM, yk is the actual
output value, and N is the total number of data patterns,
the SVR is based on the following regression function:

where 
w=[w1 w2 wN]T,

=[ 1 2 N]T. 
The function k(x) is called the feature, and the

parameters w and b are the support vector weight and the
bias. We can calculate these parameters by minimizing
the regularized risk function as follows:

where

The first term of Eq. (2) characterizes the complexity
of the SVR models. The parameters and are user-defined
parameters, and |yk-f(x)| is known as the -insensitive
loss function [13]. The loss equals zero if the estimated
value falls within an -tube. For all other estimated points
outside the error level, , the loss is equal to the magnitude
of the difference between the estimated value and (as
shown in Fig. 1). 

The FSVR is a form of SVR equipped with a fuzzy
concept. The proposed FSVR enhances the SVR by
reducing the effect of outliers and noise. Through the
application of a fuzzy membership function to each data
point of the SVR model, the regularized risk function can
be reformulated in such a way that different input data points
can make different contributions to the learning of a
regression function as follows:

where k is a fuzzy membership grade. Commonly
used SVR methods apply an equal weighting to all data
points. However, FSVR uses different weightings
according to their importance, which is specified by the
fuzzy membership grade. Minimizing the regularized
risk function is equivalent to minimizing the following
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Fig. 1. The Parameters for the FSVR Models 



constrained risk function:

subject to the constraints  

where the constant determines the trade-off between the
complexity of f(x) and the amount up to which deviations
greater than are tolerated. The parameters = [ 1 2

N]T and = [ 1 2 N]T are the (positive) slack variables
that represent the upper and lower constraints on the outputs
of the system.

The constrained optimization problem can be solved
by applying the Lagrange multiplier technique to Eqs. (5)
and (6). The technique can be expressed by the following
Lagrange functional: 

The minimization of Eq. (7) with respect to the primal
variables w, b, k, and k gives the following conditions:

We can then rewrite the Lagrange functional [14] by using
the above minimum conditions as follows:

subject to the constraints 

The Lagrange functional of Eq. (8) can be solved if
we use a quadratic programming technique to determine
the values of k and k. Finally, the regression function
of Eq. (1) is expressed as follows:

where K(x, xk)= T(xk) (x) is known as the kernel
function. A number of coefficients, ( k- k), are nonzero
values, and the corresponding training data points, which
are known as support vectors (SVs), have an approximation
error greater than or equal to . We used the following
radial basis function as the kernel function: 

The bias, b, is calculated as follows:

where xr and xs are called SVs and they are data points
positioned at the boundary of the -insensitivity zone (as
shown in Fig. 1) [13]. 

The four most relevant design parameters for the FSVR
model are the insensitivity zone, , the regularization
parameter, , the kernel function parameter, , and the fuzzy
membership grade, . An increase in the insensitivity zone,
, reduces the accuracy requirements of the approximation

and allows a decrease in the number of SVs, thereby
facilitating the data compression; such an increase also has
smoothing effects on the modeling of highly noisy data.
In addition, an increase in the regularization parameter, ,
reduces larger errors, thereby minimizing the approximation
error. The minimization of the approximation error can
also be achieved by increasing the weight vector norm.
However, an increase in the weight vector norm decreases
the good generalization capability of the FSVR model.
The kernel function parameter, , determines the sharpness
of the radial basis kernel function. In Section 2.3, we explain
the fuzzy membership grade.

2.2  Genetic Optimization
The FSVR model was optimized by a process of learning

from available data. As mentioned, the performance of the
FSVR model depends strongly on the four major design
parameters of the insensitivity zone, , the regularization
parameter, , the kernel function parameter, , and the fuzzy
membership grade, . These parameters (except for the
fuzzy membership grade) must therefore be optimized in
order to maximize the performance of the FSVR model. 
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A genetic algorithm is the most useful method for
solving optimization problems with multiple objectives
[15-16]. Hence, we used a genetic algorithm to optimize
the insensitivity zone, , the regularization parameter, ,
the sharpness ( ) of the radial basis kernel function, and
two additional parameters (r and r ) of a subtractive
clustering (SC) method (which is explained in next section)
for sampling the training data from the available data. 

To optimize these five parameters, we encoded them
as a bit string in each chromosome of the genetic algorithm.
Our specified multiple objectives were to minimize the
root mean squared (RMS) error and the maximum error,
and we achieved these objectives by maximizing the
following fitness function:

where w1, w2, w3 and w4 are the weighting coefficients and
E1, E2, E3 and E4 are defined as follows:

The variable yk denotes the measured (target) output
and the variable ^yk denotes the output predicted from the
FSVR model. The superscripts, t and o, indicate the
training and optimization data, respectively, and Nt and
No represent the number of training and optimization data
points. The design parameters of the genetic algorithm
that optimizes the FSVR model are the crossover probability,
the mutation probability, and the population size.

2.3  Data Grouping and Training Data Selection
The computing time for training the FSVR model

increases exponentially as the number of training data
points increases. To reduce the training time, we divided
the available input data into subsets (groups) and then
developed an individual FSVR model for each group. 

A fuzzy c-means (FCM) clustering method was used
to group the available input data [17-18]. FCM clustering
is a clustering method that classifies one set of data into

two or more groups. The FCM clustering uses fuzzy
partitioning in which a data point can belong to all
groups with different membership grades. The aim of the
FCM method is to minimize the following objective
function [18]:

where ukg is a membership grade where a data point xk

belongs to group g, q is any real number greater than 1,
cg is a cluster center, and G is the number of groups. The
parameter q determines the fuzziness of the clusters. The
number of groups is determined on the basis of the data
distribution. We used only two groups. 

The FCM clustering was carried out with iterative
optimization of the objective function, as in Eq. (16), and
the membership matrix was randomly initialized to
satisfy the following condition:

The membership, ukg, and each cluster center, cg, were
updated as follows:

The iteration procedure stops when

where is a termination criterion and l represents an
iteration step. Each data point xk is classified into group n
if

In addition, each set of data was divided into three
types of data sets: a training data set, an optimization
data set, and a test data set. The training data was used to
solve the coefficients, k- k, and the bias, b, in Eq. (9). The
optimization data was used in conjunction with a genetic
algorithm to optimize the major design parameters (the
insensitivity zone, , the regularization parameter, , and
the kernel function parameter, ) of the FSVR models
and to determine the additional parameters (cluster radii,
r and r ) for the sampling of the training data. The test
data was used to confirm the developed FSVR models. 

The selection of appropriate training data is important
because it can affect the performance of the FSVR model.
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The input and output training data are expected to have
many clusters in each group, and the data at these cluster
centers are more informative than the neighboring data.
An FSVR model for each data set can be well trained with
informative data. The cluster centers are located with the
aid of an SC scheme and used as the training data set. 

We assumed that Ng input/output training data
zk=(xk, yk), k=1, 2, , Ng in a group were available and
that the data points were normalized in each dimension.
The SC scheme begins by generating a number of clusters
in an m N dimensional input space. The SC scheme uses
the following equation to measure the potential of each
data point, which is a function of the Euclidean distances
to all other input data points [19]:

where r is the radius that defines a particular neighborhood.
Note that the potential of a data point is high when the
data point is surrounded by an abundance of neighboring
data. After the potential of each data point is calculated,
the data point with the highest potential is selected as the
first cluster center. 

In general, after the i-th cluster center, ci and its potential
value, Pi

c, have been determined, the potential of each
data point can be revised with the following equation:

where r is usually greater than r in order to limit the
number of clusters generated. Equation (21) indicates
that an amount of potential is subtracted from each data
point as a function of its distance from the cluster center.
The data points near the cluster center have greatly
reduced potential and are unlikely to be selected as the
next cluster center. When the potentials of all the data
points have been revised according to Eq. (21), the data
point with the highest potential is selected as the (i+1)th

th cluster center. These calculations stop if the inequality
Pi

c< P1
c is true; otherwise the calculations are repeated. If

the calculations are eventually stopped at an iterative
step, Nc, then each data group has Nc cluster centers. The
input/output data (training data) positioned in the cluster
centers of the data group are selected to train the FSVR
model for each group. In addition, at every fifth time-step,
the test data is selected from the remaining sequential data
where the training data have already been eliminated. Hence,
the optimization data and the test data comprise 80% and
20% of the remaining sequential data, respectively.

For the training of the FSVR models, the data points
with a high potential, as calculated by Eq. (20), are more
important and weighted more highly than the other
neighboring data points. Thus, the potential of the cluster

centers calculated by Eq. (20) is used as a fuzzy membership
grade in Eq. (4) as follows:

3. APPLICATION OF THE SOFT-SENSING MODEL
TO THE FEEDWATER FLOW PREDICTION

The proposed algorithm was confirmed with the real
plant startup data of the Yonggwang Nuclear Power Plant
Unit 3 (YGN3). These data are the values measured from
the primary and secondary systems of the nuclear power
plant, with particular focus on the steam generator (SG). The
data is derived from the following 16 types of measured
signals: the SG feedwater flow rate, the SG steam flow rate,
the SG pressure, the SG temperature, the SG wide-range
level, the SG narrow-range level, the hot-leg temperature,
the cold-leg temperature, the pressurizer pressure, the
pressurizer temperature, the pressurizer water level, the
feedwater temperature, the reactor power (the ex-core
neutron detector signal), the feedwater pump suction pressure,
the feedwater pump discharge pressure, and the steam
header pressure. 

The SG feedwater flow rate was the target output signal
of the FSVR model, and all other signals were candidate
input signals for the FSVR model. The time differential
values of the feedwater flow rate are also candidate input
signals. We used the FCM method to divide the available
data into two groups and then developed an FSVR model
for each group. In addition, we used the SC method to
separate each group into three data sets: namely, the training
data, the optimization data, and the test data.

The degree of the relation between the candidate
input signals and the feedwater flow rate (the target output
signal) can be derived from a correlation matrix of the
candidate input/output signals. For candidate input signals
with a very close relation to the target output, we inputted
the current and past delayed values into the FSVR model.
However, we did not use the candidate input signals with
a very low relation to the output as input for the FSVR
model. Moreover, for the other candidate input signals, we
used only the current values as input for the FSVR model.

To optimize the proposed FSVR model with the genetic
algorithm, we set the parametric values of the genetic
algorithm as 1 for the crossover probability, 0.05 for the
mutation probability, and 20 for the population size. The
optimized parameters are as follows:

=1.4974 10-4, =2.7847 103, =4.7720 
for the first group,
=8.1229 10-4, =6.8332 102, =4.5975 

for the second group.

Figure 2 shows the data points selected by the SC
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scheme for training the proposed FSVR model. The
selected data points were concentrated for the first 50 h
and distributed quite sparsely for the period from 55 h to
90 h. This result means that the informative data is
concentrated in the first 50 h. In addition, the data are
selected relatively sparsely in the period from 55 h to 90
h because the power plant system is close to a steady
state for that period. 

Figure 3 shows the fuzzy membership grade for the
training data. The fuzzy membership grade is calculated
by Eq. (22). The data points with a high potential are
more important and weighted more highly than the other
neighboring data points.

The measured feedwater flow rate was assumed to
degrade rapidly. Even if the time period of 100 h is short
in terms of an overall operating fuel cycle and the buildup
time of corrosion products, it does not have influence on
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Fig. 4. Feedwater Flow Rate Error and Histogram 

Fig. 2. Data Points Selected for Optimizing the FSVR Models 

Fig. 3. Fuzzy Membership Grade for the Input Data Points 



investigating the performance of the proposed algorithm.
In this type of acceleration test, the proposed algorithm
can be used to verify the overestimation of the feedwater
flow rate for the entire operating fuel cycle.

Figure 4 shows the performance of the proposed
algorithm. Figure 4(a) shows the measured feedwater
flow rate and the prediction errors obtained with the FSVR
model in conjunction with the FCM clustering method
and the SC scheme. Figures 4(b), 4(c) and 4(d) show
histograms of the predicted errors for the training,
optimization, and test data obtained with the proposed
FSVR model, respectively. In these figures, the relative
RMS errors compared with the rated value (801.34 kg/sec)
were 0.0124% for the training data, 0.0245% for the
optimization data, and 0.0293% for the test data. These
errors are so small that the estimated feedwater flow rate
can be used to monitor the measured flow rate.

Figure 5 shows the simulation results in the case where
the feedwater flow rate begins to be artificially degraded
after the first 20 h. The predicted feedwater flow rate is
almost the same as the actual feedwater flow rate even
though the measured feedwater flow rate had degraded. 

Table 1 summarizes the performance of the proposed
soft-sensing method for the feedwater flow rate. The
results of the second data group are better than those of
the first data group. This outcome, as shown in Fig. 2,
appears to be due to some unreliable data measured at

around 3 h and 20 h. Table 2 compares the proposed
method with a previous result [10]. As shown in this
table, it was possible to improve the performance by
training the FSVR model with the training data, which
was divided by means of the FCM method and selected
with the aid of the SC scheme. The errors in the test data
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1st group Training data 1.5525 10-2 1.4930 10-1 564 562

Optimization data 4.5276 10-2 1.2453 10-1 112 -

Test data 5.9990 10-2 1.7778 10-1 28 -

2nd group Training data 8.5819 10-3 1.0659 10-2 601 440

Optimization data 1.7500 10-2 5.2297 10-2 552 -

Test data 1.7348 10-2 4.9209 10-2 138 -

Table 1. Performance of the FSVR for the Feedwater Flow Rate 

Data group Data type RMS error (%) Number of data
Relative maximum 

error (%)

Number of support

vectors

Fig. 5. Soft-Sensing of the Feedwater Flow Rate in Cases of
Artificial Degradation 

Proposed method Training data 1.2437 10-2 1.4930 10-1 1165 1002

Optimization data 2.4503 10-2 1.2453 10-1 664 -

Testdata 2.9278 10-2 1.7778 10-1 166 -

Previous work [10] Training data 2.8873 10-2 1.5247 10-1 779 631

Optimization data 7.3029 10-2 4.6816 10-1 977 -

Test data 9.2343 10-2 6.0066 10-1 245 -

Table 2. Comparison of the Soft-Sensing Methods for the Feedwater Flow Rate 

Methods Data type RMS error (%) Number of data
Relative maximum 

error (%)

Number of support

vectors 



are similar to those in the optimization data. Thus, we
can use the FSVR model to predict the feedwater flow
rate if the FSVR model is optimally identified in the
initial stage with the training and optimization data. 

5. CONCLUSION

A soft-sensing algorithm was developed in conjunction
with an FSVR model to validate and monitor the existing
feedwater flow rate. In order to reduce the training time,
we used the FCM method to divide the available data into
two groups and we subsequently developed two independent
FSVR models. In addition, to train the FSVR model with
more informative data, we selected the training data from
the available data of each group by applying an SC scheme;
we then used the training data in conjunction with a genetic
algorithm to optimize the soft-sensing algorithm. The
developed soft-sensing algorithm actually predicts the
feedwater flow rate signal and removes any false over-
measurement effect that occurs as a result of fouling
degradation of the Venturi meters. 

The proposed soft-sensing algorithm was applied to the
acquired real plant startup data of YGN3. In the simulations,
the RMS error and the relative maximum error for the
test data were only 0.0293% and 0.1778%, respectively.
The developed soft-sensing algorithm can therefore be used
to validate and monitor existing feedwater flow meters.
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