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Abstract

Determination of a two-point boundary value problem is the key of finding the
control function «(#) with the application of the fundamental idea of Minimum
principle. The late development shows the discovery of the initial costate vector
for the solution of a two-point value problem. As a new technique of determining
the optimal control function, Newton’s Sequential method is examined about a

number of engineering problems and found available.
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1. Imtroduction

As the methods of determining optimal
control function #*(¢), the method of functional
analysis by Krosovski, Minimum principle by
Pontryagin, and Dynamic programming by
Bellman have been well introduced as typical
The application of Minimum principle

focuses on the two-point boundary value

ones.

problem. This solution of boundary value
problem is to be the point of determining the
optimal function but Minimum principle has its
weakness which provides us with only the
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necessary condition for detrmining the optimal
function.

The lack of the sufficient condition was
indicated by Kelly?, Gottlieh?>, Denn®’, and
Kurihari*?>. They furthered the method, in
detail, for finding optimal control and pres-
ented how to minimize a sample Hamiltonian at
each iteration. Newton’s method which the
author is going to introduce was widely studied
by McReynolds & Bryson®, Plant®, Knudson
=13 However the sequential operation method
was not discussed in their papers.

In previous paper'¥>, the new sequential
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operation method applied to Newton’s method
is designed for determining optimal control
function #*(2).

In this paper, under a suitable assumption,
the main part of this method is proved by
solving a number of engineering problems by
computer.

2. Qutline of the Computational Method!4

The fixed time fuel optimal control of a
linear plant to a given state as a problem is
examined. The problem is presented,
to a two-point

reduced
boundary value problem,
changed to integral form, replaced by a
sequence of approximate integral equations,
and made ready for the numerical solution by
the application of Newton's method.

Problem

Given; a. A system described by the linear
time invariant(vector) differential equation

X(O=AXO+ou®) 2.1

where

1. Then vector X(?) is the state.

2. The system matrix 4 is an »#X»n constant
matrix.

3. The gain matrix & is an #Xr constant
matrix.

4. The r vector #(¢) is the control.

b. A fixed time interval

te(O, T3 2.2
c. Initial and terminal boundary conditions
on the state vector

XO)=¢
X(=+6 @3
d. The control variable must satisfy a
constraint
fu(@) =1 for all ¢ ¢(O, T 2.3
e. The fuel functional is
J@={1uwla @0

Then, it is desired to find a control variable
u*(¢) that
a. Satisfies the constraint (2.4)

b. Transfers the system (2.1) from the
initial state § at time =0 to the terminal
state 6 at time =T,

c. Minimizes the feul function. (2.5)
The relations deduced by applying Pontry-

agin’s minimum principle to the problem are

summarized below;
Definition; The “deadzone” function dez(—]

is defined as follows;

means u(®)=dez[w(t)) (2.6)
u@®)=1 when w(@)>1
u(t)=0 when |w(){<1

u(t)=—1 when w()<-1

Let u*(¢), te[O,T) be the fuel optimal
control, the solution of problem, assuming
that ome exists. Let X*(¢) be the resulting
state on the fuel optimal trajectory. Let P*(?)
te[0, T] be the corresponding costate vector.

Then the minimum principle yields the
relations

H(X*, u*, P*, )=|u*O|+-P*)Ax*@)

P Db () @0
X )= 39;{ =AX*@)+bu* ) 2.8)
.* —_—_ aH _ ! %

P*(H= T AP 2.9
X*(0)=¢

X*(T)=6 (2.10)

where A’ is the transpose of A
and the relation
H(X*, u*, p*, )<H(X*, u, P*,1) for all  such
that |#]=<1 yield #*(#D)=—dez[b' p*(¢)] (2.11)
from above Fgs. (2.8)-(2.11). Determination
of z* the optimal costate initial condition
vector, will be considered equivalent to soluticn
of the Two point boundary value problem.
For later use with Newton’s method, ¢(2)
and the operator T(z) are defined as;
gld=e*b 2.12)
Tw)=¢—e 6~ a) deale’ W)m1at
(2,13
For simplicity, =* will refered to as the
solution of the operator T(xz), also, in most of
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what follows the final state is the origin, so
the integral equation form of T'(x) becomes

T(;:):f—fq(z) dezlq' (D )dt (2,14)

A sequence of approximate operator{7(a)}
is now introduced to replace the operator 7(xz)
that is;

=) =4—a, W(Da—{ (®) Ui(g Om)d
(2,15)
where W(T) is the controllability matrix

WD={ a0 Wat 2.16)

q' (Or is the control argument.
Using the control argument g¢’'(z, an
approximate control function U,(-) yields

Uda’ (Om)=5 ltankln (g’ @+ D]

+tank(7:(¢’ Oz—1]} (2.1

The idea is to start with a very simple
operator and work up by step toward the exact
operator T(x).

Newton's method is to be applied to a typical
operator T,(x). Given the operator Eg(2.15)
to find the solution vector =, such that

T(n)=0
One linearizes about the current guess
Tz )= T(z)+(zy—a)TD (2"

Then the next iteration is found by solving

this linear equation for =,
=g — (T, D @OV T (") (2.18)

Equation (2.18) is the recursive relation of
Newton’s method. Since 7, has vector valued
range space, its first derivative is the Jacobian
matrix.

T,V ()=—a, W(T)—
{laq' Ou o 1@ Omat

Then Eg. (2.18) can be written out entirely

in matrix notation
il =gid-{a, WD)+

§;a®q @u g O=aty

(6@ WCDr~{atymar nat]
219

Trom Eq. (2.17), the {irst derivative of the
approximate control function #,¢" is
1 [g(On)= L i2—tanknlg (O+1))
—tanh*(n:(g’ (ODr—1)] (2.20)
Starting with an initial guess =% Eg. (2.19)
is applied repeatedly, If at same step, 7, 7'=
7i~! the inner loop is said to have converged,
and the vector = is defined to be the solution
vector =, of the operator T;.

3. Program

It was desired to have a program that would
be as flexible as possible within the frame
work of Problem and at the same time, as
easy to use and as comprehensive as possible.
For instance, the fundamental matrix is
computed directly from its series definition,
so that any system matrix can be used.

A flow chart of main program is shown in
Fig. 3.1 with the essential portions of the
program showing the relation which were used
for the computer solution. The program has
been broken into units called subroutines.
There is a main program which assumes most
of the read in-print out and the internal routing
responsibilities the various other subroutines
arc connected to main program and operate in
more or less of a sequence. Decisions as to
which optimal subroutines to use are made in
main program.

The data include the variable », T, &, 4,
A, b and the decision constants. The decision
constants are named EPS, AMAX, EPMTX,
ALPT, M, ICHO, and KPETA. These con-
stants were tested in the earlier experiment
and then standardized at what appeared to be
resonable values. Among constants the value
of the control constant ICHO depends on the
made of operation desired. The safe method
is to use a large value for the constant M(M
=<2100). The parameters of each approximate
operator are indicated, and the costate initial
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condition vector is included for each step of
Newton's method. If anything goes wrong,
such as a martrix inversion difficulty, an
apropose warning statement is given and
appropriate action is taken, 7. e., the program
stop if this inversion become too difficult
numerically.

Finally, main program decides when the
program should stop, by comparing the New
value of » found in subroutine with the given
decision constant AMAX.

The program stops when
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Experience shows that the procedure has
converged pretty well by the time 5=5or 10,
80 as a normal value one uses AMAX=10

4. Computer Result

A number of computer runs were made to
test the method and to try it out on various
example. Some of the more enlightening ones
are enumerated in this section, to gether with
their purpose and chief result.

The runs are listed by state (or plant)
matrix. In each case the Jordan canonical form

7n>AMAX @D was used, with the added requirement that all
\ READ IN: N, T, § (oru*)A, b—l
NE O,
q(ty=eNMb= [Igo Tn (—N)r]b
w(r)fqu (L)q G )dr sand if x* is given
= € =[ ait)dez [q (t)n*] dt
op= A IWTTIE I,
ﬂ:Wu‘(T)g/ao 7)(_:0
=1/ sup Nl g'{t)nll e % T=0
= COUNT=
te[0,7] ® ICON=0
"
9 =f_Tq(‘c)'vK [q'(t)w]dt
© e,
Aa= - ao(l+17)m-
aL =a
a= max {O, aan} wnaw 4
17] =1
ICOM = ICON+1
i

ne ﬂf[c\W(T) + qu Ha'(+ )u‘((] )[q'(#)lr]di) _l{é -dW¥{T)x :/(;Tq (‘t)uk[q' (*)u:) d'l}

!

Hr~mll Me~n N
1 NO Wn=m iy NO
iy <€ ICONZ30or oy — > 30
YES. YES
m|m=7 g
L e\
An= (_hF) n w=w_, ICON=0
_ NO

n=ntAn ICOUNT = ICOUNT +1 n=(n+n)/2 a=(a+a ) /2 |

ICOUNT =0 4>0anda=0

ICON =0
NO YES

. NO
ICOUNT~2<0 |
YES
stop

Fig. 3.1 Digital Computer chart
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the entries be real numbers. This means
normal coordinates have been used for clarity,
so that the plant matrix shows the eigen values
directly.

In this section an iteration of Newton's
method will be called just an iteration. A step
from one member of the sequence of approxi-
mate operator {7}} to the next will be referred
to as a step. In plotting the sequence of solu-
tion vectors {z,} the step number is indicated
on the graph. Thus in Fig. 4.1 the O refers
to the vector z. the solution of the linear
operator equation T,(z)=0;

A summary of the runs made is given in
table 4. 1.

1) Double Integrator Plant

Two integrators in series form a plant like
that of an inertial mass. with control acting
on the acceleration, there results.

o L]

It was chosen for the first set of runs

@D

partly because the results can easily be com-
pared with known analytic result.

10
Run1 5:[ | T=15: A,b of Eg. (4.1
2 |
I‘l
ST
8-
6-
" x2
2 |
h/
=3
2..
la,
R -

Fig. 4.1. Graph of the sequence {z;}-run 1

Purpose; To check whether the sequence of
operators chosen has the properiy of sequen-
tial convergence. To compare the sequence of
solution vector {=,} with the solution vector =*
of the exact operator. Finally to determine
the effect of allowing 7 to become very large.
Resut; See Fig. 4.1. The sequence of solu-
tion vectors {z,} appear to lie on a straight line
through the region, and they also converge
within the numerical accuracy used to the
optimal solution vector »*. Sequential conver-
gence took place at each step until » reached
a value of 5,627 at which point the first
derivative became too difficult to evaluate.
Table 4.1. Computer results

Run | Name of plant Mode of

Convergence
No. and order OIpCeIK-I%i%;I‘ of I\Iﬁa:g}ggg’s
1 Double 0 15 Good
2 integrator 2 120 Good
3 Single o4 Fair
4 oscillator 0 41 Good
5 2 0 41 Good
6 | Damped single 0 41 Good
7 oscillator 2 | 18 41 Good
8 | Damped double| 0 70 Good
9 oscillator 4 0 70 Good
10 Double 2 40 Good
1 oscillator 2 100 Good
12 4 2 100 | Fair to good
13 12 40 Good
14 12 40 Good
15 12 100 Good
16
17 10 25 Fair
18 12 40 Fair
19 12 40 Poor




16 J. Korean Nuclear Society, Vol. 4, No. 1, March, 1972

Ax2,
7“&.244 rz
A——x
T e —
/ © 780
— ——0. K
T \
S w1
nk:CO "kx
-9 -8 -7 -6 -5 -4 -3 -2 -1 Xy
N* 244 L
® m=20 7
A k=80
T-2

Fig. 4.2. State space trajectories-run 2

After the sixth step (=8.8) only one itera-
tion of Newton’s method was needed per. step.
‘This indicates that the sequence can be carried
for beyond the point at which =+ converges
to z*.

Run 2. [—10

-2

= ]T= 15: Aand b of Eq: (4.1)
To check a symmetric

Purpose: initial
condition to Run 1 for symmetry of results.
To examine the trajectories in the state space
-+ to compare those generated using the ap-
proximate operators T.(x) the and the exact
operator T(z).

Result; The result seems exactly symmetri-
cal to those in Fig. 4.1 to within a very small
error. A few chosen state spare trajetories
are plotted in Fig. 4.2. It is apparent that as
7. increases, the trajectories approach the exact
one. From Fig 4.2 one can also conclude that
fuel used by the approximate controls converges
very closely to the optimal value.

2) Single Oscillator Plant

A single degree of freedom oscillator without
damping has the system matrix below

A5 )

This plant was chosen first of all because

@2

many physical problems can be modelled by
the spring and mass system. Secondly, because
it prepares for later work with a two degree

Finally this leads to
variety: first a plant was used with poles at

of freedom oscillator.

the origin and now one with poles on the
imaginary axis. Runs 3 and 4 were terminated
as soon as 7.2
Run 3 —2 3
E=[ T=-2_Ab of Eq.(4.2)
2 2
Purpose: To try out a different plant.
Result; The minimum time solution requires

~3

a time of T*=2z—2 Tan! ~—2—z—0.643 )

this is also a difficult problem. At most of the
steps, two attempts were needed to define the
next operator T:(z)

Run 4 3
_—_[3] T=3z A, bof Eq.(4.2)
—
b
4l
M
3+
2y
J /
S,
I+ ”;/
L T SN T S
m

Fig. 4.3. Graph of sequence {7;}-run 4
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Purpose; To try another initial condition.
Rusult; The minimum time solution requires

1

a time of T¥*=37—Z —Sin-1 13 ~Tan! 3~

5=
it necessary to

2
37—2.835 only once was
redefine an operator T:(x) and then needed
five iterations for convergence.
The sequence of solution vectors {z:} plotted
Fig. 4.3 still lies on a stright line.

3) Damped Oscillator Plant

In this section tests are described on four
different plants. Two are single oscillator and
two are double oscillators, all with real damp-
ing.

The overall purpose is to try some test on
plant whose roots have negative real parts.

A secondary purpose is to try a higher order
plant. For plotting purpose the vector = is
split into two vectors of two element each

7 73 )
71'1-2:[ r 3. 4=
T2 ! Ty

Then =, is plotted against =;, and as separate
graph =z, is plotted against =

e

-1 -1 1
(=2
E= ] TZ—?ln
2 2

Purpose; To test the method with damping
present.

Result; One redefining of an operator was
required. The total number of iterations needed
was 21. The vectors =, no longer lie on a stright

=H

line. They are alightly off.
Run 7 [ —. 1101 1 ]

—1 —. 1101
.5
E= T=2r
.5
Purpose; To try another initial condition. To
compare the fuel costs.
Result; The trajectories in the state space
were found to be too close together to be

worth plotting for comparison. The sequence
of vector {=,} appears to lie nearly on a stra-
ight line in Fig. 4.4.

Run8 (—.1101 1 0 0
A= —1—.1101 0 0

0 0 —. 1101 2

0 0 —2—.1101

0 (1
b= 1 = 1 T=2x
0 3
1 3

Purpose; To try out the program on a plant
with a four dimensional state space.

Result; See Fig. 4.5. The vector =, defi-
nitely do not lie on straight line.

Run 9 —.5 5
A: —5 e 5

|

/

0

—.6 10
—10 —.6

0
10

b= §= 101 7=
10
10

(=2 R R ) =}

Purpose: To try a problem for which the
state of the system has many oscillations.

Result; Four iterations were needed at any
one step by the time z.~1, the vector z. had
become very close to its final value.

Fig. 4.4. Gravh of sequence {7;}-run 7
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Fig. 4.5. Graph of the sequence {r;}-run 8

4) Double Oscillator Plant
This plant is characterized by the matrix

01 0 01

A=, "1 0 b=| 1 43
0 w 0
0 —w 0 1

ak

u () l_l

It can be described either as two single
degree of freedom oscillators having a common
control or as a single oscillator with two degree
of freedom. Note that the frequency w is left
as a parameter.

At this point the basic features of the
program have all been tested. Now questions
of accurary and some features of the problems
themselves will be examined.

There are four series of runs using this plant.
Each series will be described separatly. A

vector / is defined for use in these runs
V'3

v’y
1. Effect of varying w-Runs 10-12
In this series the frequency w is varied. As
w—1, the two oscillators become increasingly
alike and therefore more difficult to handle
with one control.
§=2l T=4r 4.4
The purpose is to examine the changes in the

sequence of approximate operator as the

]

S U

‘ ot
1 I'm‘:

Fig. 4.6. Graph of fuel optimal control vs. time run 10

+1 L
o)

Bl

i

Fig. 4.7. Graph of fuel optimal control vs. time run 11

+1 L
)

t

U

™ | 27:-

Fig. 4.8. Graph of fuel optimol contral vs. time run 12
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problem becomes more difficult.

A plot of the optimal control variable time
was also made to illustrate how the nature of
the control changes as the problem become
more difficult.

Table 4.2

Run 10 l W=4 Egs. 4.3 and 4.4

|
Run 11 l w=1.5

4

|
|

Run 12 1 W=1.3| M=100

In Fig. 4.6. and Fig. 4.7. the total fuel used
is very nearly the same. As w is farther
decreased to 1.3. in Fig. 4.8. the total fuel
used rises sharply.

2. Effect of varying ||z*!| Run 13—16

These runs were made to explore the rela-
tionship between the initial state vector § and
the optimal costate initial condition vector z*.
In addition the routine for computing § when
given n* was checked.

W=4. T=dx 4.5)
Table 4.3
Run x* M Eqgs | 1€] 12
13 5 40 | 4.3 and 4.5 5.16
14 40 ’ 6. 50
15 2 | 100 | " 6.91
16 4| 100 | ” 7.91

M: Mode of operation

|14]]: The length of computed vector

The sequence of vector {m:} converges to
the true vector =* to within the numerical
accuracy used as shown in Fig. 4.9. conclu-
sions: All of these runs are in the casy
category. The slope a were reduced to zero
in one step and none of the operators had to
be redefined.

A plot of the initial condition vector § is

shown in Fig. 4.10. It is apparent that the

T,

3 0
Iy
T34
2
/°
2y
P
X
3
1]
7(*. 5 x)l: T,
fe X
® X /
A
o + + ¢
e { Z 3
LT

Fig. 4.9. Graph of the sequence {z;}-run 13

0 1 y 1 1
0 { 2 3 4 5
£.£5

Fig. 4.10. Computed initial condition vectors
¢ runs 13-16
repected doubling of {{z*|{ leads to diminishing
increase in [[£]] is the available control effect
become used up.

A plot of the fuel used versus log 109, for
these runs is shown in Fig.4.11. Notice how
well the causes converge to the optimum
values.

3. Effect of Decreased Accuracy-Runs 17

A check was made of the effect of decreased
accuracy on the procedure. This is done by
decreasing M, which makes the integration
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ol X X Run IH
x\
Jh=9.55 — x
9 F
ol O _Runi4
- Jre 754 e~ o
%
2 T
A\
6 | A\A Run 13
5F J* =502 A\A "
1 i L0t 3 i 1 | i I .
o o Y
"910 7

Fig. 4.11. Graphs of total fuel used wvs log. y, for the double
oscillator plant-z* varied runs 13-15

step size larger
W=1.5 T=2z a*=2l (4.6)

Run 17; M=25 Egs (4.3) and (4.6)

Result; The sequence of vectors {,} is shown
in Fig. 4.12. The sequence converges must
closey to =* when M=100.

4. Effect of Nonunique =* Run 18-19

As noted in Theoretical Analysis, theorm I,
if the vectors (), ¢=1.2. - , m. do not
span the space Rn, then the costate initial
condition vector =* is not uniquely specified.
With this plant, 7>z
while 7<z/2 leads to less than » switching,
More pre-

insures uniquences,

a nonunique =¥.
always

andhence to
cisely, two switchings
leving two degrees of freedom open. Another
test of this type was carried out onthe quad-
rupole plant.
T==z/2 M=40 =*=.5] @7
In run 18. The sequence of vector {m} still
lies on a straight line. Newton’s method seems

occurred,

Table 4.4
Run w ‘ Egs
18 2 4.3 and 4.7
19 1.5 Vi

15 - "\'
T34
-
2+ *
Mo,y 3/ /
4 x T
5%/ ~ 2
5 L
Tt"' /
od W
&
0 { ! i
0 5 10 15 20
m, T

100

34+

30 120 160
T Ty

Fig. 4.13. Graph of the sequence {r;} run 18
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to have had no special difficulty in converging.

In run 19. The sequence of sclution vectors
{ms} is shown in Fig. 4.13. Generally this run
was simillar to Run 18. Fig. 4. 14. shows that
the sequence of approximate controls still
converges, even though ||m:|[: is increasing
without any apparent bound. The conculsion
is that the method seems to work all right.

dez |qt)7,]

4»(——<——] nk: L3
~ik \uk[q'(t)vrk] i \l;——-———-—‘
" 7229
. n;+.54-
1'»———] T)K: 9.0t
L 4
o T
TIME ()

Fig. 4.14. Graph of fuel optimal control vs.
time-run 19

5. Conclusion

For almost all of the problem tried, a con-
vergent sequence of approximations to optimal
control was produced. (see Table 4.1)

In those few cases where the slope « was not
reduced to zero (and there the sequence of
vectors {z:] did not converge to a solution of
the necessary conditions) it is suspected that no
solution exists.

One of the strength of the method is its
flexibility. Thus when Newton's method applied
to a particular operator does not converge,
another operator is defined until one is found
for which convergence does result.

The total fuel used was plotted against log;o7:,
since the approximate control function #,(-)is an
exponential type of function. When the param-
eter 7 reaches a value of 2=5, usually the

resualting cost is within 1% of J*, the optimal
fuel cost. Note that the first operator usually
has a cost 5 to 30% greater than J*, showing
in practice the efficiency of the approximate
controls #,.

About effectiveness of the approximate
operator: The sequence of solution vecter {:}
generally had moved close to its final value
when the parmeter 7, had reached” a value of
=2~5. Then the accuracy used in the digital
computations becomes a increasingly important
factor in determing the distance between =s.
and z*. As 7, increase beyond »=10, usually
only one iteration is enough to meei <¢the
criterion for convergence of Newton's method.

About accuracy: In Run 10, 11 and 17 a
study was made of the effect of interval size
or number of subdivisions in each integration.
Note that no matter how poor the integration
scheme used: (1) the state space still gets to
the origin at time ¢4 7T for model used, and
(2) the run can always be repeated except for
round off error in the digital computer.

As accuracy was decreased, the number
of iterations of Newton's method required
increased.

About straight line behavior of {m:}: When
the system (open loop) poles lie on the imagi-
nary axis, the sequence of vector {=,}! was
found to lie on a straight line through the origin.
This is true also for the fourth order and sixth
order examples in the vector spaces R, and
R, respectively. No reason has been found for
this. It is surmised that the straight line
behavior will hold for any sequence of control
approximations #, having symmetry about the
origin, acting on a conservative system in a
fixed time control problem.

If the control were linear with slop .a, the
costate initial conditions would be

7=1/20(T) [E—e*76]
=1/2w™'(THE
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The key of this of this design is to use the
costate resulting from above mentioned form
with the optimal control function - dez(-).
Because of the straight line behavior of {r:}
there is some slop @ for which this gives the
optimal result. The effect of a is to determine
{|z||2, the lenth of the vector =.

we set

u(t)=—dez(1/2q9' (Ow (T )§]

It remains to choose the constant a, clearly,
the smaller « is the closer the control to a time
optimal one; the larger « is the slower the
control to a time optimal one; the larger « is
the slower the control but also the more
efficient in its use of fuel. The safest way to
pick a is by test of the system under field
conditions.

With certain system it may be possible to
design a rule for choosing. For instance, in
the single oscillator control problem to the
origin, the time optimal control reduces
Hx@L:
seconds, so the minimum time 7* is approxi-
mately

by about two units every =/w

T*=- =

2 18l1:

One way to choose a would be to give the
control argument a magnitude based on the
ratio 7*/T. For example, let the magnitude
be 1.0+7*/T. Then as T*/T—0 the control
For clarity this will

First,
magnitude of the argument to one

— g OQwICTE
lq' (Odw™(T)E|

Then multiplying by the chosen magnitude
yields the desired control.

u()=—de (145211411

g Ow ' (TH§ ]
I’ (0w (DE]

effort also goes to zero.

be done in two steps. change the
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