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1. INTRODUCTION

The Electric Power Research Institute (EPRI)
demonstrated a method for monitoring the performance
of instrument channels in Topical Report (TR) 104965,
“On-Line Monitoring of Instrument Channel Performance.”
The current state-of-the-art is described in the first of a
three-volume NUREG/CR-6895 entitled “Technical Review
of On-Line Monitoring Techniques for Performances
Assessment.” This report includes discussion of both
redundant and non-redundant sensor monitoring, the two
categories of models involved in on-line monitoring. The
second volume of NUREG/CR-6895, which is currently
undergoing NRC review, expounds on the general theory
of on-line monitoring implementation and the associated
uncertainty analysis. Historically used metrics such as
accuracy, auto-sensitivity, and cross-sensitivity are used
to assess the validity of models developed for online
monitoring. Recently, a new fault detectability metric has
been developed to evaluate the sensor-fault detection
capabilities of these models: Error Uncertainty Limit
Monitoring (EULM) detectability [1]. These and other
theoretical issues of on-line monitoring have been

addressed in previous technical papers and reports [2,3,
4,5,6,7]. However, to help ensure the correct application
of on-line monitoring technologies, these techniques
should be tested on actual plant data. The third volume of
NUREG/CR-6895 is currently under development and
will investigate the performance of on-line monitoring
(OLM) models under limiting cases in which all of the
modeling assumptions may not be met.

This paper presents the results of models developed
to monitor three of eleven common nuclear plant sensor
sets developed by EPRI during their OLM imple-
mentation program [8, 9]. These sensor sets include both
redundant sensors sets and non-redundant sensor sets.
The Auto-Associative Kernel Regression (AAKR) model
architecture is chosen for the analyses. Each of the
developed models is evaluated for four metrics:
accuracy, auto-sensitivity, cross-sensitivity, and EULM
detectability. The analytic and Monte Carlo uncertainty
estimates and residual coverage for each model are also
calculated. Before the results of these models are
discussed, a brief overview of model development and
evaluation, the AAKR architecture, and the performance
metrics is given.

The Electric Power Research Institute (EPRI) demonstrated a method for monitoring the performance of instrument
channels in Topical Report (TR) 104965, “On-Line Monitoring of Instrument Channel Performance.” This paper presents the
results of several models originally developed by EPRI to monitor three nuclear plant sensor sets: Pressurizer Level, Reactor
Protection System (RPS) Loop A, and Reactor Coolant System (RCS) Loop A Steam Generator (SG) Level. The sensor sets
investigated include one redundant sensor model and two non-redundant sensor models. Each model employs an Auto-
Associative Kernel Regression (AAKR) model architecture to predict correct sensor behavior. Performance of each of the
developed models is evaluated using four metrics: accuracy, auto-sensitivity, cross-sensitivity, and newly developed Error
Uncertainty Limit Monitoring (EULM) detectability. The uncertainty estimate for each model is also calculated through two
methods: analytic formulas and Monte Carlo estimation. The uncertainty estimates are verified by calculating confidence
interval coverages to assure that 95% of the measured data fall within the confidence intervals. The model performance
evaluation identified the Pressurizer Level model as acceptable for on-line monitoring (OLM) implementation. The other two
models, RPS Loop A and RCS Loop A SG Level, highlight two common problems that occur in model development and
evaluation, namely faulty data and poor signal selection
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2. MODEL DEVELOPMENT AND EVALUATION

The model development and analysis for this research
were performed using the MATLAB-based Process and
Equipment Monitoring (PEM) Toolbox [10], which includes
tools for developing and analyzing AAKR models.

Figure 1 outlines the methodology used for model
development and analysis. Three data sets are used for
model development and evaluation: training data, test
data, and validation data. In the first step of this analysis,
training data is used for the initial model development. In
this step, exemplar observations are chosen from the training
data to form a subset of memory vectors; this accounts
for all the “training” needed by an AAKR model. The
AAKR model architecture is described in more detail in
the following section. The second step involves optimizing
the model archtecture. This optimization is accomplished
using the test data set. The models presented in this research
are optimized only for the kernel bandwidth. It is also
possible at this stage to optimize a model for the number
of memory vectors, the vector selection method, and the
distance measure. Finally, the validation data set is used
to evaluate the model that was optimized in the previous
step. The model is evaluated on four performance metrics:
accuracy, auto-sensitivity, cross-sensitivity, and Error
Uncertainty Limit Monitoring (EULM) detectability. The
model is also analyzed for both analytic and Monte Carlo
uncertainty estimates and their corresponding residual
coverages [2]. 

2.1 Auto-Associative Kernel Regression
Auto-Associative Kernel Regression (AAKR) is a

type of similarity based model [11]. Similarity based
modeling (SBM) is a nonparametric modeling technique
that uses the similarity of a query vector to memory or
exemplar vectors to infer the model’s response [12]. The
following derivation of the AAKR model architecture is
based on multivariate, inferential kernel regression, derived
by Wand and Jones [13]. 

AAKR is a nonparametric, data-driven modeling
technique that uses historical, fault-free observations to
correct faults in current observations. The exemplar or
memory vectors used to develop the empirical model are
stored in a matrix Xm and are selected from a larger training
set according to one of many vector selection techniques
[5]. Here, each column contains information on a single
variable and each row contains one complete observation
of all the variables; Xi,j is the i th observation of the j th

variable.  For nm exemplar observations of p process
variables, the memory matrix is written as:

Using this format, a query vector is represented by a 1
p vector of process variable measurements, xq:

The prediction of the corrected input is calculated as a
weighted average of historical, error-free observations
termed memory or exemplar vectors (Xi, i =1 to nm). The
AAKR model architecture is composed of three basic
steps. First, the distance between a query vector and each
of the memory vectors is calculated. There are several
distance functions that may be used [3, 14], but the most
common measure is the Euclidean distance or L2-norm.
Using this measure, the equation for the distance between
the query and the i th memory vector is:

For a single query vector, this calculation is repeated for
each of the nm memory vectors, resulting in an nm 1
matrix of distances: d.

Next, these distances are converted into similarity
measures or weights by evaluating the Gaussian kernel:
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Fig. 1. Methodology for Model Development and Evaluation



where h is the kernel bandwidth and w is an nm 1
matrix of weights. Other kernel functions can be used but
the results are not significantly different. 

The prediction of the corrected input is calculated by
using these weights to form a weighted average of the
memory vectors:

It is instructive to note that (1) is simply a modified
form of the traditional Nadarya-Watson estimator [15, 16],
which weights output exemplars (Y) as opposed to input
exemplars (X). 
If the scalar a is defined as the sum of the weights, i.e.

then (1) can be represented in a more compact matrix
notation:

The parameters to be optimized in an AAKR model
are the memory matrix (Xm) and the kernel bandwidth (h).
The developer must decide how many and which vectors
to include in the memory matrix and how large to make
the bandwidth, which indirectly controls how many
memory vectors are weighted heavily during prediction.
These parameters are problem specific and should be
determined independently for each data set.  

This section has given a brief description of AAKR.
Four metrics and an uncertainty analysis are used to
evaluate the performance of SBM. The constituents of
this performance evaluation are discussed in the following
section.

2.2  Performance Metrics
Each model presented in this paper is evaluated with

a set of performance metrics and an uncertainty analysis.
The results for each model of these analyses are presented
in tables. Short definitions are given below for the perfor-
mance metrics given in the model results tables of the
following sections. These definitions are grouped according
to the table sections shown in Table 1.

Accuracy measures how well a model predicts the
correct values for new inputs. It is characterized by the
root mean-squared error, given as percent of sensor span.

The accuracy of the kth sensor is given by:

where sk is the span of the kth sensor.
While accuracy metrics may be sufficient for models

that are expected to operate with correct inputs, calibration
verification models are explicitly designed to detect sensor
faults, and thus must operate with faulty inputs. Sensitivity
metrics characterize the effect of drifted sensor inputs on
the model output. Two such metrics are used to evaluate
model performance, namely auto-sensitivity and cross-
sensitivity [5]. Ideally, these sensitivity metrics should be
valued between 0.0 and 1.0. Sensitivity values greater
than 1.0 indicate that a model is actually amplifying the
effect of an input sensor drift.

Auto-Sensitivity measures how a faulted variable
input affects predictions for that same variable. It quantifies
how much a sensor prediction follows a sensor drift. The
auto-sensitivity of the kth sensor is given by:

Cross-Sensitivity measures how a faulted variable
input affects predictions for the other variables. The
cross-sensitivity of the jth sensor due to a drift in the kth

sensor is given by:
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(1)

Metrics: Accuracy (% of span)

Auto-Sensitivity

Cross-Sensitivity

EULM Detectability (%)

Uncertainty: Analytic (% of span)

Coverage

Monte Carlo (% of span)

Coverage

Table 1. Categories of Model Performance Evaluation 



The overall sensor cross-sensitivity is given by the
average of the cross-sensitivity due to a drift in each of
the other sensors:

A newly developed fault detectability metric is also
used to evaluate model performance: EULM detectability.
EULM Detectability indicates the smallest sensor fault
that can be detected by an empirical model with a 95%
confidence and is reported as a percent of the sensor span.
The utility of the EULM detectability is that, while the
accuracy and sensitivity metrics provide some guidance,
they do not give concrete guidance on the smallest faults
that can be detected by monitoring the uncertainty of the
prediction residuals. The EULM detectability for the ith

sensor is given by:

where Ui is the uncertainty in the ith sensor and si is its
span. Past measures of detectability consider only the
predictive uncertainty. A sensor would have to drift more
than the 95% uncertainty value for one to be confident
that the drift occurred and that it was not just a prediction
error. These earlier methods did not consider auto-sensitivity.
Recall that auto-sensitivity causes a residual to be smaller
than an actual drift because the prediction will somewhat
follow the drift. EULM takes this into consideration and
scales the earlier detectability measure accordingly. For
example, if a sensor drifts by 1% and the auto-sensitivity
is 0.5, the residual would only be 0.5% rather than the
necessary 1%. Dividing by 1-SA corrects for predictions
that have a tendency to follow drifts. With the auto-
sensitivity correction factor, EULM detectability would
result in a 1% residual when the drift is 1%. The uncertainty
term used in the EULM detectability metric will now be
discussed.

2.3 Uncertainty
The analytic and Monte Carlo methods for calculating

uncertainty are described in NUREG/CR-6895, Volume
II. Analytic uncertainty is estimated through equations
derived from the model's mathematical architecture. Analytic
uncertainty can be evaluated during model implementa-
tion to estimate the uncertainty for each prediction. The
Monte Carlo uncertainty, however, is much more computa-
tionally intensive. As such, it is generally evaluated prior

to model implementation. This uncertainty estimate is
applied to each model prediction.  Monte Carlo uncertainty
is estimated by applying a Monte Carlo re-sampling
technique. With Monte Carlo techniques, the training
data is resampled multiple times and for each of these
resampled datasets, a new model is constructed. The
variation between all of these models is then taken as a
measure of the variance portion of the total uncertainty.
Because the Monte Carlo methods measure the uncertainty
of many possible models, instead of only the model at
hand, their uncertainty estimates are generally larger than
analytic estimates. However, research has shown that both
analytic and Monte Carlo techniques generally provide a
conservative estimate of model uncertainty [17]. The
uncertainty estimate is applied to the denoised residuals of
the model. This uncertainty is used to construct a confidence
interval centered at zero, the expected value of the denoised
residuals. The residual coverage is then calculated as the
fraction of denoised residuals contained within the confidence
interval.

3. DATA SETS

This report presents the results of models generated
with three different sensor sets: Pressurizer Level, Reactor
Protection System (RPS) Loop A, and Reactor Coolant
System (RCS) Loop A Steam Generator (SG) Level. RPS
Loop A and RCS Loop A SG Level contain non-redundant
groups of redundant sensors. The Pressurizer Level sensor
set contains only redundant sensors. These models are
described in the EPRI document “On-Line Monitoring of
Instrument Channel Performance Volume 2” [8]. Data was
collected for each sensor as well as the reactor power level
from March 2001 to November 2002 with a one-minute
sampling rate for all sensors. The reactor power level
data was used as a phase indicator; the models presented
here include only high-power data, power greater than
960 MWe. This high-power data was separated into three
data sets for each model evaluation. The training set includes
data from March, April, and May, 2001 with a five-minute
sampling rate; the test data set includes data from March
2001 through April 2002 with a fifteen-minute sampling
rate; the validation data set includes data similar to the
test data set, but offset by seven minutes.

3.1 Pressurizer Level
The Pressurizer Level sensor set contains three redun-

dant level sensors. Figure 2 shows the training and test
data used to develop the AAKR model. In this and all
other data sets, the validation data is similar to the test
data and is not presented. Table 2 gives the noise estimates
of each sensor and the correlation coefficients for the
training data set. As the table shows, the sensor training
data is highly correlated, above 0.95. The performance
evaluation of this model is summarized in Section 4.
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3.2 RPS Loop A
The RPS Loop A sensor set contains nine sensors in

four redundant groups. Figure 3 shows the training and
test data used to develop the AAKR model. Table 3 gives
the noise estimates of each sensor and the correlation
coefficients for the training data set. As the table shows,
the sensor training data is highly correlated within the
redundant sets with most of these correlations above 0.95.
The exception to this is the steam flow sensors. The
correlation of these sensors is somewhat degraded;
however, this is attributed to the high level of noise
common in steam flow sensors. It is also clear that the
feedwater flow, steam flow, and first stage turbine
pressure are all inter-correlated. The three steam pressure
sensors, however, are not significantly correlated with any
other sensor set. The performance evaluation of this model
is summarized in Section 4. 

3.3 RCS Loop A SG Level
The RCS Loop A SG Level sensor set contains four

SG level sensors: three narrow range level sensors and
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Fig. 2. (a) Training and (b) Test Data for the Pressurizer Level
Model

Level 1 Level 2 Level 3

Signal Noise Estimate (% of span) 0.051 0.051 0.052

Correlation Coefficients

Level 1 1.000 0.988 0.965

Level 2 0.988 1.000 0.952

Level 3 0.965 0.952 1.000

Table 2. Pressurizer Level Noise Estimates and Correlation
Coefficients 

(a)

(b)

Fig. 3.  (a) Training and (b) Test Data for RPS Loop A Model



one wide range level sensor. Figure 4 shows the training
and test data used to develop the AAKR model. Table 4
gives the noise estimates of each sensor and the correlation
coefficients for the training data set. The correlation
coefficients of the three narrow range level sensors are
all high, above 0.97. However, the wide range sensor is
not significantly correlated with any of the narrow range
sensors. The performance evaluation of this model is
summarized in Section 4.  

4. MODEL RESULTS

Three AAKR models were developed using each of
the data sets described. The models were developed using
the training data and evaluated using the test or validation
data. The results for each sensor in each model are summa-
rized below.

Metrics of particular interest include accuracy, EULM
detectability, and the estimates of uncertainty. For OLM
implementation, it is generally agreed that these three
measures must be less than 1% of the sensor span to be
usable. This is because it is common to have allowable
drift levels between calibration intervals on that order of
magnitude. An EULM detectability of above 1% makes
it impossible to detect a drift of 1% with a 95% confidence.
A 95% confidence is required because that is the confidence
necessary for safety critical nuclear instrumentation
calibrations.

Accuracy is a measure of how well the model predicts
with unfaulted input data. However, since it reflects the
error between the prediction and target, it may be overly
inflated due to sensor noise. If the predictions were perfect
and the sensor had instrumentation noise, the error would
be equal to that noise level. Therefore, it is not practical
to have an error less than the noise level.
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NAR RNG 1 NAR RNG 2 NAR RNG 3 WIDE RNG

Signal Noise Estimate (%) 0.337 0.323 0.328 0.259

Correlation Coefficients

NAR RNG 1 1.000 0.973 0.986 0.142

NAR RNG 2 0.973 1.000 0.983 0.183

NAR RNG 3 0.986 0.983 1.000 0.157

WIDE RNG 0.142 0.183 0.157 1.000

GARVEY et al.,   Validation of On-Line Monitoring Techniques to Nuclear Plant Data

FWF1 FWF 2 SF 1 SF 2 TP 1 TP 2 SP 1 SP 2 SP 3

Signal Noise Estimate (%) 0.561 0.543 0.607 0.607 0.035 0.035 0.023 0.022 0.029

Correlation Coefficients

FWF1 1.000 0.968 0.690 0.689 0.811 0.794 -0.122 -0.110 -0.172

FWF 2 0.968 1.000 0.688 0.686 0.809 0.789 -0.100 -0.081 -0.154

SF 1 0.690 0.688 1.000 0.647 0.774 0.758 -0.193 -0.171 -0.229

SF 2 0.689 0.686 0.647 1.000 0.775 0.758 -0.186 -0.167 -0.273

TP 1 0.811 0.809 0.774 0.775 1.000 0.991 -0.102 -0.082 -0.126

TP 2 0.794 0.789 0.758 0.758 0.991 1.000 -0.133 -0.124 -0.148

SP 1 -0.122 -0.100 -0.193 -0.186 -0.102 -0.133 1.000 0.968 0.951

SP 2 -0.110 -0.081 -0.171 -0.167 -0.082 -0.124 0.968 1.000 0.953

SP 3 -0.172 -0.154 -0.229 -0.273 -0.126 -0.148 0.951 0.953 1.000

Table 3. RPS Loop A Noise Estimates and Correlation Coefficients  

* FWF : Feedwater Flow, SF: Steam Flow, TP : First Stage Turbine Pressure, SP: Steam Pressure

Table 4. RCS Loop A SG Level Noise Estimates and Correlation Coefficients



4.1 Pressurizer Level
The results of a performance evaluation of the Pressurizer

Level model are summarized in Table 5. The performance
metrics for this model are very good. Both accuracy and
uncertainty are well below the desired 1% level. The
EULM detectability indicates that the model can detect
drifts of less than 0.5% of the sensor span. This model
should be considered acceptable for implementation in
an OLM system.

4.2 RPS Loop A
The results of the performance evaluation of the RPS

Loop A model are summarized in Table 6. The results of
this model show that the accuracy indicator is well within
the 1% guideline. However, the uncertainty for several
sensors is above that level, as is the EULM detectability.
In fact, this model cannot detect sensor drifts of less than
2.5% for several of the sensors. These unfavorable
results motivate a closer look at the data used for model
development and analysis.

Two methods are readily apparent for investigating
the data sets: correlation analysis and visual inspection.
A correlation analysis of the validation data (Table 7)
shows that the correlation between the two first stage
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(a)

(b)

Fig. 4. (a) Training and (b) Test Data for RCS Loop A SG Level
Model

Level 1 Level 2 Level 3

Metrics:

Accuracy (% of span) 0.076 0.110 0.073

Auto-Sensitivity 0.427 0.519 0.505

Cross-Sensitivity 0.221 0.272 0.233

EULM Detectability (% of span) 0.249 0.448 0.278

Uncertainty Analysis:

Analytic (% of span) 0.143 0.215 0.137

Coverage 0.976 0.993 0.951

Monte Carlo (% of span) 0.127 0.205 0.122

Coverage 0.958 0.989 0.948

Table 5. Results of Pressurizer Level Model

Fig. 5. First Stage Turbine Pressure Sensors in the 
Validation Data Range



turbine pressure (TP) sensors has degraded significantly,
from 0.99 in the training data to 0.80 in the validation
data. The correlation of TP 1 to the other, non-redundant
sensors has also degraded. This indicates that perhaps a
fault is present in this sensor. A plot of the two first stage
turbine pressure sensors is given in Figure 5. This figure
shows a very clear drift in TP 1, which is likely the cause
of the poor model performance seen above.This clearly
illustrates the importance of data inspection before model
development.  Had this been an in-use OLM model coupled
with a detection system, the sensor drift could have been
detected and the instrument scheduled for maintenance.

4.3 RCS Loop A SG Level
The results of the RCS Loop A SG Level model are

summarized in Table 8. The results of this model show
that the accuracy indicator and the uncertainty for each
sensor are well within the 1% guideline. In addition, the
EULM detectabilities for the three narrow range level
sensors indicate that a ~0.6% drift of the sensor span could
be detected with this model. The EULM detectability for
the wide range level sensor, however, is much higher than
the desired 1%. Since the uncertainty is similar to that of
the narrow range instruments, the poor EULM dete-
ctability is due to the poor auto-sensitivity.
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FWF1 FWF 2 SF 1 SF 2 TP 1 TP 2 SP 1 SP 2 SP 3

Metrics:

Accuracy (% of span) 0.316 0.308 0.342 0.314 0.805 0.246 0.055 0.051 0.056

Auto-Sensitivity 0.377 0.434 0.592 0.581 0.221 0.163 0.416 0.428 0.340

Cross-Sensitivity 0.126 0.124 0.120 0.121 0.077 0.087 0.151 0.172 0.160

EULM Detectability (% of span) 1.600 1.710 2.600 2.530 2.070 0.588 0.187 0.176 0.168

Uncertainty Analysis:

Analytic (% of span) 0.996 0.970 1.060 1.060 1.610 0.492 0.109 0.101 0.111

Coverage 0.990 0.990 0.991 0.997 0.995 0.946 0.973 0.981 0.972

Monte Carlo (% of span) 0.903 0.843 0.947 1.010 1.810 0.907 0.185 0.197 0.193

Coverage 0.989 0.989 0.988 0.996 0.996 0.985 0.991 0.996 0.994

Table 6. Results of RPS Loop A Model

FWF: Feedwater Flow, SF: Steam Flow, TP: First Stage Turbine Pressure, SP: Steam Pressure

FWF1 FWF 2 SF 1 SF 2 TP 1 TP 2 SP 1 SP 2 SP 3

FWF1 1.000 0.963 0.610 0.612 0.526 0.725 -0.344 -0.348 -0.367

FWF 2 0.963 1.000 0.607 0.608 0.534 0.726 -0.325 -0.323 -0.361

SF 1 0.610 0.607 1.000 0.598 0.524 0.738 -0.397 -0.399 -0.412

SF 2 0.612 0.608 0.598 1.000 0.529 0.744 -0.399 -0.401 -0.465

TP 1 0.526 0.534 0.524 0.529 1.000 0.805 -0.320 -0.189 -0.248

TP 2 0.725 0.726 0.738 0.744 0.805 1.000 -0.404 -0.378 -0.415

SP 1 -0.344 -0.325 -0.397 -0.399 -0.320 -0.404 1.000 0.960 0.915

SP 2 -0.348 -0.323 -0.399 -0.401 -0.189 -0.378 0.960 1.000 0.935

SP 3 -0.367 -0.361 -0.412 -0.465 -0.248 -0.415 0.915 0.935 1.000

Table 7. Correlation Coefficents of RPS Loop A Test Data

FWF: Feedwater Flow, SF: Steam Flow, TP: First Stage Turbine Pressure, SP: Steam Pressure



Recall that the correlation of the wide range sensor to
the three narrow range sensors was quite low (< 0.2). This
is probably due to the water level controller minimizing
variable fluctuations and thus minimizing the sensor
correlations. The narrow range instruments' process noise
has higher correlations than with the wide range sensor due
to the sensor leg penetration locations. Therefore, no sensor
was included in this model, which was truly redundant
with a wide range level. This illustrates the importance of
signal selection in model development. The RPS Loop A
data also contained sensors that were not highly correlated
with the other sensor groups; however, the model perfor-
mance on these sensors was quite high. This is due, in part,
to their redundancy within the group. When selecting
signals for model development, it is important that each
signal be well correlated with the other signals [8]. It is also
suggested that each signal have at least one redundancy
included in the model. 

5. CONCLUSIONS

This paper presented the results of model development
and analysis for three nuclear plant sensor sets. One model,
the Pressurizer Level model, had acceptable performance
for OLM. The other two models, RPS Loop A and RCS
Loop A SG Level, highlighted two problems commonly
encountered in model development. The RPS Loop A
model was tested using data with a sensor drift fault, which
resulted in poor model measured performance. In an applied
OLM system, a correctly trained model, coupled with a
fault detection routine, would have identified the sensor
drift in the first stage turbine pressure signal.  Finally, the
RCS Loop A SG Level model contained a sensor that was
not highly correlated with the other three sensors. This

model had very good performance on the three redundant
sensors, but its ability to detect drifts in the non-redundant
sensor was significantly degraded. This illustrates the
importance of signal selection in developing models for
OLM systems.  

It is important to note that the purpose of this study
was to implement OLM using actual nuclear plant data
and methods that have been proposed by EPRI and others.
It was not to identify deficiencies in the described OLM
methods, but to investigate how the methods fail when
using actual data that may not meet all of the underlying
assumptions. If OLM is to be used in operating nuclear
power plants, the ways in which the results change for
common data and model development problems must be
well understood.  

This paper presents the results of the first academic
implementation of OLM for sensor calibration monitoring
and an analysis of the underlying causes of the performance
deficiencies. It investigated actual data problems. A study
of simulated problems that could possibly cause model
performance deficiencies is included in the third volume
of NUREG/CR-6895, which is expected to be published
in 2007.
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