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Abstract

Turbulence models are separately assessed for a three dimensional thermal-hydraulic

analysis of the integral reactor SMART. Seven models (mixing length, k-, standard k-, k-e-fg,

k-e-v2, RRSM, and ERRSM) are investigated for flat plate channel flow, rotating channel flow,

and square sectioned U-bend duct flow. The results of these models are compared to the DNS

data and experiment data. The results are assessed in terms of many aspects such as

economical efficiency, accuracy, theorization, and applicability. The standard k-e model (high

Reynolds model), the k-e-v2 model, and the ERRSM (low Reynolds models) are selected from

the assessment results. The standard k-¢ model using small grid numbers predicts the channel

flow with higher accuracy in comparison with the other eddy viscosity models in the logarithmic

layer. The elliptic-relaxation type models, k-e-v2, and ERRSM have the advantage of

application to complex geometries and show good prediction for near wall flows.

Key Words : SMART primary coolant system, turbulence model, eddy viscosity model,

reynolds stress model, elliptic relaxation method, damping function

1. Introduction

The flow of a SMART primary coolant system is
a strong inhomogeneous turbulent flow combined
with forced and natural convections. The structure
of the SMART primary coolant system consists of
complex geometry including multi-walls, multi-
blocks, strong streamline curvatures, and variable-
cross-sections. The down-comer region of
SMART, which consists of shielding materials and
a core region, may develop a locally stagnant
coolant flow [1,2]. Since this flow field depends

248

strongly on the adopted turbulence model, the
selection of an appropriate turbulence model for
the flow analysis is very important.

The turbulence models used in computational
fluid dynamics can be divided into three
categories: RANS (Reynolds Averaged Navier
Stokes), LES (Large Eddy Simulation), and DNS
(Direct Numerical Simulation). Although LES and
DNS vyield better predictions than RANS, this
study is limited to RANS models, which give good
predictions with small numbers of computational
grids. The RANS models used are mixing length
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[3,4), k1 I5), k-¢ [6), k-e-fu [7], and k-e-v2 [8], as
well as the Reynolds stress models (Speziale,
Sarkar, and Gatski [9] and Durbin’ s elliptic
relaxation method [10]).

The mixing length model uses an explicit
algebraic approximation for the velocity scale and
the length scale of the eddy viscosity. However,
the eddy viscosity of the standard k- and k-e-fx
models was calculated using two differential
equations (i.e., k and € transport equations). Here,
fu is the explicitly calculated damping function.
The k-e-v2 model also includes the V2 -equation in
addition to the k and € equations. The three types
of k-€ models have computational advantages of
simplicity and stability in modeling despite the
need to solve partial differential equations. These
models assume isotropic eddy viscosity, allowing
them to be simply incorporated into any existing
computer code developed to solve the laminar
Navier-Stokes equations.

The Reynolds stress models (RSM) have not
been as widely used in engineering applications as
the eddy viscosity models. However, RSMs are
regarded as the natural and most logical approach
among the RANS models, since RSMs provide an
extra turbulent momentum flux from the solution
of full transport equations. These models have
received much attention with regard to
investigation of isotropy/anisotropy effects and
the homogeneous/non-homogeneous turbulences.
RSMs also require more computational resources
than the eddy viscosity model in order to solve the
components of the Reynolds stress transport
equations.

The present study assesses the turbulence
models that will be implemented into TASS-3D,
the three-dimensional thermal-hydraulic analysis
computer code of SMART. Three flow fields, the
flat plate channel, rotating channel, and U-bend
duct, are investigated to assess the models. The
results are evaluated for applicability, accuracy,

theorization, and economical efficiency with
consideration of the specific flow characteristics of
the SMART primary coolant system.

2. Governing Equations and RANS
Models

The following seven RANS models were
investigated for application to a three-dimensional
flow analysis of the SMART primary coolant
system. These models have been theoretically
verified and are widely used in industrial

applications.

(1) Mixing length model: Van Driest [3], Escudier

(4]

(2) k-l model: Wolfstein [5)

(3) Standard k-e model: Launder and Spalding (6]
(4) k-e-f model: Launder and Sharma [7]

(5) k-e-v2 model: Durbin [§]

(6) Realizable RSM: Speziale, Sarkar and Gatski

(9]

(7) Elliptic Relaxation RSM: Durbin [10]

The governing equations, wall corrections (or
damping functions) and model constants of these
models are summarized in Tables 1 and 2. Among
them, the mixing length and k-¢ models are the
most widely used and validated. These models are
derived based on the assumption that there exists
an analogy between the action of the viscous
stress and the Reynolds stress on the mean flow.
Prandtl postulated that for flows near solid
boundaries the mixing length is proportional to the
distance from the surface. This postulation is
consistent with the well known law of the wall,
which has been observed for a wide range of wall
bounded flows. Van Direst [3] proposed a
modified model wherein the mixing length is
multiplied by a damping function. Specifically, Van
Direst suggested that in the near-wall layer the
mixing length behaves as delineated in Table 2.
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Table 1. Governing Equations and Turbulence Models
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Table 2. Eddy Viscosity, Wall Functions and Model Coefficients for the Turbulent Models
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Escudier [4] found that the predictive accuracy is

improved by limiting the peak value of the mixing

length according to Table 2. This model includes

the damping function in the inner layer and outer

layer, as shown in Table 2. The k-1 model

proposed by Wolfstein [5) calculates the k-

transport equation instead of the velocity scale.

The standard k-€ model is the simplest complete
model of the RANS turbulence models, for which
only the boundary conditions need to be supplied.

However, this model needs strong corrections for

a solid boundary. In order to avoid this weakness,

the k-e-f¢ model is derived by introducing damping

functions to account for the effect of the wall on

the turbulence. The function fu corrects the strong

overestimation of the turbulent viscosity in the
vicinity of the wall, but these functions frequently
cause numerical stiffness and poor predictions in
complex flows.

In contrast to this approach, Durbin [8]
suggested replacing the turbulent kinetic energy
with the velocity scale (v?) in the eddy viscosity,
since the primary objective of introducing the
damping effect to the closure models is to
represent the kinematic blocking by the wall. As a
result, no viscous damping function is required in
the k-e-v2 model. This model can be thought of as
a subset of a full second-moment closure in the
sense that is analogous to the wall-normal
Reynolds stress near to surfaces. The associated
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redistribution term is obtained from the elliptic
relaxation equation, which is a source in the
v%-equation, as shown in Table 2. The k-¢ model
has some drawbacks in its application for flows
with complex strain fields or significant body
forces such as rotation, streamline curvature,
swirling, and buoyancy. Under these conditions
the individual Reynolds stresses are poorly
represented by formula (4), even if the turbulent
kinetic energy is computed within reasonable
accuracy. The exact Reynolds stress transport
equation on the other hand can account for the
directional effects of the Reynolds stress field. The
most complex and general RSM can account
exactly for the turbulence production induced by
shear, rotation, and stratification, and provides a
better description than the eddy viscosity model.
However, the RSM has some difficulties in
modeling including turbulent diffusion (5d),
dissipation tensor (5e), and pressure strain
correlation (or redistribution term) (6).

One of the most important and difficult tasks in
turbulence modeling is to model the pressure
strain term. The RSM uses the local approach to
model the pressure strain term. The local
approach algebraically relates the unclosed
redistribution term to the Reynolds stress
anisotropy, mean strain, and vorticity tensors. This
approach has been widely used for turbulence
modeling, and all of the RANS models are based
on this approach. Since these models are derived
by quasi-homogeneous approximations, they
require corrections by using damping functions,
which are not universal to integrate the equation
down to the solid boundaries. In order to avoid
such problems, Durbin [10)} introduced the so-
called elliptic relaxation approach, which models
directly the two-point correlation in the integral
equation of the redistribution term using an
isotropic exponential function. The redistribution
term is no longer given by an algebraic relation,

but rather by a differential equation. The non-local
character is preserved through the elliptic operator
and thus the model can be integrated down to the
wall,

3. Assessment of the RANS Models
3.1. Channel Flow

The ideal flow for testing a near wall turbulence
model is the two-dimensional channel flow. This
flow is statistically homogeneous in the planes
parallel to the walls, and hence the turbulence
statistics are functions of the cross-stream
coordinate y alone. A wealth of numerical and
experimental data is available for this flow. Fig. 1
shows a schematic of the fully developed turbulent
flow between two infinitely parallel plates. The
mean-momentum equation from (1) can be
written as

FLOW IN

Fig. 1. Schematic of the Flow Configuration and
Coordinate System for the Flat Plate

Channel Flow
DU __ oP _d_( 4av —) )
Dt = Bz " dy Wy T PU™

for a constant property fluid in a Cartesian
coordinate system. P is the mean pressure. Since
the velocity vector U={U{y), 0, 0) is aligned with
the planes, the continuity constrain aU,/2x; is
automatically satisfied and 2P/2x becomes a
constant. The unknown Reynolds stress can be
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obtained from the eddy viscosity model (4) and the
transport equation (5) governing the kinematic
Reynolds stress tensor.

The momentum and Reynolds stress equations
were solved by a semi-implicit, parabolic marching
scheme. Marching converged to a steady-state
solution when the sum of the absolute normalized
mass residuals across the channel fell below 1e-
10. These equations were also solved with a finite
volume method, which uses the central
differencing of the diffusive terms on a collocated
grid. The calculations were carried out on a one-
dimensional grid consisting of 326 cells (all the
models except standard k-¢ model using 40 cells)
in the wall-normal (y) direction. The first grid point
from the wall was situated at y*=0.25. At the solid
walls, no-slip boundary conditions were used
together with uy; and & =2vk/y* for the Reynolds
stress and dissipation rate. The boundary
conditions for f; are derived from the local solution
of the model equation governing the wall-normal
stress component, see Durbin (1993) for further
details.

fu=fu=0, fp=— 20’/2”2/51/4,

- (10)
fiz =— 200 uy/ey?

The mean velocities of seven RANS models are
compared in Figs. 2 and 3. The mixing length
model over predicts the DNS data in the near wall
region, and the k-l model over predicts the DNS
data in the center region. In general, the standard
k-e model predicts well in comparison with the
other two models in the logarithmic layer. This
predictive capability is enhanced by the use of the
dissipation equation formulated partial differential
equation.

The mean velocities of the low Reynolds number
models are shown in Fig. 3. The RRSM under
predicts the DNS data in the inner layer, but the
other three models predict the DNS data with

U+ 1 0  DNS(Re=45,500)
8 Mixing length model -
------ k-1 model
H » Standard k-¢ model
01 T T T T
0.0 0.1 02 03 0.4 0.5
y/2H

Fig. 2. Mean Velocities for Mixing Length, k-!
and Standard k-¢ Model in Channel Flow
at Re, = 590

k-g-fu model
3 1 £ k-e-v2 model ]
) e RRSM ]
-.| --------- ERRSM
0 'lEL T IR Y I
00 01 02 03 04 05
y/2H

Fig. 3. Mean Velocities for k-¢ Models and RSMs
in Channel Flow at Re, = 590

good agreement. In the central region, the k-e-v2
model is in good agreement with the DNS data,
but ERRSM and k-e-f¢ slightly over predict the
DNS data.

Fig. 4 shows a comparison of the turbulent
kinetic energy of the two isotropic models (k-e-fu
and k-e-v2) and the two anisotropic models
(RRSM and ERRSM). As shown in this figure, the
ERRSM and k-e-v2 predict the DNS data better
than k-&-fz# and RRSM in general. Fig. 5 shows the
distribution of the normal stress components for
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Fig. 4. Mean Velocities for k-c Models and RSMs
in Channel Flow at Re, = 590

y/2H

Fig. 5. Reynolds Stresses for RRSM and ERRSM
in Channel Flow at Re, = 590

the RRSM and ERRSM. In the near wall region,
the streamwise component u* of the RRSM was
under predicted with the DNS data while the wall-
normal component was over predicted. The
ERRSM that uses the elliptic relaxation approach
better predicts the Reynolds stress than RRSM in
the near-wall region.

3.2. Channel Flow: Standard k-¢ Model

The popularity of the standard k-¢ model can be
attributed to its computational efficiency and

robustness at high Reynolds number flows.
However, this model fails to yield a correct
prediction of turbulent flows with streamline
curvature in a non-circular channel or with respect
to a rotating frame of reference. The standard k-¢
model has been verified from several types of
industrial application problems. In general, this
model is known to have good prediction capability
for wall friction and pressure drop in simple
geometries with a coarse grid. However, the
model does not necessarily always produce good
results for any flow field, because of the
geometrical dependence of the turbulence scale. It
is important for this model to appropriately select
the first grid point in view of the local equilibrium
(P/e=1), since the grid system influences the
predictive capability of the flow fields. In this study,
the turbulence effects for the first grid point and
grid numbers were investigated. The boundary
condition is obtained from the “row of the wall”
assuming that the flow is in a local equilibrium.
That is, the turbulent generation and dissipation
rate are nearly equal in the log region.

Figs. 6 through 8 show the grid effects on the
channel flow with the standard k-e¢ model. The
analysis was performed by varying the grid
numbers (N=8, 12, 20, 40) and the normalized
distance of the first grid (yi=25, 50, 100) from
the wall. The streamwise velocity, kinetic energy,
and dissipation profiles were calculated for the
channel flow and compared with the DNS results
f11].

Fig. 6(a) shows a comparison of the effects of
the grid numbers for the first grid point y{=25.
The mean velocity is predicted fairly well for
N=40. But the mean velocity is overestimated for
N=8 and 12 at the center of the channel because
of the error induced by the grid resolution to
satisfy mass and momentum conservation. As
shown in Figs. 6(b) and (c), the turbulent kinetic
energy and the dissipation are poorly predicted,
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Fig. 6. Prediction of the Standard k-¢ Model for the Grid Numbers at y;" = 25 (a) Mean Velocity (b)
Turbulent Kinetic Energy {c) Dissipation Rate
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Fig. 7. Prediction of the Standard k-¢ Model for the Grid Numbers at y;'=50 (a) Mean Velocity (b)
Turbulent Kinetic Energy (c) Dissipation Rate
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Fig. 8. Prediction of the Standard k-¢ Model for the Grid Numbers at y;"=100 (a) Mean Velocity (b)
Turbulent Kinetic Energy (c) Dissipation Rate
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since the turbulent generation is greater than the
dissipation at the first grid point of y{ = 25.

For the grid of y; =50, the results show a better
estimation than the grid of yi=25 for all the
turbulent qualities, as shown in Fig. 7. In spite of
the use of the same number of grids, the result
shows a better prediction due to the fitting
location of the first grid point. Fig. 8 presents the
results for the grid of y;=100. In this case, all the
turbulent quantities U*, k* and &' are
overestimated for the DNS data in the logarithmic
layer because the streamwise velocity between the
wall boundary condition and the first grid point is
calculated linearly. However, this error is relatively
decreased with an increase of the Reynolds
number.

3.3. Rotating Channel Flow

Flows in the rotating frames of reference are
encountered in a variety of applications, for
example, in rotating devices such as turbines,
pumps, compressors, and centrifuges. This flow is
useful to investigate the anisotropy behavior of the
Reynolds stress for asymmetric flows. The effects
of rotation on the Reynolds stress are included
through rotational terms (5b) and the rapid-

pressure-strain correlation (6), which appears in
the transport equations governing the Reynolds
stress tensor. It is important to distinguish between
these two contributions because the production
tensor often appears in the closure models.

Fig. 1 shows a schematic of the fully developed
turbulent flow between two infinitely parallel plates
in a spanwise rotation with a constant angular
velocity 2=(0, 0, £) about the z-axis. The x- and
y-momentum equations can be written as

DU __oP"  d( dU  —
Dt~ Oz +dy( dy puluz) (1)

__or BN G BT

P* denotes the mean reduced pressure P* =
P-1/2pQ%x*+y?). The only direct effect of the
system rotation is the Coriolis force -2 2U, which
acts in the negative y-direction and according to
(12) balances the pressure force — 2P*/sy and the
net turbulence force ~d(pu—2u_z)/dy. It should
moreover be observed that the influence of the
centrifugal force is completely absorbed in the
reduced pressure P*. The unknown Reynolds

stress and dissipation rate can be obtained from (3}
and (5).

Fig. 9. Reynolds Stresses in the Rotating Channel (Ro=0.2) for (a) RRSM (b) ERRSM
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Fig. 9 compares the predicted Reynolds stress
distributions of the channel cross-section with the
DNS data [12]. The peak of the streamwise
components is nicely captured by ERRSM and the
other stress components u* agree well with the
DNS data in comparison with RRSM. ERRSM
better predicts the capture of relaminarization in
the suction side (y=0) of the channel. The poor
prediction of the RRSM is considered to be due to
an increase in the pressure strain at the near-wall
region. The eddy viscosity models are not
investigated because the rotating term (5b) is zero
in a fully developed channel flow. Also, note that
the models such as the non-inear k-¢ and ASM
{algebraic stress model) are indirectly affected by
the eddy viscosity and the algebraic Reynolds
stress.

3.4. Square Sectioned U-Bend Duct Flow

Fig. 10. Geometry and Coordinate System for
Square Sectioned U-Bend Duct Flow

Table 3. Flow Conditions of Square Sectioned U-

Bend Duct
Reynolds | Dean Hydraulic | Curvature
Number | Number | diameter(m) ratio
DUy D 44 Be
v Rel & 2 D
56,690 30,940 0.0889 3.357

The turbulent flow field through a passage with
a curvature has been one of primary interest in
fluid engineering. Owing to the curvature, pressure
induced secondary motions have significant
consequences in the turbulent strain field. Chang
et al. [14] and Lee et al. [15) investigated this type
of turbulent flow using LDV and hotwire devices in
a square sectioned U-bend duct flow with a
curvature ratio of Re/D=3.357. The experimental
data showed an existence of “camel back”shapes
in the streamline velocity distribution of the
curvature section. They reported that these
characteristic profiles were the result of strong
secondary flow motions.

As illustrated in Fig. 10, the U-bend duct flow
with the curvature ratio Rc/D=3.357 is discussed
to assess the model performance. The computer
program used is the semi-elliptic code (parabolic
marching for 8-direction) in an orthogonal-
cylindrical coordinate system developed by Chun
et al. [13]. The SIMPLER algorithm provides a
method of calculating pressure and velocities. It
uses the QUICK scheme for the convection terms
of the momentum equations while the Hybrid
differencing scheme is applied for Reynolds stress,
dissipation, and elliptic relaxation equations. The
computation grids used extend up to the symmetry
plane and consist of 52(x)x 100(r) x 156(8) (with
5D inlet and 10D outlet tangents} nodes. This
program uses a staggered grid for the velocity and
Reynolds stress components. Separate
computations of the fully developed straight duct
flows have been performed in order to provide the
inlet conditions.

In this study, assessments of the curvature
effects were conducted for three turbulent models,
Launder and Sharma’ s k-e-fu model [7], Speziale
et al." s RSM [9], and Durbin' s elliptic relaxation
model [10] for the flow of a square sectioned U-
bend duct flow. Fig. 11 shows a comparison of the
predicted streamwise mean velocity distribution
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Fig. 12. Secondary Flow Vectors and Streamwise Mean Velocity Contours at 6 = 90

with the experimental data of Chang et al. and
Lee et al. at the streamwise section of §=90 for
Re=56,690. The symmetry plane corresponds to
2x/H=1.0 and the velocity distributions at
2x/H=0.25, 0.5, 0.75 and 1.0 are compared.
Both RRSM and ERRSM successfully reproduce
the appearance of the camel back shapes in the
velocity distribution. However, the dip-velocity
profiles of RRSM are shifted toward the outside
{(y/D=1.0) in comparison with the experimental

data. The k-e-f¢ model does not predict these
shapes. Although the agreement of the predictions
and experiments is not perfect, ERRSM generally
reproduces well the characteristic velocity
distribution of the experiments. These shapes are
the results of loss of streamwise momentum due to
the secondary flow forming a strong downward
motion from the symmetry plane to the bottom
wall. Fig. 12 shows the streamline velocity
contours and secondary velocity vectors for the
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same section. The velocity contours of
“mushroom shape” appear in the inner wall
region due to the strong secondary flow. This
phenomenon is closely related to the curvature
effect and the pressure drop between the inner
wall and outer wall.

4. Results and Discussions

The existing turbulence models were assessed
for application to a three dimensional flow analysis
of the SMART primary coolant system for a non-
rotating and rotating channel flow, square
sectioned U-bend duct flow, and other references.
The models were evaluated in terms of
theorization, economical efficiency, applicability,
and accuracy, as shown in Table 4. The results are
numerically scaled as 1 to 5. That is, 1=poor,
2=moderate, 3=good, 4=fair, and S5=excellent.

The aspect of theorization is evaluated based on
the degree of representation of the physical
phenomena and the theoretical basis of the
models. The mixing length and k-1 models are
given a low score in theorization due to the
uncertain characteristic length scale. The standard
k-e model merits a high score due to the complete
characteristic length and velocity scales, which
require only boundary conditions. RSMs are found
to have a low score in comparison with the k-¢

type models, since the pressure strain term in the
Reynolds equation is not modeled with an accurate
approach as of yet. If the pressure strain is
modeled theoretically, RSM may be considered a
better model than the eddy viscosity model.
ERRSM is evaluated as a better model than RRSM
because the pressure strain term was derived
through a better theoretical approach than that of
the RRSM. Also, the ERRSM and the k-e-v2
model, which are free from the damping function,
have better scores than the RRSM and the k-e-fu
model.

Applicability is related to the use of the wall
functions and ad hoc damping functions shown in
Table 2. Generally, damping functions are
introduced to extend the models down to the wall.
However, the reproduction of the near wall
behavior of turbulence using the complex
correction terms loses some consistency, as the
basic assumptions are not valid in this region. The
elliptic relaxation approach is based on theoretical
analysis and simple modeling of the two-point
correlations involved in the integral form of the
distribution term. While it is difficult to define y*
and Ut for complex geometry in the standard k-e
model, the models based on the elliptic approach,
ERRSM and k-e-v2, have been successhully applied
in a number of different situations. Therefore, the
turbulence models with the wall-correction

Table 4. Assenssment of Applicable Turbulent Models for the Integral Type Reactor SMART

Model Theorization Application Economy Accuracy Average
MLM 1 3 4 2 2.50
k 2 2 4 2 2.50
k~¢ 4 4 5 3 4.00
k—e~f, 3 3 3 4 3.25
k-e-v 4 5 4 5 4.50
RRSM 3 3 3 3 3.00
ERRSM 4 5 3 5 4.25
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Table 5. Comparison of the Selected Turbulent Models
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Model Advantages Disadvantages

« Isotropy, low Reynolds number model.

+ The non-ocal effects in the turbulent boundary » Typically 20% more computational time
layers. than the low Reynolds k-& models.

+ The most excellent low Reynolds number | * Isotropic model for the k and ¢ equations.

ke T2 model for the 3-D analysis of the SMART * Poor performa.nce for the‘curved boundary
primary coolant system:. layers, swirling, rotating flows, and

» No dependence on the distance from the wall. buoyancy flows.

+ No damping functions or wall functions to
adjust the behaviour of turbulent quantities.

« Isotropy, high Reynolds number model. » No prediction in the near wall.

« Simplest turbulent model for which only | « Dependence on the distance from the wall.
boundary conditions need to be supplied. « Isotropic model of the k and € equations.

« Well established and the most widely | « Poor performance for the curved boundary
validated turbulent model. layers, swirling, rotating flows, and

ke «» The good predictive capability for general buoyancy flows.
features such as pressure drop, wall friction
in three dimensional turbulent flows.

« To assess easily high Reynolds number
flows by economic costs.

« Strong inhomogeneity and anisotropic = Very large computing costs{six extra
effects, low Reynolds number non-local Reynolds stress equations and six extra
model. elliptic relaxation equations).

« The most general RANS model. » Not as widely validated as the k- models.

ERRSM | ° Useful thermal-hydraulic design tool of the | « Performs just as poorly as the k- model in

components such as main coolant pump,
steam generator.

s+ Excellent performance for the complex
geometries.

+ Included exact shear, rotation and buoyancy
production rate in Reynolds stress
equations.

some geometries.

+ Difficulties in modeling for the pressure
strain correlation, dissipation tensor and
turbulent diffusion.

functions, such as the wall functions and damping
functions, should be carefully introduced to the
flow fields of the SMART primary coolant system.
Economical efficiency is the criteria related to
the time cost of the computation. The SMART
primary coolant system flows with a high Reynolds
number and requires a large number of grids to
solve the flow fields due to the inclusion of multi-
blocks and multi-walls. For this condition the most

economic model is the standard k-¢ model because
it does not require a grid at the near-wall region.
Although the k-&-v2 model uses one more
equation than the k-s-fx# model, the k-e-vZ2 model
has a better score than the k-&-fz model due to the
numerical stability obtained from the monuse of
the wall topography parameters such as the
damping functions and the geometrical parameters
are used.



Assessment of RANS Models for 3-D Flow Analysis of SMART --- K. H. Chun, et al 261

Accuracy denotes the prediction capability of
the tested flow fields. For a channel flow without a
body force, the k-e-v2 model shows that the
turbulent kinetic energy and streamwise velocity
are in very good agreement with the DNS data.
ERRSM in the rotating channel flows better
predicts the capture of relaminarization in the
suction side of the channel in comparison with
RRSM. In a three-dimensional U-bend duct flow,
the ERRSM successfully predicts the streamwise
velocity and secondary flow in comparison with
RRSM and the k-e-fu model.

5. Conclusions

Assessments of turbulence models were
conducted on the RANS models that will be
implemented into the computer code TASS-3D,
which has been developed for a three-dimensional
flow analysis of the SMART primary coolant
system. Seven RANS models are investigated.
Among these, three models (k-¢, k-e-v2 and
ERRSM) to be implemented intoc TASS-3D were
selected with consideration of economical
efficiency, accuracy, theorization, and applicability
to the complex three-dimensional flow analysis of
the SMART primary coolant system. A summary
of the three models selected is given in Table 5.

The standard k-¢ model, the k-e-v2 model, and
the ERRSM are selected based on the results of
benchmarking calculations for channel flow,
rotating channel flow, square sectioned U-bend
duct flow, and relevant references. In the log layer,
the standard k-e model better predicted the
channel flow in comparison with the mixing length
and other eddy viscosity models despite the use of
small grid numbers. The k-e-vZ model and ERRSM
have the advantage of applicability to complex
geometries. The k-e-v2 model and ERRSM are
free from damping function and distance from the
wall, and show better predictions for a strong

inhomogeneous flow field in near wall flows.
References

1. KAERI/TR-2142/2002, Basic Design Report
of SMART, KAERI (2002).

2. KAERI/TR-2540/2003, Development of
Inhomogeneous k-e-vZ2 Turbulence model for
3D Flow Analysis of SMART-P, KAERI,(2003).

3. E. R. Van Driest, “On Turbulent Flow Near
Wall,” Journal of the Aeronautical Sciences,
Vol.23, p.1007(1956).

4. M. P. Escudier, “The Distribution of Mixing
Length in Turbulent Flows Near Wall,”
Imperical College, Heat Transfer Section
Report SF/R/2(1966).

5. M. Wolfshtein, “Convection Processes in
Turbulent Impinging Jets,” Imperial College,
Heat Transfer Section Report SF/R/2(1967).

6. B. E. Launder, and D. B. Spalding, “The
Numerical Computation of Turbulent Flows,”
Comput. Methods Appl. Mech. Eng., Vol.3,
pp.269-289(1974).

7. B. E. Launder and B. I. Sharma, “Application
of the Energy Dissipation Model of Turbulence
to the Calculation of Flow Near a Spinning
Disc,” Letters in Heat and Mass Transfer,
Vol.1, No.2, pp.131-138(1974).

8. P. A. Durbin, “Near wall turbulence closure
modeling without damping function,” Theoret.
Comput. Fluid Dyn. Vol.3, pp.1-13(1991).

9. C. G. Speziale, S. Sarkar, & T. B. Gatski,
“Modeling the pressure strain correlation of
turbulence : an invariant dynamical system
approach,” J. Fluid Mech. 227, pp.245-
272(1991).

10. P. A. Durbin, “A Reynolds stress model for
near-wall turbulence,” J. Fluid Mechanics,
Vol.249, pp.465-498(1993).

11.R. D. Moser, J. Kim, and N. N. Mansour,

“Direct numerical simulation of turbulent



262 dJ. Korean Nuclear Society, Volume 36, No. 3, June 2004

channel flow up to Re,,” Phys. Fluids, Vol.11,
pp.943-948(1999).

12. R. Kristoffersen and H.I. Andersson, “Direct
simulations of low-Reynolds-number turbulent
flow in a rotating channel,” J. Fluid Mech.
177, pp.133-166(1993).

13. K. H. Chun, Y. D. Choi and J. K. Shin,
“Developing Turbulent Heat Transfer in a 360
Bend of Square cross section,” Heat Transfer-
Asian Research, 28(2), p.77(1999).

14.S. M. Chang, J. A. C. Humphrey and A.

15.

Modavi, “Turbulent flow in a strongly curved
U-bend and downstream tangent of square
cross sections,” PCH Phys. Chem. Hydro-
dynamics, 4, p.243(1983).

G. H. Lee, Y. D. Choi, and S. K. Cho,
“Measurement of turbulent flows in a square
sectioned 270 degree bend,” Proceedings of
the KSME 2000 Fall Annual Meeting B.
pp.467-472(2000).



