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Abstract

The deaerator of a power plant is one of feedwater heaters in the secondary system, and it is

located above the feedwater pumps. The feedwater pumps take the water from the deaerator

storage tank, and the net positive suction head(NSPH) should always be ensured. To secure the

sufficient NPSH, the deaerator tank is equipped with the level control system of which level

sensors are critical items. And it is necessary to ascertain the sensor state on-line. For this, a

model-based fault detection and diagnosis(FDD) is introduced in this study. The dynamic control

model is formulated from the relation of input-output flow rates and liquid-level of the deaerator

storage tank. Then an adaptive state estimator is designed for the fault detection and diagnosis

of sensors. The performance and effectiveness of the proposed FDD scheme are evaluated by

applying the operation data of Yonggwang Units 3 & 4.
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1. Introduction

Since the safety and reliability are critical issues
in nuclear fields, the nuclear plants are usually
provided with various hardware redundancies. And
recently, the software redundancies for the
measurement and control system such as fault
detection and diagnosis have drawn a great
attention as a complementary approach to
increase the plant safety. The fault detection and
diagnosis techniques have been employed in
numerous fields of industry, and is becoming more
important with the expansion of industrial
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automation.

The fault detection and diagnosis techniques
developed so far could be classified into two
categories, that is, a knowledge based technique
and a model based technique[1-3]. The knowledge
based technique does not need the physical model
of a given system, but, instead, it requires
constructing the database which describes all the
potential faults of the system. On the other hand,
the model based technique needs the system
model, as its name implies. But in this model
based technique, a database is not necessary and
unexpected faults could be detected|4-6].
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The model based fault detection and diagnosis
technique is based on the analysis of the given
system and is divided further into two methods of
the parameter estimation and the state estimation.
In the parameter estimation, the variation of the
actual system parameters, obtained from the
relations between estimated parameters and actual
parameters, are used to identify the faults[7].
However, the non-linearity between the actual
model parameters and the estimated parameters
makes it difficult to define the relationship
exactly[8). Until now, various methods for the
parameter estimation have been developed. For
an example, the pattern recognition method
obtains the parameter errors between the
estimated model and the normal model and uses
these errors to identify the faults[9], and even the
neural circuits are exploited for the parameter
estimation.

The state estimation includes many methods
ranging from the parity check to the innovation
verification by use of Kalman filter or observer,
and to the error sensing filter(10]. All these
methods use the errors between the measured
output and the estimated output. Among
numerous methods of state estimation, the
multiple model method is known to be more
efficient and flexible in identifying the faults than
other methods|[11-13).

The deaerator of a nuclear power plant is one of
the heaters of the secondary system, and it is
located above the feedwater pumps. The
feedwater pumps take the water from the
deaerator storage tank, and the net positive
suction head(NPSH) should always be ensured.
During the normal operation, the deaerator
operates in the saturated state and maintains the
designed operating NPSH. But it may experience
significant pressure decay during two-phase
transient situations and in the worst case, the
cavitation may occur, resulting in a plant trip. To
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Fig. 1. Deaerator System
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Fig. 2. Geometric Structure of the Deaerator
System

secure the sufficient NPSH, the deaerator tank is
equipped with the level control system of which
level sensors are critical items, and it is important
to ascertain the functional states of sensors.

In this paper, a fault detection and diagnosis
system for the deaerator level control system is
developed using the state estimation techniques
based on multiple model. The geometrical
structure of the deaerator storage tank and the
input and output flow rates under the steady state
are used to set up the dynamic control model
which is described in terms of state equations and
measurement equations. Then a fault detection
and diagnosis method is developed making use of
an adaptive estimator to check the integrity of
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level measurement sensors. Finally, the proposed
method is verified and evaluated by applying to
Yonggwang Units 3 & 4.

2. Deaerator Model

The oxygen and other active gases dissolved in
the secondary condensate water cause the
corrosion of the system resulting in the plant life
shortening. The deaerator, the fourth heater in
case of Yonggwang, removes the dissolved gases
from the condensate water and at the same time
heats up the condensate water to increase the
plant efficiency. The feedwater free of dissolved
gases runs into the storage tank whose level is
maintained within a predetermined range. Then
the water is pumped out of the storage tank into
the next heater. This is described in Fig. 1.

The deaerator has three inputs: condensate water
w, from condenser through the previous heater,
extraction steam w; from low pressure turbine, and
drains wy from the next heater. The central pipes
link the deaerator and storage tank and equalizers
are provided to balance the pressures of the two
tanks. The suction pipe is used to establish a
suction head for the feedwater pumps.

Figure 2 shows the geometrical structure of the
deaerator in Yonggwang Units 3 & 4. The total
volume of the two storage tanks is 746m*14],
while the cylindrical portions, excluding the
hemispheric parts, of the tanks is found to be
720m®. The difference is the volume of four
dishes at the ends of each tank. To make the
problem simple, the actual two hemisherical tanks
are replaced with one cylindrical tank with the
same volume of 746m?®. Then the deaerator
storage tank could be presented by a cylindrical
tank whose dimension is 3.68m in diameter and
70m in length.

To establish the dynamic model which describes
the relation between the storage tank level and
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Fig. 3. Flow and Level of the Deaerator

flow rates, the analogy of electrical resistance and
capacitance is introduced as shown in Fig. 3{15].
In this figure, H is the level in a steady state and h
is the deviation from H. And Q, m%/s, is the
normal flow rate, and q; and q, denote flow rate
deviations from steady inlet and outlet flow rates,

respectively.
The variation of the condensate in storage tank
during dt is
Crdh= (g;— q,)dt (1)

where Cr is the tank capacitance defined as

3

Co= variation of condensate volume ., m
r=

variation of condensate head , m 2)

Therefore, the tank capacitance is the surface area
of the condensate as described in Fig. 3. The tank
resistance at the outlet, Ry, is defined as

variation_of head, m
variation of outlet flow rate, m®/s

Rr= 3
However, the head has relation to the flow rate in
a non-linear manner. Figure 4 is the characteristic
curve between the head and flow rate. The non-
linearity shown in the figure is due to the circular
vertical cross section of the tank. With the
assumption that the variations are small, a linearity
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could be cbtained around the steady state point P.
Then the resistance at the outlet is

i _
Rr="d@ = e, @

From Egs. (1) and (4), the rate of change of the
head is found to be

w(d __ 1 L
B Sty ol UL TCRC

3. Fault Detection and Diagnosis by an
Adaptive Estimator

The adaptive estimator was developed by
Moose[16] for the tracking of maneuvering target,
and it has been proven to be efficient in estimating
the position, velocity, acceleration and radar bias.
The idea of this adaptive estimator is applied to
the fault detection and diagnosis of deaerator level
sensors.

3.1. Modeling of Dynamic System

The model described by Eq. (5) is cast into the
stochastic discrete state equation of:

x,,+1=Fx,+Gu,,+ th (6)

where % = state vector at time k, %+ = input
vector, F = state transition matrix, G = control
input matrix, T = noise gain matrix, and ®w; =
white Gaussian process noise with the covariance
of

E{w, w{1=T,8y , 84 = Kronecker delta (7)

On the other hand, the measurement equation
with random measurement sensor bias is

Zp=Haxy+ v, + »° 8)

where z, = measurement vector at time, &£, H =

measurement matrix, and Y» = white Gaussian
measurement noise with the covariance of

Elv,vf}=r,8 (9)

Further, the process noise and measurement noise
are assumed to be independent each other. Then

Elv,wll=0, Y % and / (10)

In Eq. (8), v° presents the bias vector, and is
assumed to be governed by the semi-Morkov
process. A semi-Morkov process is different from

Y
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Fig. 5. Block Diagram of the Dynamic System
with Biases
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a Markov process in that the duration of time of
one state before switching to another state is itself
a random variable. The block diagram of the
dynamic system model described so far is shown in
Fig. 5.

3.2. Kalman Filter
If the measurement sensor does not include the
bias v, it is possible to construct the Kalman filter
in which a time updating step and a measurement
updating step iterate. The time updating is the one
step ahead prediction of
% a1 =F% yoypr + Guy (11)

P,dk_l=FP‘_1“_lFT+ TFWTT (12)

And the measurement updating is accomplished
by filtering of

Ky= Py | HT(S,)! (13)

X =% g+ Keey (14)

Pu=U-KH)Py,_, (15)
where,

e,=z,— Hx y4_, (16)

S¢=HP g H'+ T, (17)

In above equations, % 4r denotes the estimated
state vector. K, is a Kalman gain matrix, and
Pyi= El(x—7% y(x—7x 4)7 is the covariance
matrix of system state errors.

3.3. Adaptive Estimator

If the measurement sensor include the bias v, an

adaptive estimator could be established making use
of the conditional probability theory of Bayes. The
block diagram of the adaptive estimator which
consists of a state estimation part and a bias
estimation part is shown in Fig. 6. Ref. [16] reads
the details on the derivation of each block, and
summarized below are governing equations of

each block.
3.3.1. i-th Kalman Filter
Time-updating step
1 =F 2oy +Guy (18)

Py =FPy_\y  FT+TI,TT (19)

Measurement-updating step

Kiy=Piy_ HT(S}) ! ‘ (20)
Tia= 2+ Kiel (21)
Piw=U-KiH)Piy,_, (22)
where,
ey=2z,— Hx 'y, — V' (23)
Si=HP%, H'+T,+ T} (24)

In these equations, Si is the i-th residual
covariance matrix, and e} is the i-th residual
vector.
= El(x=3)(x=%07] is the

covariance matrix of state error and [i= E[(v*—v')

Finally,

(v® — v)T] is the covariance matrix of biases.

3.3.2. Calculation of Weights

The weighting matrix of each filter is
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Fig. 6. Block Diagram of Adaptive Estimator

We=c,L,0TW,_, 25)

The i-th element of W, is @%, and L, is the

diagonal matrix whose elements are

pi= exp(—'z‘l-(ei)T(S,’;)“(e,ﬁ)) (26)
® is the Markov transition matrix with the pre-
determined elements of 6;, and ¢, is determined

to satisfy the following condition at every
calculational iteration.

Loi=1 (27)

3.3.3. State Estimation and Bias Estimation

The estimated states are obtained from

R B (28)

and the unknown sensor bias is estimated from the
equation of

vi=VTW, 29)

where V is the assumed bias vector of N elements.
4. Application and Evaluation

To evaluate the performance of identifying level
sensor faults, actual operating data of Yonggwang
Units 3 & 4 deaerator are applied to the proposed
deaerator model for the level control and to the
adaptive estimator. Figure 7 shows the inlet and
outlet flow rates of the deaerator when the plant is
in the steady state of full power.

As shown in the figure, the flow rate in a steady
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state is 6 = 1605.92kg/sec, and the normal level
is 70% of the inner diameter of the storage tank,
that is, H = 3.68mx70% = 2.576m. The
capacitance of the tank is determined as 236.1m?
from Cr=2x4P _(H-n¢xL, where r and L is
the radius and length of the tank, respectively.

Superheated steam from
LP TBN l1st stage

;)sra}ilr;ag:m wg = 30.68 Kg /sec
wp = 607.5Kg/se ci v Condensate from
0.31 MPa | #3 heater
1346T | 4, = 067.69Kg/ sec

To booster feed pump

<

wo = 1605.92Kg/sec

Fig. 7. Flow Rates at Steady State Power of
100%

With the sampling interval of 0.1sec, the system
matrices of Eq.(6) are found to be

F=1[0.9918], G=1[3.931x10 ~5] (30)

The measurement matrix H and noise gain
matrix T are regarded as unity. The process noise
covariance and measurement noise covariance are

assumed to be

r,=1x10"% I,=1x10"? (31)
Finally, the bias vector of

vi=[-1.5, —1.0, 0, 1.0, 1.5] (32)

is applied as the sensor biases.

Corresponding to biases, five Kalman filters are
constructed with the same initial weighting values of
0.2, and the elements of Markov transition matrix
are determined as and 6; = (1 -0.95)/(N- 1) and
6, = 0.95.

For the evaluation, two scenarios are
considered.
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Scenario 1

In this scenario, it is assumed that the level
sensor works normally during the first 20seconds,
then is contaminated abruptly by a positive bias of
v® = 0.43m. Figure 8 shows the levels estimated
by a classic Kalman filter and by the designed
adaptive estimator.

During the sensor works normally, they are the
same each other. But as the sensor fault occurs,
the classic Kalman filter fails to estimate the actual
level. On the other hand, the adaptive estimator
calculates the bias of measurement sensor for the
level compensation. By doing so, it is possible to
maintain the constant level even in the case of
sensor failure.

The corresponding inlet flow rates are compared
each other in Fig. 9. With the occurrence of
sensor failure, the Kalman filter decreases the inlet
flow rate, while the adaptive controller makes the
inlet flow rate constant except the short period of
transient.

Figure 10 shows the ability of the bias estimation
of the adaptive estimator. As shown in the figure,
the adaptive estimator traces up the actual bias
rather exactly.
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Fig. 11. Heads Estimated by Kalman Filter and
Adaptive Estimator
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Scenario 2

This case is for the more fluctuating variation of
sensor bias. The sensor is free of bias during the
first 20 seconds. Then an abrupt positive bias of
v’ = 0.43m is introduced to the sensor, and at
t = 60sec, the bias changes to negative values of
v’=-0.2m.

The levels controlled by the Kalman filter and by
the adaptive estimator are described in Fig. 11,
respectively. Similar to Fig. 8, both levels are the
same during the first 20 seconds. But the level
estimated by the Kalman filter is lower than the
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normal level for the period of positive bias {t = 20
to t = 60), and becomes reverse with the
introduction of negative bias. In contrast with the
Kalman filter, the adaptive estimator makes the
level almost constant, regardless of the bias. This
indicates that the proposed estimator could
maintain the same level even with the sensor
failure.

The variations of inlet flow rate are shown in
Fig. 12. With the Kalman filter, the flow rate
becomes different with the value of bias. That is,
the flow rate shows a decreased value during the
positive bias acts on the sensor and increased one
with a negative bias. Contrary to the Kalman filter,
the flow rate controlled by the adaptive estimator
is almost constant. With the introduction of bias,
the flow rate shows a small transient, but recovers
the normal value even with the biases.

Finally, Fig. 13 describes the bias calculated by
the adaptive estimator and is similar to Fig. 10.
It shows that the adaptive estimator can even
trace up the wild change of bias. This indicates
that the proposed estimator can identify the
faults.

5. Conclusions

The software redundancy is no less important
than the hardware redundancy with respect to the
safety and reliability of the nuclear plants. In this
paper, a software approach is made to increase
the plant reliability by establishing an algorithm for
the fault detection and diagnosis of the deaerator
level sensor. With derivation of the deaerator
model, the control model which consists of state
equations and measurement equations is prepared.
Then the control system in which an adaptive
estimator detects the sensor faults are designed.
By applying the proposed control system to the
deaerator of Yonggwang 3 & 4, the performance
of the designed system is verified.
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