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Abstract

A model predictive control method is applied to design an automatic controller for thermal
power control in a reactor core. The basic concept of the model predictive control is to solve an
optimization problem for a finite future at current time and to implement as the current control
input only the first optimal control input among the solutions of the finite time steps. At the
next time step, the second optimal control input is not implemented and the procedure to solve
the optimization problem is then repeated. The objectives of the proposed model predictive
controller are to minimize the difference between the output and the desired output and the
variation of the control rod position. The nonlinear PWR plant model (a nonlinear point
kinetics equation with six delayed neutron groups and the lumped thermal-hydraulic balance
equations) is used to verify the proposed controller of reactor power. And a controller design
model used for designing the mode! predictive controller is obtained by applying a parameter
estimation algorithm at an initial stage. From results of numerical simulation to check the
controllability of the proposed controller at the 5%/min ramp increase or decrease of a desired
load and its 10% step increase or decrease which are design requirements, the performances of
this controller are proved to be excellent.

Key Words : mode! predictive control, nuclear reactor power control, optimal control, output
prediction

1. Introduction

Power plants are highly complex, nonlinear,
time-varying, and constrained systems. For
example, the plant characteristics vary with
operating power levels, and ageing effects in plant
performance and changes in nuclear core
reactivity with fuel burnup generally degrade

system performance. Also, if load-following
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operation is desired, daily load cycles can change
plant performance significantly. The fully
automatic power tracking control of nuclear
reactors has not been accepted mainly due to the
safety concerns of imprecise knowledge about the
time-varying parameters, nonlinearity, and
modeling uncertainty. However, rapid and smooth
power maneuvering has its benefits in view of the
economical and safe operation of reactors and the
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importance of load-following strategy.

A digital processor offers flexibility because the
control function can be altered by software and
this facilitates provisions of sophisticated control.
Also, instrumentation and control (I&C)
technology has been improved rapidly. In spite of
these positive aspects of using a digital controller,
for many reasons modern control systems have
not been incorporated extensively in nuclear
power plants. However, problems created by
growing obsolescence of existing technology have
stimulated interest in upgrading these systems [1).
The conventional reactor control system controls
the average temperature of the reactor core
according to the reference temperature that is
proportional to the turbine load. The conventional
control method generates a control signal using a
temperature deviation channel (the difference
between the programmed coolant temperature
and the average coolant temperature) and a power
mismatch channel (difference between the turbine
load and the nuclear power). As it were, the
conventional control method generates the
insertion or withdrawal speed of the control rods
using the total error signal obtained by
compensating and filtering these two channels.
Finally, the control rod drive mechanism moves
the control rod groups. This method has its own
advantages of easy implementation, well-proven
technology. However, it is difficult to optimally
design compensators and filters for controllers
because of variations in nuclear system
parameters, nonlinear reactor dynamics, and
complex temperature feedback effects. Techniques
for the optimal control of nuclear reactors were
studied extensively in the past two decades [2-5].
But it is very difficult to design optimal controllers
for nuclear systems because of variations in
nuclear system parameters and modeling
uncertainties.

The model predictive control methodology has

received much attention as a powerful tool for the
control of industrial process systems [6-12]. The
basic concept of the model predictive control is to
solve an optimization problem for a finite future at
current time and to implement the first optimal
control input as the current control input. That is,
at the present time the behavior of the process
over a horizon is considered and the process
output to changes in the manipulated variable is
predfcted by using a mathematical design model.
The moves of the manipulated variables are
selected such that the predicted output has certain
desirable characteristics. However, only the first
computed change in the manipulated variable is
implemented and at each subsequent instant, the
procedure is repeated. This method has many
advantages over the conventional infinite horizon
control because it is possible to handle input and
state (or output) constraints in a systematic
manner during the design and implementation of
the control. In particular, it is a suitable control
strategy for nonlinear time varying systems
because of the model predictive concept and
recently, the problem of controlling uncertain
dynamical systems has been of considerable
interest to control engineers. The model predictive
control method has been applied to a nuclear
engineering field by Na [13] for the first time.

In this paper, a model predictive control method
is developed to design a fully automatic controller
for thermal power control in a reactor core and
the proposed control method is applied to the
nonlinear pressurized water reactor (PWR) plant
model that is described by a nonlinear point
kinetics equation with six delayed neutron groups
and the lumped thermal-hydraulic balance
equations [14].

2. Model Predictive Control Method

The model predictive control method is to solve
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an optimization problem for a finite future at
current time and to implement the first optimal
control input as the current control input. The
procedure is then repeated at each subsequent
instant. Figure 1 shows this basic concept [8]. As it
were, for any assumed set of present and future
control moves, the future behavior of the process
outputs can be predicted over a horizon N, and
the M present and future control moves (M <N)
are computed to minimize a quadratic objective
function. Although M control moves are
calculated, only the first control move is
implemented. At the next time step, new values of
the measured output are obtained, the control
horizon is shifted forward by one step, and the
same calculations are repeated. The purpose of
taking new measurements at each time step is to
compensate for unmeasured disturbances and
model inaccuracy, both of which cause the
measured system output to be different from the
one predicted by the model. At every time instant,
model predictive control requires the on-line
solution of an optimization problem to compute
optimal control inputs over a fixed number of
future time instants, known as the time horizon.
The on-line optimization can be typically reduced
to either a linear program or a quadratic program.
The basic idea of model predictive control is to
1\
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Fig. 1. Basic Concept of a Model Predictive
Control Method

calculate a sequence of future control signals in
such a way that it minimizes a multistage cost
function defined over a prediction horizon.

Also, in order to achieve fast responses and
prevent excessive control effort, the associated
performance index for deriving an optimal control
input is represented by the following quadratic
function:

N M
J=3 2.0+ 10wt 1P +1 Y Rlaatr+ - 0F,
= i

1)

subject to constraints {y(l FN D= N+, i=]m
Au(t+j-1)=0, j>M

where Q and R weight the reactor coolant
temperature error (Q—w) and reactivity {control
input) change between time step {control rod step
change between time step) at certain future time
intervals, respectively, and w is a setpoint {desired
coolant average temperature) or reference
sequence for the output signal. y(t+j1t) is an
optimum j-step-ahead prediction of the system
output (nuclear power level} based on data up to
time t; that is, the expected value of the output at
time t if the past input and output and the future
control sequence are known. N and M are called
the prediction horizon and the control horizon,
respectively. The prediction horizon represents the
limit of the instant in which it is desired for the
output to follow the reference sequence. In order
to obtain control inputs, the predicted outputs
have to be first calculated as a function of past
values of inputs and outputs and of future control
signals. The constraint, Au(t+j-1)=0 for j>M,
means that there is no variation in the control
signals after a certain interval M<N, which is the
control horizon concept. The constraint,
y(t+N+i)=w(t+N+i), i=1,
output follow the reference input over some

-, m, which makes the

range, guarantees the stability of the controller {6].

The optimal control input that minimizes the
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foregoing objective function will be derived from
now on. The process to be controlled is described
by the following Controlled Auto-Regressive and
Integrated Moving Average (CARIMA} model,
which is widely used as a mathematical model of

controller design methods:
Alg™)y(t) = Blg™ u(t~1) + Clg™ e -1) + %D(q" @ 5 (2)

where y is an output (coolant temperature), u is a
control input (reactivity), v is a measurable
disturbance (steam flowrate), £ is a stochastic
random noise sequence with zero mean value, g’
is the backward shift operator, e.g., g y(t)=y(t-1),
and A is defined as A=1-g™. In Eq. (2), Alg™") and
D(q™) are monic polynomials as a function of the
backward shift operator g*, and Blg™) and Clg")
are polynomials. For example, the polynomial
Alg''} is expressed as follows:

Ag ) =ay+aq +aqgt +.+aug™, (3)

where ay, a, -, aq.a are coefficients and nA is the
order of the polynomial.

The process output at time t+j can be predicted
from the measurements of the output and input up
to time step t. The optimal prediction is derived by
solving a Diophantine equation, whose solution
can be found by an efficient recursive algorithm. In
this derivation, the most usual case of D{g)=1 will
be considered. The j-step-ahead output prediction
of a process is derived below.

Multiplying Eq. (2) by AE{g") from the left gives

Y+ )-E (g H+)) =
Fi(g " yy() +E,;(g™)B(@ Hdu(t+ j-1) (4)

+E;(g7)C(g A+ j-1),
where E;(g7) and F;{g") are polynomials satisfying

1= Ej(g™)A(g™)+q 7 F;(a7™"), 5)

-1 - —(j-
Ei(g7)=e;p+e;q l+"‘+ej,j-1q uh, (©)

F,-(‘]_l)=fj,o +fj,lq—l +fj,z‘1_2 +'"+fj,nAq.—"As (7)

Aq™) = Ag™hHA. ®)

Equation (5) is called the Diophantine equation
and there exist unique polynomials E{g') and
Ffq') of order j - 1 and nA, respectively, such that
e,0=1. By taking the expectation operator and
considering that E{&(t)}=0, the optimal j-step-
ahead prediction of {(t+j11) satisfies

Je+ 10y = Fi(g " )ye)+ G (g™ )au(e+ j-1)

o ) )
+H (g)ave+ j-1),

where
Gi¢7)=E;(g)B(g™),
H;(g™)=E;(g7)C(g™),
3+ j10=Efp + ).

y (t+j11) denotes an estimated value of the output
at time step t+j based on all the data up to time
step t. The output prediction can easily be
extended to the nonzero mean noise case by
adding a term Ej{g")E{£(t)} to the output prediction
y(t+jlt).

By dividing the matrix polynomials, Gjg™) and
Hj{g™), like the following equations:

Gi(a™)=G,g™")+q7G, ™) with 8(G, ™)<,
Hy(g")=H,(g™")+g7H, (g™") with 6{H,(g™)<J,
the prediction equation, Eq. (9), can now be
written as

e+j10=G(g " Yau+j -0+ H (g7 )av(e+j~1)
+G(a™Hau -+ H(@™Have-1) ()
+F; (g7,
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where &) dcenotes the order of a polynomial.
The last three terms of the right hand side of Eq.
(10) consist of past values of the process input,
measurable disturbance and output variables and
correspond to the response of the process if the
control and measurable input signals are kept
constant. On the other hand, the first two terms of
the right hand side consist of future values of the
control input signal and the measurable
disturbance and correspond to the response
obtained when the initial conditions are zero yft-
=0, Auft-j-1)=0, Av(t-j-1)=0 for j>0[15]. Equation
(10) can be rewritten as

P+ )1t =G(g ™ HAu@t+j-1)

_ (11)
+H (g +j-D+f;,

where
£;=G(g™Aule -0+ H (@) -D+Fig™ o). (12)

Then a set of N j-step-ahead output predictions
can be expressed as

¥ =GAu+HAv +f, (13)

where

y=be+un se+2in - 50+jln - Je+N ],
Au=Au(t) Aue+1) - Au(t+j) - Aue+N-DJT,
Av=[Av(e) Av(t+1) - AV(I+j) - AvE+N-D],

f:[/‘l fi o Sy o fN]T‘

& 0 =00 hy 0 0 0
g 8 00 B By e 0 0
6: : : .o , §= . . [
8j1 82 8 0 hjg hiy -+ by e 0
L8Nt BNy e v & LNt By by
J-!
Gilq )=Zg,-q ’

If all initial conditions are zero, the response f is
zero. If a unit step is applied to the first input at
time t; that is, Au=[10.--0]", the expected output
sequence [y (t+1)y(t+2)---y(t+N)I" is equal to the
first column of the matrix G. That is, the first
column of the matrix G can be calculated as the
step response of the plant when a unit step is
applied to the first control signal. The matrix H
can be calculated in the same way.

The computation of the contro] input involves
the inversion of an N xN matrix G that requires a
substantial amount of computation. If the control
signal is kept constant after the first control M
moves (that is, Au(t+j-1)=0 for j>M) due to the
model predictive control concept, this leads to the
inversion of an M xM matrix, which reduces the
amount of computation. If so, the set of
predictions affecting the objective function can be
expressed as

§=G,Au, + HAV+f, (14)
where
2 0 .- 0
G- & & 0
Bn-1 EN-2 ' BN-M

Au, = [Bu(t) Bu(+1) dut+M-1]".

The following relationship can be derived from the
foregoing equation:

§,=GyAu, +H Av+1,, (15)
where

¥, =[N+t 5eN+210) - FesN4mip),

ff=[fm.| fN+2 me]T’

L4 8N © EN-Mu
—G—,f'—‘ gA:+| g:N : gN—:M+2 )
ENsmt ENem-2 ' EN-Minm
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hN hN-l o hl

= Ay hy
H,= . '

hN+m-l hN+m—2 T hm

The objective function of Eq. (1) can be
rewritten as the following matrix-vector form:

7 =25 w) 85 - w)+ 2 duT R,

=%(63Au: +Hav +1-w) Q(G,ou, + Hav+-w) (16)

+1Auf§Au,,
2
subject to w o =§,fAu, +ﬁfAv+ff, (17)

where
w=[wt+1]0) wit+2]0) - we+ N )7,

Wy =Wt + N+1[6) wie+ N +2]0) - wit+ N+m| D).

6=diag(Q, -+, Q) is a diagonal matrix consisting
of N diagonal elements, Q, and ﬁ=diag(R, -, R)
is a diagonal matrix consisting of M diagonal
elements, R. Usually Q=ly .y and R=0 xIyxy are
used and @ is called an input-weighting factor.

The optimal input can be obtained by the well-
known Lagrange multiplier approach. To apply
the Lagrange multiplier approach, the objective
function is rewritten as

J’:%(ExAus +HAv+f-w) Q(G,Au, + Hav+1-w)
+-§-Auf§Aus (18)
A T(G o, +H,Av+1, -w ).

By setting to zero the differential of the
foregoing objective function with regard to Au,,

the following equation is obtained:
su, =(GTGG, + R [670w -1 - Hav)-ETa]. 19)

To calculate the control input, Au;, the Lagrange
multiplier A must be known. Therefore, Eq. (19) is

substituted into the constraint equation, Eq. (17) as
follows:

w, =G, (G705, +R)'[GT0(w-1-Tav)-GIa]
+—I-I-/Av+f/. (20)

From Eq. (20), the Lagrange multiplier A can be
expressed as

1 =[as,(a:aa: ) 63,]" 2
[a,,(a:aa,+i)“[aza(w-f_mv)}m,m+f,_w,].

By substituting Eq. (21) into Eq. (19), the optimal
control input can be expressed as

s, -(67GG, +ﬁ)"[6,’ -1 - Tinv)
+a_z,[a:, (676, + ﬁ)‘*z;‘,f,]" 22)

[wf— f,- ﬁfAv - 6,, (6,766, + ﬁ)—l [afé(w -f- ﬁAv)]]J.

Calculating the control input requires
the inversion of matrices (G- Q G, + ) and G,
(GTQG, + R)'G7,. From the definition of
matrix G, it can be derived that the number of
output constraint m cannot be bigger than the
number of control signal variations M; that is, m <
M. Another condition for invertibility must be
satisfied; m <n+1 since the coefficient g; of the
step response is a linear combination of the
previous n+1 values (n is the system order).
Therefore, the inversion of matrix _(?s, (GT (5 G,
+R) G, requires inverting a matrix of which
the dimension m is not usually bigger than three or
four. Since only Au(t) is needed at time step t, only
the first row of the matrices, (GT Q G, + K)™!
G'Q and (GTQG. + R) 'G1QGLIG,(GIQ
G, + R)'G7]", is required to be computed.
Also, in order to obtain the control input from Eq.
{22), it is necessary to calculate the matrices G,
G, Hand H;, and the vectors f and f;. These
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matrix and vector can be calculated recursively.
From now on, the derivation will be described.

By taking into account a new Diophantine
equation corresponding to the prediction for
y(t+j+11t), Eq. (5) can also be rewritten as
follows:

1=E, (@ VA +q Y"F, (™). (23)
Subtracting Eq. (5) from Eq. (23) gives

0 =[E,ta™)- B, (™A™

) (24)
+q” [q“'Fj+|(q") -Fi(q" )] .

Since the matrix E,.(q") - E{q") is of order j, the
matrix can be written as

Eja@)~Eg)=Plg ) +pq7, (25)

where P(g") is a polynomial of order smaller
than or equal to j - 1. By substituting Eq. (25} into
Eq. (24)

0=Pg™") 4™

T o~ 26
+q"[p,~A(q“‘)+q“F,-+1(q")—Fj(q")]- (26)

Since A (g is monic, it is easy to see that P (g)
=0. Therefcre, from Eq. (25) the polynomial
E;.1{g@") can be calculated recursively by

E;q(@Y=E (@) +p;a7. (27)

The following expressions can easily be obtained
from Eq. (26):

pi=fo- (28)
fj+|_i = f,'_m - ijH-l for i=0,-, E(FJH)' (29}

Also, it can easily be seen that the initial
conditions for the recursion equation are given

by

E =1, (30)

£ =‘I(1‘Z(q_l))- (31)

The vectors f and f; can be computed by the
following recursive relationship:

fru =dli-A@™) £, + Bg™ Yau + j)

+C(g vt + ),
(32)
with fg = y(8), Au(t + j)=0

and Av(t + j)=0 for j20.

Also, the polynomials, G,(g ) and H{g ™), can be
obtained recursively as follows:

Gin@™)=E;u(g™)Be™)
» e (33)
=G;(g)+ 097/ Blg™),
Hj+l (q_]) = Ej+| (q—l)c(q—]) ' (34)
=H;(q")+ f;097Cq™)

At every time instant, the model predictive
controller solves on-line an optimization problem
by using Egs. (22), (29) and (32) through (34) to
compute optimal control inputs.

3. Application to Nuclear Reactor Power
Control

Numerical simulations were conducted to study
the performance of the proposed algorithm. The
nonlinear PWR plant model [14] which is described
by a nonlinear point kinetics equation with six
delayed neutron groups and the lumped thermal-
hydraulic balance equations was used to demonstrate
the proposed control method. simplified diagram of
PWR plants is shown in Fig. 2. The reactor coolant
system model is divided into five nodes to simulate
the energy balance between fuel and coolant and
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the transport delays between a reactor core and a

steam generator. The steam generator model

contains heat transfer between the reactor coolant

system and the secondary side. The simplified

PWR model was developed based on the following

assumptions:

1) The primary and secondary loops of a PWR are
modeled.

2) A nonlinear lumped parameter model of the
primary loop is used.

3) Xenon and fuel depletion effects are not
considered.

4) Single-phase heat transfer of the core coolant is
considered.

5) Primary loop mass flow rate and pressure are
constant.

6) Reactor power and core inlet-outlet
temperatures are measured.

o
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: PRIMARY SECONDARY
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Fig. 2. Simplified Diagram of PWR Plants

The process dynamics based on physical laws

result in the following differential equations:

aP _p-p ;

-—dT=TP+§/1iﬂi, (35)
p=po+asTy+aTo, +bu, (36)
4 _Bip_sc0 (iel.

== P AC G=16) 37)
o Y a1 ye—t—p 39

dt Myey Mycw

i%t_vg - M(Z?,,c (T} ~Tog)- A—;h:(Tm -T.). (39)
i"%=}d(n,-7}n ) 40)
RN )
d;, = _%(T: -Ty)-DiLg, 42)
T, = DT, - D;T),. (43)

As shown in Fig. 2, a part of the parameters in
the preceding equations represent temperatures at
specific locations, control input and desired load
trajectory and other parameters have their usual
meanings (see Table 1). The process is simulated
using the fifth-order Runge-Kutta method with
adaptive time step sizes to deal with stiffness
inherent in nuclear reactor dynamics. The turbine
load variation Ly is performed by changing steam
flow to the turbine. The thermal part of this model
is an extension of the linear, time-invariant model
used by Park, et al. [16] and the nominal values
used in this work are listed in Table 2. All the
thermodynamic properties included in the plant
model are calculated from the steam table within
the range of subcooled state. Nonlinearity in the
heat transfer between fuel and coolant is
considered from the heat transfer coefficient U of
the Dittus-Boelter correlation [17]:

U=C,Re*® pr® X where Re = Devp,

Y D, U (44)
Cpek

and Pr= .
[

The plant dynamics were approximated by a

conventional parameter estimation algorithm in
order to obtain the controller design model. The
design model is as follows:

A@ Yy = Blg™ (- +C(g~" wie-1),  (45)
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Table 1. Nomenclature for Reactor Physics and Thermal Hydraulic Models

407

parameters definition
A effective heat transfer area {m%)
b differential control rod worth (Ap . step'l)
B(B) total effective {i-th group) delayed neutron fraction
AMA) effective (i-th group) delayed neutron decay constant (s™)
! neutron generation time (s)
oy, O fuel (moderator) temperature coefficient of reactivity (Ap - °C™)
C core averaged i-th group precursor concentration % power
ColCod Fuel (coolant) specific heat (MW - s - kg + °C’ )
C, a constant determined by water-fuel volume fraction of the lattice
D. equivalent diameter of the lattice of coolant channel (m)
Dy, Dy, D3, Dy nominal parameters for reactor and steam generator models
J conversion factor (MW - %)
K. Thermal conductivity of reactor coolant (MW - m™ - °C?)
Ly turbine load
m core coolant mass flowrate (kg - s
M(M,) fuel (coolant) mass (kg)
H coolant viscosity (kg - m - s
P core averaged thermal power (%)
Pr Prandtl number
plpo) total core reactivity {at initial state)
pe coolant density (kg - m)
Re Reynolds number
Toul TS core averaged coolant (steam generator steam) temperature (° C)
TeTh) cold-leg (hot-leg) temperature (°C)
TinlToud) core inlet (outlet) temperature (°C)
T, Thty Ts time constants for coolant loop and steam generator
T, T2, T3, Ta time constants for control model (s)
U Convective heat transfer coefficient (MW « m? . *C)
v coolant average velocity (m - s

In Eq. (45}, y(k) is the average coolant
temperature, u(k) the position of the control rods
and u(k) the reactor power. The measurable
disturbance v(k) must be the steam flow to the

where
A(g™") = 1-1.26867¢" +0.05129¢72 —0.07760q > +0.29436¢™*,

B(g™") = - 0.05561 + 0.17524¢™" +0.04213572 - 0.162404°3,
C(g™") = -0.09530 + 0.16062¢™" - 0.276994 % - 0.16240¢ >
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Table 2. Nominal Values of a Nonlinear Plant Model

B B B2 B Ba Bs Be
0.007108 0.000216 0.001416 0.001349 0.00218  0.00095 0.000322
Reactor Als™) Als™] Adls] Agls™] Adls] Asls™] Adls™]
physics
Parameters|0-078 0.0125  0.0308 0.1152  0.3109 1.24 3.3287
11s] l’Cl  «l°C
50x10* -20x10° -50x10°
C, D [m] Dy D, Ds D,
Thermal |0 0301 0.01297  3.746 0.7005  -0.2995 102.7
hydraulic
parameters| ts] Tuls} %ls) tls] Tols] 73ls] AL
7.0 5.0 11.3 5.58 2.03 80.5 2.08

turbine. However, since the change of the steam
flow brings that of the reactor power which has
more close relationship to the average coolant
temperature, v{k} becomes the reactor power.

The nuclear reactor is controlled so that the
average coolant temperature may track the
programmed (desired) coolant temperature versus
demand load, while an excessively large effort is
not called for. Although most nuclear power plants
are usually operated at 100 percent power level
(base load), sometimes at startup time, trivial
problem occurrences and also if they are operated
in load-follow mode, nuclear power plants can be
operated at relatively low power levels. The
nuclear reactor is usually required to cope with the
power variations of 5%,/min ramp and 10 % step.
Therefore, in this paper, the nuclear power
controller was designed to deal with these
transients (coolant temperature deviation and load
disturbance) and especially, computer simulations
were conducted to investigate the output tracking
performance. Therefore, it is supposed that the
plant to be controlled is initially in a steady state
condition and then the reference coolant
temperature or the desired power changes. In the
computer simulation, the operating condition of
the process is in a steady state for initial 200 sec

at a demand power of 50% and a rod position of
100 steps. The demand power for which the
proposed control algorithm is tested is shown in
Fig. 3. The demand power increases continuously
at a rate, 5%/min, from 200 to 680 sec and
approaches 90 % power level at 680 sec. And the
power remains constant for 300 sec and
decreases continuously at a rate, 5%/min from
980 to 1160 sec. And then the power remains
constant at 75% power level for 300 sec and the
10% step increase of the demand power occurs at
1460 sec. Then the power remains constant at
85% power level for 500 sec and at 1960 sec, the
10% step decrease of the demand power occurs.

90 4

80

70

power {%]

50

40 T T T T
0 500 1000 1500 2000 2500

time [sec]

Fig. 3. Desired Power Trajectory
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In numerical simulations, the sampling time was

chosen to be 0.4 sec. The prediction and control 202
horizons and the parameter for the constraint m 301
were chosen as 5, 1 and 1, respectively, and the - 300 4 BA‘L
same values were used regardless of power level. E = has
Also, the weighting factors, Q and R, are 1 and 10, g 281 If‘ ’
respectively, and the same weighting factors were '§ :::
used irrespective of the power level. Since the 265
computer code for the nonlinear model had been 294 [ Bl ?:r:lpa.m e l
written in the Fortran language, in order to perform 293 ———y T ;

0 500 1000 1500 2000 2500
the numerical simulations, the proposed MATLAB fime [sec]

[18] control algorithm was interfaced with the
] . Fig. 5. Reactor Coolant Temperature
computer code written in the Fortran language.
The average coolant temperature tracks very

well its setpoint change according to load as

shown in Fig. 4 and from Fig. 5 it is shown that

the reactor power tracks the demand load very ]

well. The position of control rods is shown in Fig. 7]

6 and it follows the pattern similar to the power. g woq

Figure 7 shows several plant states including fuel g 1301

temperature, hot-leg temperature and steam :Eo, 120+

generator temperature. It is known that the 1104

proposed controller copes with the power 100

variations of 5%/min ramp and 10 % step. Also, 80 : : . .

0 500 1000 1500 2000 2500

it was verified from many simulations that the time [sec]
performance of the controller is not sensitive to
the values of the weighting factor and the Fig. 6. Control Rod Step

prediction and control horizons.
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Fig. 4. Nuclear Reactor Power Fig. 7. Various Plant States Response
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4. Conclusions

In this work, the model predictive controller was
developed to control the nuclear power in
pressurized water reactor. The developed
controller was applied to a nonlinear model for
nuclear steam generators. The nonlinear PWR
plant model (a nonlinear point kinetics equation
with six delayed neutron groups and the lumped
thermal-hydraulic balance equations) was used to
verify the proposed controller for reactor power.
And a controller design model used for designing
the model predictive controller was obtained by
applying a parameter estimation algorithm and
became a fourth-order linear model. 1t is known
that the proposed controller controls the control
rod position so that the average coolant
temperature tracks very well its setpoint change
according to load and also the reactor power
tracks the demand load very well. From these
numerical simulation results, the performances of
this controller for the 5%/min ramp increase or
decrease of a desired load and its 10% step
increase or decrease which are design
requirements are proved to be excellent.

References

1. Electric Power Research Institute (EPRI),
Integrated Instrumentation and Upgrade
Plan, Rev. 3. EPRI NP-7343, (1992).

2.N. Z. Cho and L. M. Grossman, “Optimal
Control for Xenon Spatial Oscillations in Load
Follow of a Nuclear Reactor,” Nuclear Science
and Engineering, Vol. 83, pp. 136-148,
(1983).

3. P.P. Niar and M. Gopal, “Sensitivity-Reduced
Design for a Nuclear Pressurized Water
Reactor,” IEEE Transactions on Nuclear
Science, Vol. NS-34, pp. 1834-1842, (1987).

4. C. Lin, J.-R. Chang, and S.-C. Jenc, “Robust

Control of a Boiling Water Reactor,” Nuclear
Science and Engineering, Vol. 102, pp. 283-
294, (1986).

5. M. G. Park and N. Z. Cho, “Time-Optimal
Control of Nuclear Reactor Power with
Adaptive Proportional-Integral Feedforward
Gains,” IEEE Transactions on Nuclear
Science, Vol. 40, No. 3, pp. 266-270, (1993).

6. W. H. Kwon and A. E. Pearson, “A Modified
Quadratic Cost Problem and Feedback
Stabilization of a Linear System,” IEEE
Transactions on Automatic Control, Vol. 22,
No. 5, pp. 838-842, (1977).

7.J. Richalet, A. Rault, J. L. Testud, and J.
Papon, “Model Predictive Heuristic Control:
Applications to Industrial Processes,”
Automatica, Vol. 14, pp. 413-428, (1978).

8. C. E. Garcia, D. M. Prett, and M. Morari,
“Model Predictive Control: Theory and Practice
- A Survey,” Automatica, Vol. 25, No. 3, pp.
335-348, (1989).

9. D. W. Clarke, and R. Scattolini, “Constrained
Receding-Horizon Predictive Control,” IEE
Proceedings-D, Vol. 138, No. 4, pp. 347-354,
(1991).

10. M. V. Kothare, V. Balakrishnan, and M.
Morari, “Robust Constrained Model Predictive
Control Using Linear Matrix Inequality,”
Automatica, Vol. 32, No. 10, pp. 1361-
1379, (1996).

11.J. W. Lee, W. H. Kwon, and J. H. Lee,
“Receding Horizon H® Tracking Control for
Time-Varying Discrete Linear Systems,”
International Journal of Control, Vol. 68,
No. 2, pp. 385-399, (1997).

12.J. W. Lee, W. H. Kwon, and J. Choi, “On
Stability of Constrained Receding Horizon
Control with Finite Terminal Weighting
Matrix,” Automatica, Vol. 34, No. 12, pp.
1607-1612, (1998).

13. M. G. Na, “Design of a Receding Horizon



A Model Predictive Controller for Nuclear Reactor Power --- M. G. Na, et al 411

Control System for Nuclear Reactor Power 16. G. T. Park and G. H. Miley, “Application of

Distribution,” Nuclear Science and Adaptive Control to a Nuclear Power Plant,”
Engineering, Vol. 138, No. 3, pp. 305-314, Nuclear Science and Engineering, Vol. 94,
(2001). pp. 145-156, (1986).

14. M. G. Park, Robust Nonlinear Control of 17.J. H. Rust, Nuclear Power Plant
Nuclear Reactors Under Model Uncertainty, Engineering, Haralson Publishing Co.,
Ph.D. Thesis, KAIST, (1993). Buchanan, Georgia, (1979).

15.E. F. Camacho and C. Bordons, Model 18. MathWorks, MATLAB 5.3 (Release 11),
Predictive Control, Springer-Verlag, London, The MathWorks, Natick, Massachusetts,

(1999). (1999).



