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Abstract

In the risk and reliability analysis of complex technological systems, the primary concern of
formal uncertainty analysis is to understand why uncertainties arise, and to evaluate how they
impact the results of the analysis. In recent times, many of the uncertainty analyses have
focused on parameters of the risk and reliability analysis models, whose values are uncertain in
an aleatory or an epistemic way. As the field of parametric uncertainty analysis matures,
however, more attention is being paid to the explicit treatment of uncertainties that are
addressed in the predictive model itself as well as the accuracy of the predictive model. The
essential steps for evaluating impacts of these model uncertainties in the presence of parameter
uncertainties are to determine rigorously various sources of uncertainties to be addressed in an
underlying model itself and in turn model parameters, based on our state-of-knowledge and
relevant evidence. Answering clearly the question of how to characterize and treat explicitly the
forgoing different sources of uncertainty is particularly important for practical aspects such as
risk and reliability optimization of systems as well as more transparent risk information and
decision-making under various uncertainties. The main purpose of this paper is to provide
practical guidance for quantitatively treating various model uncertainties that would often be

encountered in the risk and reliability modeling process of complex technological systems.
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I. Introduction for formal decision-making, and a primary step for
the analysis is to understand why uncertainties
In the risk and reliability analysis of complex arise, to identify what types of uncertainty are
technological systems like nuclear power plants, addressed in the modeling process, and to evaluate
quantitative uncertainty analysis is an essential part how they impact on the results of the analysis.
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The risk and reliability modeling process for the
potential behavior of a given system requires an
appropriate decomposition of the behavior so that
available historical and experimental data can be
used to help determine the more understandable
and manageable inputs. As a trade-off, however,
the decomposition leads to a variety of events (or
variables) about which we are uncertain in an
aleatory or an epistemic way even for a best
estimate model. The former type of uncertainty is
that addressed when the events or phenomena
being taken into account in the predictive model
are characterized as occurring in an aleatory
manner. Whereas, the latter type of uncertainty is
referred as state-of-knowledge uncertainty and it is
closely associated with the analyst’ s confidence of
the actual situation being predicted through the
model and the accuracy of the predictive model
itself. Because uncertainties addressed in the
foregoing aleatory and epistemic events (or
variables) are generally characterized and treated
differently when creating models of complex
systems, it is useful to identify the two classes of
uncertainty that are addressed in and impact the
results of model predictions.

In a formal analysis of uncertainty, the foregoing
rigorous classification of uncertainty sources [1-6]
is first related to important practical aspects of
modeling for complex technological systems and
the definition of analysis model, rather than
difference in the concept of uncertainty. The
definition or target of analysis model determines
the relevancy of available data and whether or not
it is necessary to distinguish between uncertainty
statements about aleatory variability among the
occurrences of individuals in the population (i.e.,
what we know} and uncertainty due to lack of
knowledge about fixed but unknown quantities
(i.e., how much we know about it). Another
important aspect for exploring different types of

uncertainty allows for a proper propagation of

different uncertainties in the evaluation process so
that consistent decision-making is made for the
resulting quantitative uncertainties. When both
aleatory and epistemic uncertainties are already
mixed up in the course of the analysis without a
clear separation, it would not be possible to
identify the resulting combined effect of the
uncertainties of either type. The last aspect of the
formal separation is that the approach is very
helpful in understanding the nature of the
uncertainties and for estimation of uncertainty
measures in practical situations. Many risk and
reliability analysis practitioners would often
overlook these various facets of uncertainty in
their analysis and as a result they would be
confused in interpreting the results of uncertainty
analysis. Thus, answering clearly the question of
how to characterize and treat explicitly the
forgoing different types of uncertainty is
particularly important for practical aspects such as
risk and reliability optimization of systems as well
as more transparent risk information and decision-
making under various uncertainties.

As for whether we can ever gain precise,
accurate and complete knowledge about physical
problems, on the other hand, one may eliminate
all the uncertainties associated with modeling that
problem. In a real situation, however, this is
neither possible nor practical since we do not
know all complete conditions. Associating with
modeling uncertainties particularly, many analysts
have taken into account them implicitly through
an aggregation of expert opinions, and the
uncertainty distributions obtained in such a way,
however, would not give a full spectrum of
uncertainties explicitly. As the field of parametric
uncertainty analysis matures, more attention is
being paid to an explicit treatment of uncertainties
that are addressed in the predictive model itself as
well as the accuracy of the predictive model

because it is important to develop an
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understanding of the impact of different modeling
assumptions on the quantitative results of the
predictive model. The explicit incorporation of
model uncertainty into the framework of
uncertainty [7-14] does add another layer of
uncertainty to the problem of interest. The main
purpose of this paper is to provide formal
characterization for various types of uncertainties
that would often be encountered in the risk and
reliability modeling process of complex
technological systems and practical guidance for
quantitatively treating model uncertainties that are
expressed in various forms.

2. Charcterization of Uncertainty Sources

Before tackling the explicit treatment of model
uncertainties in the presence of aleatory or
epistemic parameter uncertainties that would be
addressed in the underlying risk analysis model
(characterized as either a logical or physical
model), it is an essential step to characterize these
various types of uncertainties, based on the states
of knowledge involved in the problem of interest
and available evidence.

2.1. Aleatory and Epistemic Uncertainty
Sources

2.1.1. Clarification of Uncertainty Sources

Many risk and reliability analyses would often
include both aleatory events and epistemic
variables in their predictive models. However,
discussions in the literatures have often been
unclear with respect to this distinction of
underlying uncertainty sources and types. While
the aleatory uncertainty has been conventionally
regarded as a property of the system or activity
being studied, the epistemic uncertainty takes into
account subjective and perceptional aspects.

According to Hofer s definition [3], the aleatory
uncertainty arises from the fact that one cannot
give a single value for an event, but rather give a
population of values with chance. Thus, the value
of the event can be thought of as randomly
selected from the single true probability
distribution that summarizes the variability within
the population. Whereas, the epistemic
uncertainty is characterized as uncertainty due to
knowledge of the single true values of an event
and lack of knowledge of a single exact probability
distribution summarizing the variability within a
population. Since the aforementioned types of
uncertainties are inputs to different decisions, then
their propagation through the model needs to
happen separately and presentation has to cater
for two uncertainty dimensions. Helton [4] also
claims: ‘When a distinction between stochastic
and subjective uncertainty is not maintained, the
likelihood of the deleterious events associated with
a system and the confidence with which both
likelihood and consequences can be estimated
become mingled in a way that makes it difficult to
draw useful insights.” Whereas, Winkler [15] takes
another viewpoint about those uncertainties: ‘If
the problem is not decomposed in a reasonable
way, various sources of uncertainties can be
commingled in a way that makes it difficult to
draw useful insights.” While the first two
standpoints focus on the need of separation for
‘different types of uncertainty’ regardless of the
decomposition level, the last one relates it to
‘different sources of uncertain information’ due to
the decomposition as a key motivating factor
behind the desire to distinguish among types of
uncertainty, i.e., the motivation for attempts to
make rigorous distinctions between both
uncertainties that is related to important modeling
concerns.

Even though all of the above viewpoints about
uncertainty focus their own aspects in the
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modeling process of complex technological
systems, it should be noted that the foregoing
rigorous classification between aleatory and
epistemic uncertainties is basically for our
convenience, rather than for conceptual
difference. At a fundamental level of detail,
uncertainty is just uncertainty and there is only
one kind of uncertainty stemming from our lack
of knowledge concerning the problem of interest
[5,15-17]. For example, all events (effects) follow
physical laws and they are completely determined
once the initial and boundary conditions {causes)
are specified. This means that in a situation
where all complete conditions are known, a
random event is no more defined. As for whether
we can ever gain precise, accurate and complete
knowledge about physical problems one may
eliminate all the uncertainties associated with
modeling that problem. In a real situation,
however, this is neither possible nor practical
since we do not know all complete conditions.
According to their sources, the separation of
uncertainties into different types is very helpful in
investigating the behavior of such systems,
selecting appropriate measure of uncertainty,
and interpreting consistently the results of
uncertainty analysis made under different
sources. In light of uncertainty management, the
aleatory portion of uncertainty is not practically
reducible under a given proposition of event
since we don’t know and understand the
underlying reasons and behaviors governing its
randomness. On the contrary, as we know more
about the underlying problem, the epistemic
portion of uncertainty can be effectively reduced.
From this point of view, the analysis of aleatory
uncertainty is to answer the question on ‘what
might actually happen and with what
probability’ . Whereas, the analysis of epistemic
uncertainty is to answer the question on ‘how

well we know a given problem and how much

our knowledge about it might change with

additional information’ .

2.1.2. Guidance for Estimation of Both
Uncertainties

A decision for taking either aleatory or epistemic
variables depends on the states of knowledge
involved in the problem of interest. According to
Winkler’ s viewpoint [5], some uncertainties are
clearly easier to assess than others although
information comes in varying forms and from
many sources, involving historical and
experimental data, models, or experts. In practical
situations, however, it is not easy to dichotomize
which event is an aleatory event or deterministic
one. The difference between aleatory and
epistemic treatments depends on two things: (a)
our knowledge of the laws governing the
occurrence of the event and (b) the sensitivity of
the event to small changes in initial conditions.
The occurrence of a random event is so sensitive
to small changes in initial conditions that it is
practically impossible to predict it by means of a
deterministic formula. If a statistical regularity is
expected, the event can be treated as a random
event. Though the outcome of a deterministic
event may also be sensitive to initial conditions
and in many cases the outcome obtained from
predictive formulas is by no means precisely equal
to the actual outcome. However, we are willing to
tolerate the variations, due to deterministic
regularity that a given set of circumstances should
lead to the same outcome. As mentioned
previously, a decision whether an event is treated
to be either aleatory or epistemic is subjectively
made by evaluating our state of knowledge, and
creating appropriate model characterizing a
statistical or deterministic regularity. The epistemic
uncertainty requires specification of inaccuracy in
the initial and boundary conditions and the



68

J. Korean Nuclear Society, Volume 35, No. 1, February 2003

Table 1. Characterization of Aleatory and Epistemic Uncertainties

Items

Aleatory Portion

Epistemic Portion

Classification
crieria

Level of modeling details

Knowledge about the laws governing the occurrence of an event

Degree of the sensitivity to the initial conditions or environment

Terminologies

Random/Stochastic, Irreducible,
Observable, Inherent Uncertainty

State-of-knowledge, Reducible,
Unobservable, Cognitive Uncertainty

Uncertainty Randomness/variability of an event, Inaccurate knowledge of a fixed quantity
sources Circumstance variability Alternative representations of
a true but unknown value

Measure Probability model of random variability | Subjective probability model of a fixed but

or circumstance variability among unknown quantity or different

unspecified values in the population distribution or model assumptions
Uncertainty We don’ t know and understand the As we know more about the
management underlying reasons and behaviors underlying problem, it can be

governing randomness, so it is not effectively reduced

practically reducible
Analysis Answer the question on what might Answer the question on how well we
purpose actually happen and with what know and how much our

probability

knowledge about it might change
with additional information

pertinent physical laws. In general, the aleatory
uncertainty requires a description of the random
events and specification of the pertinent
probabilistic model (i.e., probability density
function). However, the epistemic portion of
uncertainty is also present over the distributional
parameters if the true distributional parameters
(e.g., mean and variance) and shape of the
distribution are unknown. Then, each value of the
distributional parameters {mean and variance)
specifies one aleatory distribution for the random
event. A typical example where both uncertainties
are specified even for an event, is probability
distributions for failure rates of components as
performed in the analysis of nuclear power plant
systems. For practical convenience in estimating
both aleatory and epistemic parameter
uncertainties, Table 1 gives their summarized
feature.

There are well-known examples where an event
is treated as either an aleatory or epistemic event.
As one example, let’ s consider coin tossing: one
is a two-sided coin and another is a one-sided coin
hidden inside a box. In the former case, two
possible events (i.e., face-up or face-down) exist
and the occurrence of each event is so sensitive to
initial conditions that are imposed to the coin-
tossing event. In that case, we normally treat it as
an aleatory event. In the latter case, only one
fixed-event (i.e., face-up or face-down) exists, but
we have no information about whether or not the
coin is face-up. In that case, each of these events
is treated as an epistemic event. As another
example, let’ s consider a severe accident
sequence with limited resolution or unspecified in
many ways. Then, various phenomenological
variables contributing to the containment peak
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pressure (e.g., in-vessel steam explosion, core melt
temperature at the occurrence of all event
sequences, etc.) are regarded as aleatory variables
whose uncertainties are quantified by a probability
distribution summarizing the variability within the
potential population of relevant values. In that
case, there may be two situations by which the
aleatory variables may be treated by epistemic
uncertainties: The first is when we redefine the
above sequences with much more resolution so
that the aforementioned aleatory variables can be
subjected to epistemic uncertainties with a fixed,
specified accident sequence. Then, this situation
explains that possible stochastic variation for all
accident sequences is considered to be
comparatively negligible in specific aspects of the
phenomenological assessment when the specified
accident event is applied. In that case, the
aforementioned variables can be treated as
deterministic quantities with inaccurately known

epistemic uncertainties.
2.2. Model Uncertainty Sources

In the modeling process of behavior of a given
system, we are often faced with two different
situations: one is that model input values can be
deterministically described and another we are
simply unable to predict their values in a
deterministic way. In the former case, the model
output is characterized by magnitudes of the
deterministic inputs and in the probabilistic sense
the model ocutcome becomes always one. Like
this, a model whose outcome is determined just by
the deterministic inputs is characterized as
‘deterministic model’ . The deterministic model
can be expressed as a simple functional
relationship whose output depends on a
deterministic manner on various input parameters.
In many cases, however, we do not have a

complete knowledge about the exact values of

input parameters, and consequently, some
imprecision attaches to the estimate of the model
output. Uncertainty about the correct values of
input parameters can be quantified by treating
subjective probability distributions. On the other
hand, there is a situation where the model output
is determined by both the occurrence of the event
(i.e., aleatory uncertainties) and its magnitude (i.e.,
epistemic uncertainties). While the model itself is
given to be deterministic, different model
outcomes occur at random. Since this type of
model contains probabilities on the occurrence of
the model outcome whose values are evaluated by
an aleatory model, it is referred to as an ‘aleatory
model’ . In order to characterize the aleatory
model output we would often employ a
probabilistic model for the occurrence of the
event, and epistemic uncertainty about the
magnitude of the model parameters once the
model output occurs given that the event has
occurred. In the deterministic model, our concern
is to determine a specific criterion of the model
outcome and in turn to evaluate the magnitude of
the model parameter. Whereas, our primary
concern in the aleatory model is to estimate an
occurrence probability of random event addressed
in the aleatory model, with/without magnitude of
the parameter value characterized by the event.
When we develop a model describing the
behavior of s given system, on the other hand, we
often have an additional question on the possibility
of different structures as well as the accuracy of
the model itself. This question is closely related to
the fact that our model itself is an approximation
about the true behavior of the system and its
accuracy depends on our state-of-knowledge about
the system behavior. While our modeling of the
system behavior is based on currently available
information, and the modeling process may be
different from expert to expert. This fact leads us

to conclude that our model itself is always



70 dJ. Korean Nuclear Society, Volume 35, No. 1, February 2003

subjected to some degree of uncertainty, due to (a)
expert-to-expert different assumptions utilized
when creating the model structure (whose
uncertainty is given in the form of weighting
factors, or upper and lower limits), (b) analyst’ s
subjective confidence attached to the model
prediction (whose uncertainty is given in the form
of epistemic multiplier), and (c) circumstance-to-
circumstance variability attached to the model
prediction {(whose uncertainty is given in the form
of aleatory multiplier). While the former two cases
can be treated as a type of epistemic uncertainties
on the predictive model, the last case is normally
treated a type of aleatory uncertainties. If there are
no uncertainties in our model itself and relevant
model parameter values, the model will exactly
predict the real problem with specification of
model parameter values. Due to the model and
parameter uncertainty, however, our model
predictions are subjected to over- or under-
estimation for the true behavior of the system in
either an aleatory or epistemic way. Finally, while
the essential portion of model uncertainty is
basically originated from such different modeling
process, it may have different forms depending
upon the level of analysis for the underlying
system: high-level modeling uncertainties (different
structures in a predictive model) or low-level
modeling uncertainties (different sub-models
characterizing parameters of the predictive model).
From the aspect of viewpoint, the probability
distribution model for an aleatory event can be
regarded as a special form of low-level model
because the distribution is subject to model

parameters such as mean and variance.

3. Explict Treatment of Model
Uncertainties

As given in Figure 1, the explicit treatment of
modeling uncertainties does add another layer of

uncertainty to the problem of interest. In real
applications, two different situations are often
faced: one situation is when there is only a single
deterministic model but a variety of relevant actual
data is available so that the accuracy of the model
can be assessed, and another situation is when
various alternative models are available, regardless
of evidence available. The former case is useful to
some situations that actual data of interest is
obtained from various circumstances. The latter
case analyzes the impact of using alternative
modeling assumptions by performing an
appropriate statistical propagation of subjective
probabilities assigned to different models or model
sensitivity studies.

3.1. When There is a Single Deterministic
Model, But Relevant Actual Data is
Available

A population of different circumstances that lead
to different values for each output calculated by a
single deterministic model of interest can be
characterized by aleatory uncertainty. Also, a
particular circumstance of interest where the same
model parameter values can be applied to the
single deterministic model will be one of many
potential circumstances. Let’ s consider a situation
that actual data of a quantity of interest can be
obtained from different circumstances and there
are several actual values that corresponds to a
given model prediction (or the same model
parameter values), but we do not know the actual
circumstances. From another point of view, some
variability in the actual data that corresponds to
the same parameter values of the single
deterministic model can be accounted for as
{epistemic) model uncertainty in the predictions of
the model. The uncertainty is due to the
approximation made to develop the model. If
there are no model uncertainties, the model will
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exactly predict actual data. In order to account for
such uncertainties in the single model predictions
of interest, Siu and/or Apostolakis [5, 7], employ
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where

@i = single deterministic model (prediction
model),

a concept of ‘a multiplicative factor (E)’ that ¢, = unknown real model predicting various
modifies the predictions of the model with actual circumstances,
data obtained from different circumstances. 7 = model parameter vector characterizing
(pdrmv
@, =E- @4 (7) (1) E = multiplicative factor modifying the
predictions of @4, with actual data.
PDF | SPDF |
Aleatory uncertainty Epistemic uncertainty
» X > Y
(a) Uncertainty of aleatory variable (b) Uncertainty of epistemic variable
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> Z # Outcomes (R)
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t Epistemic uncertainty
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Aleatory uncertainty

Discrete model uncertainty
(percentiles: 5, 50, 95%...)

» Z

(e) Model uncertainty in the presence of
aleatory and epistemic uncertainties

Note: (S)PDF: (subjective) probability density function, CDF: cumulative distribution function
p; . subjective probability fori -t4 model, R: output variable, f; (R) : model prediction for R

Fig. 1. Impacts of Model Uncertainties in the Presence of Various Parametric Uncertainties
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According to their definition the factor is given
as the ratio of the actual value over the calculated
value by a deterministic single model for the
specific quantity. The recognition of the
aforementioned circumstance variability leads us
naturally to the modeling of the aleatory and
epistemic uncertainties. Then, the relative
frequency of the actual data values with the same
calculated values of a specific quantity determines
an aleatory distribution that the specific quantity
will have the corresponding values. The lack of
information about a true form of aleatory
distribution leads to the presence of epistemic
uncertainty over the distributional parameters
(e.g., mean and variance).

3.2. When Various Alternative Models are
Available, Regardless of Available
Evidence

For a given situation, two different approaches
are possible for quantifying the impacts of
alternative models to the prediction of a predictive
model of interest (characterized as a high level or
target model): one approach is to utilize a
statistical integration of competing models of
interest through the predictive model, and another
approach is to perform a sensitivity analysis for
each of the competing models. If model
uncertainties are properly defined, both
approaches may be implemented in a similar
manner with a parametric approach

3.2.1. Integration of Alternative Models

If there exist various competing models (given in
the form of either different mode! structure or
different model predictions) and they are assumed
to be independent of each another (e.g., mutually
exclusive and independent models), the model
uncertainty can be characterized by assigning

subjective probabilities (or relative weights} to each
of these alternative models [9-11, 13-14]. Then,
the subjective probability accounts for the relative
importance of alternative models so that models
subject to the relatively high probability gives a
greater impact when they are propagated through
the target model. There are two approaches for
propagating model uncertainties: one is to utilize
Bayesian aggregation model and another is to use
a statistical propagation method like Monte Carlo.
The Bayesian approach [8, 18] can be applied to
the situations where the model uncertainties are
given in the level of model predictions rather than
the model structure itself. On the contrary, the
statistical propagation approach makes it possible
to directly quantify uncertainties for alternative
models themselves in the sampling stage as well as
the values of uncertain model parameters.
Typically three practices where model
uncertainties can be explicitly quantified using the
statistical integration would be encountered as
given as follows:

Case 1: Deterministic models for phenomenological
assessment, subject to epistemic model and
parameter uncertainties

A deterministic model for the assessment of
phenomenological behavior itself that are typically
formulated by epistemic model parameters whose
uncertainties is characterized as epistemic ones. In
that case, all uncertainties we have to handle are
epistemic uncertainties. Model uncertainties may
stem from high-level models differently formulated
by analysts (e.g., structural models) and low-level
models resulting in different predictions of
particular model parameters {e.g., physic-
numerical correlations). Since in many cases
model parameters of the high-level model
determine the predictions of low-level models,
these low-level models cannot be treated
independently with the high-level model
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parameters. Once a set of the high-level
parameter values are specified, the underlying
different low-level models produce the
corresponding uncertainty distributions. This fact
indicates that the low-level models must be treated
as models themselves rather than as the level of
model predictions. With a situation that a high
level model contains other lower level models, the
mathematical formulation for handling those

uncertainties can be expressed as follows,
Y(O) = WG (B Pm |, D), D Wm =1 (2a)
B =ATm1> Tm,2, 57y yr } (2b)
Pm ={Pm,1>Pm,2, > m,N:} (2c)
Pmj =D Vm jkPm ks X pvmk =1 (2d)

where

Y(t) = time-dependent target variable
(weighted over different model
G,

G., w, = m-th high-level model and the
corresponding  weighting
factors,

7?,,1, N,’f. = uncertain parameter vector for
G,, and number of relevant
parameters,

®m, N% = low-level uncertain model vector
for G,, and number of relevant
models,

Omjc,Uni = k-th element for the j-th
uncertain low-level model ¢,
and weighting factor,

D, = entire body of data information
characterizing the model G,,.

In real applications, the synthesis of epistemic
modeling and parameter uncertainties can be
made by either a single-step or two-step sampling
procedure, and its choice depends on uncertainties

of basic variables employed in the low-level
models, or whether or not any differentiation
between modeling and parameter sources of
uncertainty is required in the final outcome of the
target variable.

The single-step sampling and propagation can be
enough when all low-level models are given as
functions of fixed variables rather than uncertain
variables so that every model provides a single
prediction for given variable values or when
episternic parameter and model uncertainties are not
required to be treated separately. The latter case
basically follows the fact that both uncertainties are
basically subject to epistemic uncertainties although
they stem from different sources. According to a
single-step sampling process, then a random sample
of size n of sets of uncertain model parameters (7.,
and uncertain low-level models (¢ .) for
simultaneous variations is selected according to the
specified epistemic probability distributions. As the
result of statistical propagation, each sample
combination of parameter inputs and model inputs
results in the corresponding single prediction. The
final aggregation of the resulting n predictions for
n sample vectors gives a single distribution for the
target values.

When we consider a situation that uncertainties
addressed in the high-level model parameters are
separately expressed with the modeling sources of
uncertainty, the statistical approach must be
implemented with a two-stage propagation
[5,18,19}]: the first stage is taken for model
uncertainties themselves ((ﬁm) and the second stage
is taken for uncertain parameters contained a
target model (%.). By this approach, the two
different sources of uncertainties are propagated
separately through the target model. The resulting
uncertainty distribution in the target model
prediction becomes conditional on each of the first
sample vectors, which is expressed as a family of

uncertainty distributions that folds portions of
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modeling uncertainties and relevant parameter
uncertainties. Of course, the aforementioned
family of uncertainty distributions can be averaged
over modeling sources of uncertainties so that a
single epistemic uncertainty distribution is obtained
at the stage of decision-making. In the presence
of both the epistemic model and parameter
uncertainties, practical examples using the
statistical integration approach can be found in
relevant literatures [11, 13].

Case 2: System reliability models, subject to
aleatory, epistemic model and parameter
uncertainties

A typical example for this case [12] is a fault tree
analysis of system reliability that has just
considered aleatory uncertainties of component

failures. While the fault tree logic model itself is a

deterministic model, its analysis allows for

epistemic model and parameter sources of
uncertainties. In the fault tree analysis, the
epistemic portions of the model uncertainty may
arise when modeling assumptions are made under
our lack of precise knowledge about the system
functionality, e.g., success criteria for the system
performance that is generally determined by
thermal-hydraulic analysis. A few applicable
success criteria can be considered for more
realistic evaluation of the system reliability and
each of them generates the corresponding fault
tree model. This fact leads naturally to a possibility
of handling of the uncertainty in different possible
success criteria and thus we can assign weighting
factors to each alternative success criteria as done
in the case 1. Then the weighting factors assigned
to each success criterion are characterized as the

epistemic uncertainty of the success criteria {i.e.,

uncertainty for high-level structural model). The

aleatory uncertainty is accounted for in the
probability models that are assigned to each of
component-level basic events (such as binomial,

Poisson, and exponential models). This can be
classified into one type of low-level model
uncertainty. Then, an additional type of epistemic
model uncertainty is given as weighting factors to
each of these competing probability models.
Finally, epistemic parameter uncertainties are
assigned to parameters of the underlying
probability model (such as failure rate or demand
probability). The most typical form of failure rate
probability distribution is a lognormal distribution.
Finally, a probabilistic combination of the failure
rate distribution through the underlying probability
model generates the corresponding lognormal
distribution for each basic event. Now, the
synthesis of the aforementioned aleatory (i.e.,
probability models) and epistemic modeling (i.e.,
alternative success criteria) and parameter (i.e.,
failure rate or demand probability distributions)
sources of uncertainties can be made through
minimal cutsets of the fault tree model. The
mathematical formulation for handling those

uncertainties can be expressed as follows,

Y =wpuGp (@ | Dpy), me’" =1 (3a)

T =Tl T, Ty yx}  (3)
Tm,j Ezkvm,jk%n,jk s zkvm,jk =1 (3¢)

where

Y = target variable (system reliability
weighed over G,),

G,, W, = minimal cutset models for m-th
success criteria and weighting
factors,

%, N% = basic event vector for G,, (subject to
aleatory probability models) and
number,

P jeUm = k-th aleatory model for the j-th
basic event of 7z, and weighting
factor,

D, = entire body of generic or plant
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specific information characterizing the
model G,,.

In real applications, the underlying uncertainties
given in the above formulation can be statistically
integrated by either a single-step or two-step
sampling procedure, and its choice depends on
whether or not any differentiation between
aleatory and epistemic sources of uncertainty is
required in the final outcome of the target variable.
The single-step sampling and propagation can be
enough when we would like to evaluate both
uncertainties in one, integrated manner. Then, all
portions of aleatory uncertainties (i.e., failure
probabilities for ¢, ) are sampled and they are
propagated through the above weights-averaged
minimal cutsets. As a resuit, we can obtain a single
aleatory probability distribution for the system
reliability. A practical example using the single-
step sampling procedure can be found in the
literature [14]. In order to assess explicitly the
impacts of modeling source of uncertainty to the
system reliability, on the other hand, the synthesis
of uncertainties must be implemented with a two-
stage propagation: the first step is taken for
uncertainties addressed in the model themselves
{structural model G,, and probability model @, )
and the second step is taken for all portions of
aleatory uncertainties (i.e., failure probabilities for
Omu). The resulting uncertainty distribution in the
target model prediction becomes conditional on
each of the first sample vectors, which is
expressed as a family of aleatory uncertainty
distributions that folds both portions of modeling
uncertainties (G,, ¢. ;) and relevant aleatory
uncertainties (failure probabilities for @, ).

Case 3: Treatment of epistemic uncertainties
addressed in an aleatory probability
distribution

When the epistemic uncertainties are just
addressed in parameters of an aleatory probability

distribution such as mean and variance and there
is no uncertainty in the high-level model structure,
their simultaneous treatment has been widely
taken into account in the field of plant system
safety analysis. This is a special situation of the
above case 2, which is often encountered in the
system reliability analysis. In a system fault/event
tree model, for example, aleatory uncertainty is
accounted for by the probability distribution
models that are assigned to each of component-
level basic events as mentioned in the above case
(2). When the underlying probability distributions
are estimated using plant-specific and/or generic
data, however, they do not represent an exact
population of component failures. This leads
naturally to the possibility of epistemic uncertainty
(different means and variances, or distribution
shape) for a true probability distribution (with true
mean and variance). Thus, both aleatory and
epistemic uncertainties are addressed in every
basic event. In this case, we can view the
probability distribution model either as a type of
model or a simple parameter.

In order to assess explicitly the impacts of both
aleatory and epistemic uncertainties on the system
reliability, the synthesis of these uncertainties must
be implemented with a two-step propagation: the
first step is taken for probability models for basic
events {from joint distribution for mean and
variance or different shapes) and the second step
is taken to sample failure probabilities from fixed
probability distributions sampled from the first
stage (with fixed mean and variance, shape). The
resulting uncertainty distribution becomes
conditional on each of the first sample vectors
(i.e., statistical combination for sampled means
and variances), which is expressed as a family of
aleatory uncertainty distributions that folds both
portions of epistemic uncertainties and relevant
aleatory uncertainties. Typical examples taking
into account the above situation can be found in
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relevant literatures [1, 19-20].

On the other hand, it should be noted that
when the analysis of model uncertainties is
implemented using the aforementioned statistical
approach, two essential difficulties would be
encountered especially for physical models. The
first is that there is no generally accepted, robust
approach for handling quantitatively the impacts
of model uncertainties on the final prediction of
the target model because models do not always
have a simple, intuitively appealing interpretation.
The second is that it is necessary to make an
appropriate selection of a statistical combination
of competing models in a reasonable way and use
that combination to get some insight into what
the uncertainties are. If all possible combinations
are taken, we can get some strange physical
situations because some are non-physical, even
though the computer codes would allow them.
This is, in part, because we do not really
understand the processes that are occurring. In
addition, the aforementioned integration of model
uncertainties often obscures the differences
among competing models and does not explain
the reasons for the differences.

3.2.2. Model Sensitivity Analysis

When an analysis of the relative impacts of
individual models to the final results is required, it
is more preferable to retain separate models for
each model sensitivity analysis. In that case, model
sensitivity analysis must be made in a manner that
parametric uncertainties are made conditionally
upon each alternative model. The second situation
that model sensitivity analysis may be particularly
helpful is when differences in probability estimates
assigned to individual models do not affect the
final results very much or give little influence on
conclusions. As another situation, it may be
important for the decision maker to appreciate the

degree of disagreement among the different
models and its effect on the results. If the degree
of sensitivity is very high, the aforementioned
integration of model uncertainties should be
avoided since they may tend to obscure critical
differences of alternative models. Different
assumptions for a probability distribution given in
the level of model prediction can be regarded as a
kind of model uncertainty (addressed in a true
probability model). Then, the impact of each of
the different assumptions for various model inputs
(e.g., mean, variance, shape, etc.) on the output
uncertainty would often be assessed using a
distributional sensitivity analysis approach.
References [11,13,21] provide typical methods to
quantify the sensitivity of deterministic model

uncertainties.
4. Summary and Conclusions

In this paper, we have provided formal
characterization for various types of uncertainties
that would often be encountered in the risk and
reliability modeling process of complex
technological systems (i.e., aleatory, epistemic
parameter and model uncertainties), and derived
practical guidance for quantitatively treating model
uncertainties that are expressed in various forms.
Associating with the formal treatment of model
uncertainties, the present guidance can be
summarized as follows:

4.1. Distinction Between Aleatory and
Epistemic Uncertainties

Associating with characterization of aleatory and
epistemic types of uncertainty, our insights and
positions are as follows,

-In connection with risk analysis and
communication, it is common to divide
uncertainty into at least two dimensions of
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aleatory and epistemic portions. Since the
foregoing two types of uncertainty would be
input for different decisions, they must be kept
separated in the computational process. If both
aleatory and epistemic uncertainties were already
mixed up in the course of the analysis without a
clear separation, it would not be possible to
identify the resulting combined effect of the
uncertainties of either type.

However, it should be noted that the reason why
we clarify them into more detailed types is
primarily related to important practical aspects of
modeling for complex technological systems in
real applications and for our convenience rather
than for conceptual difference. At a fundamental
level of detail, uncertainty is just uncertainty and
there is only one kind of uncertainty stemming
from our lack of knowledge concerning the
problem of interest.

4.2. Guidance For Formal Treatment of
Model Uncertainties

Associating with the formal treatment of model
uncertainties, the present investigation gives the
following guidance:

- The primary step for evaluating impacts of model
uncertainties is to determine sources and types of
uncertainty to be addressed in an underlying
model itself and in turn model parameters.
Depending on the underlying evidence, the
model uncertainty may be subject to two different
forms: one is the high-level model uncertainty
{due to different structures in a risk analysis
model) and another is the low-level model
uncertainty (due to different sub-models
contained in the risk analysis model).

-The next step for the analysis of model
uncertainties is to provide a proper method for
treating them explicitly. Except for Siu and/or
Apostolakis’ s method using a concept of ‘a

random multiplicative factor’ , most of the
existing applications deal with model uncertainty
probabilistically by assigning subjective
probabilities as a measure of the relative
importance of one model over another model
{with an assumption of, mutually exclusive and
independent models). Then, the underlying
methods for model uncertainties can be treated
by either a statistical synthesis or a model
sensitivity analysis. The selection of approaches
basically depends on whether or not an analysis
of the relative impacts of individual models to the
final results is required or whether or not we
would like to evaluate both uncertainties in one
integrated manner for summarized information
(or in explicit two dimensional assessments for a
clear discrimination among uncertainty sources).

The final step for the analysis of model
uncertainties is to make a consistent
interpretation of the uncertainty analysis results
and to provide a summary of distributions (such
5-, 50-, 95-percentile distributions, mean
distribution for a family of uncertainty
distributions, and the corresponding statistical
parameter values for a single output distribution).
For example, a family of aleatory uncertainty
distributions can be averaged over epistemic
uncertainties to give one-dimensional aleatory

distribution to the decision-makers.
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