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Abstract

It is well known that the performance of a fuzzy neural network strongly depends on the input

features selected for its training. In its applications to sensor signal estimation, there are a large

number of input variables related with an output. As the number of input variables increases,

the training time of fuzzy neural networks required increases exponentially. Thus, it is essential

to reduce the number of inputs to a fuzzy neural network and to select the optimum number of

mutually independent inputs that are able to clearly define the input-output mapping. In this

work, principal component analysis (PCA), genetic algorithms (GA) and probability theory are

combined to select new important input features. A proposed feature selection method is

applied to the signal estimation of the steam generator water level, the hot-leg flowrate, the

pressurizer water level and the pressurizer pressure sensors in pressurized water reactors and

compared with other input feature selection methods.
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1. Introduction

In recent years, the general problem of selecting
a salient feature set for fuzzy neural networks has
been generating a great deal of interest. It is
experienced that the performance of a neural
network strongly depends on the input features
selected for its training. Non-salient input features
to a fuzzy neural network can have even negative
results. In signal estimation applications, there are
a large number of input signals related with an
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output and it would require a large amount of time
to train a fuzzy neural network with all the input
signals as the number of connection weights for
neural networks and parameters for fuzzy
inference would be extremely large. Also, by
eliminating unimportant signals and signal
parameters, the cost and time of collecting the
data can be reduced. As the number of input
features grows, the training time required grows
exponentially. Thus, it is important to reduce the

number of inputs to a fuzzy neural network and to
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select optimum number of mutually independent
inputs that are able to clearly define the input-
output mapping. The process of selecting these
important input variables is usually known as
feature selection. The feature selection criterion is
the measure used to rank feature subsets.
Depending on the problem encountered, various
criteria can be used. If the task is to predict
properties of the measurements like the sensor
signal estimation, a criterion that evaluates the
predictive ability of the selected features should be
used.

Also, sensor signal monitoring may require an
estimation of a certain variable of interest. This
estimation can be used to aid the operators in
controlling the nuclear plants, and to detect and
isolate faulty sensors. Many neural networks and
fuzzy inference methods have recently been
presented to diagnose sensors. Through training,
fuzzy-neural networks are known to have the
capability for performing complex mappings
between input and output data, especially when
expert diagnostic knowledge and the prior relation
of fault symptom model are not clear. The direct
use of transient signals in the time domain to the
input of a neural network can be difficult since
subtle differences may occur between different
transients.

In this work, the focus is on identifying
important input features to fuzzy neural networks.
There are several feature selection methods
including principal component analysis (PCA),
genetic algorithm (GA), and others [1-5]. PCA, GA
and probability theory are combined to select
important input features and this combined feature
selection method will be called a PGP method
hereafter. A newly developed PGP feature
selection method will be applied to and verified by
the signal estimation of the steam generator water
level, the hot-leg flowrate, the pressurizer water

level and the pressurizer pressure sensors in

pressurized water reactors and compared with
other algorithms.

2. Input Feature Selection Methods

The number of variables has to be reduced for
several reasons. However, this seems to be
paradoxical at first since a dimension reduction
decreases the information content. A reduction of
the number of variables can lead to an improved
performance due to at least three reasons. First,
including features that contain irrelevant
information about measurements can cause
problems. Thus, it becomes important to use only
high information descriptors. Secondly, studies
have shown that if colinearity is present among
the variables, the prediction results can get worse.
Hence, it is necessary to remove highly correlated
variables. Finally, when making a model
containing many input parameters, a large number
of observations are required to span the complete
input space. The number of required observations
grows exponentially with the number of input
variablés, which makes a dimensional reduction
necessary to get a good model [1]. In this section,
two methods using PCA and genetic algorithm are
described and a combined method will be
proposed.

2.1. Principal Component Analysis

The principal component analysis approach
attempts to reduce the dimensionality of the
feature space by creating new features that are
linear combinations of the original features. Thus
the PCA method involves linearly transforming the
input space into an orthogonal space that can be
chosen to be of lower dimension with minimal loss
of information. The standardized input data are
projected onto the eigenvectors called the

principal components of the covariance matrix of
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the original data. The method also makes the
transformed vectors (principal components)
orthogonal and uncorrelated [6-7].

Given a signal vector x of p dimensions, x=[x;
Xz =+ X", its mean vector p and covariance matrix

T are described by
p=Ex}=[m m; - m], (1)
Z=E {x-px-p (2)

Since the true mean and the true covariance
matrix are seldom known, the mean and
. covariance matrix are replaced with the sample
mean m and the sample covariance matrix S. The
eigenvalues A1, Az, -+ A,, and the corresponding
orthonormal eigenvectors pi, pz, --- p, of the
sample covariance matrix S are calculated, and
then ranked according to the magnitude of their
associated eigenvalues.

M2 = A (3)

The eigenvectors p1, pz, *** p, are called the
principal components. The eigenvalues are
proportional to the amount of variance
{information) represented by the corresponding
principal component. The transformation to the

principal component space can be written as:
z = X'P, (4)

where P = [p,, po, - P,l.

The feature vector z can be transformed back
into the original data vector x without a loss of
information as long as the number of features, m,
is equal to the dimension of the original space, p.
For m < p, some information is usually lost. The
objective is to choose a small m that does not lose
much information.

However, this method has a disadvantage of not
reducing the number of the input signals to a PCA
block. As it were, PCA does not necessarily reduce

the number of features that must be measured
since each new feature of lower dimensionality
may be a linear combination of all of the features
in the original data vector. If we use many input
signals to the PCA block, a possibility that we use
unreliable and faulty sensor signals increases.
Although in this method the number of inputs to
the fuzzy neural network decreases, the number of
the actually used inputs does not decrease.

2.2. Genetic Algorithm

In optimization problems using genetic
algorithms, the term chromosome refers to a
candidate solution which minimizes a cost
function, generally encoded as a bit string. Each
chromosome can be thought of as a point in the
search space of candidate solutions. Genetic
algorithm is an optimization technique which
imitates the evolutionary process of a living
organism. An initial population of chromosomes is
iteratively altered by mechanisms inspired by
natural evolution such as selection, crossover and
mutation. Thus genetic algorithms process
populations of chromosomes, successively
replacing one such populétion with another. The
genetic algorithms require a fitness function that
assigns a score to each chromosome in the current
population. The fitness of a chromosome
(individual) depends on how well that chromosome
solves the problem at hand [8-9].

In this work, a fitness function that evaluates the
extent to which each individual is suitable for the
given objectives such as small maximum error
together with small total squared error and the
small number of input variables, is suggested as

follows:
F=exp(—/1|Ex - E; “/’353)’ (5)

where u,, H» and ps3 are the weighting

coefficients, and E;, E; and Ej; are the overall sum
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of squared prediction errors, the maximum
absolute prediction error and the number of used
input variables, respectively, defined as

N
E =) (i ()-yk)), )
k=1
E, = max{|y, (b) - y(h)} (7)
E3 = Ninpu/ . (8)

yak) and y(k) denote the measured signal and the
estimated signal, respectively.

Each chromosome is encoded as a bit string
which is composed of the same bit number as the
number of input variables, and one ‘1’ in each bit
string represents that the corresponding input is
selected and zero ‘0’ represents that the
corresponding input is not selected.

Genetic algorithms start from many points
simultaneously climbing many peaks in parailel,
and hence the probability of finding a false peak is
reduced compared to the methods that move from
one point to another. Accordingly, genetic
algorithms are less susceptible to being stuck at
local optima than conventional search methods.
On the other hand, genetic algorithms have a
disadvantage that it requires too much
computational time.

2.3. PGP Method

In this proposed method called PGP method,
PCA, GA and a correlation between input
variables and an output variable are combined to
select an optimal input set for signal estimation.
PCA and GA are already explained in above
subsections. Note that the correlation coefficient
matrix of the original data set is equal to the
covariance matrix of the data after the data have
been standardized. This correlation matrix
indicates a close or distant relationship among

Input feature
selection part

Generate initial chromosomes "\
by using a correlation matrix \

| Evaluate chromosomes |

Selection, Crossover and
Mutation Operators

Fuzzy Neural Network }

L

Fig. 1. Schematic Diagram of the Input Features
Selection Algorithm (PGP method)

variables (signals). The high specific (i, j)
component of the correlation matrix means that
the related two variables are closely related to each
other. These values between the input variables
and the output variable are used to initialize the
chromosomes of the genetic algorithm. To run a
usual genetic algorithm, each bit of the
chromosomes is usually randomly assigned one or
zero. However, in this work, there is a high
probability that the corresponding bit is assigned
one in case that a correlation between a specific
input and an output is high by using the
correlation matrix. On the contrary, there is a high
probability that the corresponding bit is assigned
zero in case a correlation between the specific
input and the output is low. This helps reduce the
computational time by not considering from the
first time the inputs which are not almost related
with an output. But this does not mean that this
PGP method removes completely the inputs with
low correlation values from the first time. Each
input is selected with a probability of which its
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selection is proportional to the square of the
correlation value.

The algorithm for input feature selection is
First, the initial

chromosomes of genetic algorithm are selected by

described in Figure. 1.

a probabilistic weighting technique using the
correlation coefficient matrix, which reduces the
computational burden of the genetic algorithm
which requires much computational time. Also,
the input signals realistically used for signal
estimation decrease in number through the genetic
algorithm. A set of input signals to the PCA block
_ which are important or closely related with
estimating the output sensor signal are selected. The
input signals coming into the PCA block are
converted into new variables, called score vectors,
which are orthogonal and span the multidimensional
space of original signals. For the application of the
PCA method, in this work, the number of input
features from the PCA block is selected so that
above 5 percent of original information into the
PCA block will not be lost. As it were, the selected
features include at least 95 percent of the initial
information. Also, the time-delayed signal of the
first score vector which usually includes most of
the information of input signals is used to describe

the sequential characteristics of a signal well.

3. Sensor Signal Estimation Using Fuzzy
Neural Networks

3.1. Fuzzy Inference System

Neuronal improvements of fuzzy inference
systems which mean that fuzzy systems is trained
aim at exploiting the complementary nature of the
two approaches; the fuzzy and neural network
systems. Their composite is usually called as a
fuzzy neural network or a neuro-fuzzy inference
system. Each fuzzy rule of a fuzzy inference system
is expressed as an if/then conditional rule. Thus,

the arbitrary i-th rule can be described using the
first-order Sugeno-Takagi type [10] as follows:

If x; is A, AND --- AND x,, is 4
then Vi is f;(xla ) xm)’

im 3

9

where

X1, **+, X = input variables to the neuro-fuzzy
inference system (m = number of
input variables),

A, - Am = antecedent membership function
of each input variable for the i-th
rule{i=1,2, ..., n),

y: = output of the i-th rule,

,ﬂ(xlr"':xm)zzqy'xj+rl’ (10)
J=1

g, = weighting value of the jth input onto the
i-th rule output,
r; = bias of the i-th output,
n = number of rules.
In this work, the following Gaussian and sigmoid

membership functions are used for each input

variable:
(x; ¢y 2
A (x))= ST A LA
(X)) exp[ 257 11)
1
4,(x,) = —————,
o - CU‘]H 12
i
where

¢, = center position of a membership function
for the i-th rule and the j-th input,
sy = sharpness of a membership function for
the i-th rule and the j-th input.
The sigmoid membership function is used for the
maximum and minimum center values in each
input variable and the Gaussian membership
function is used for other center values. The
output of an arbitrary i-th rule, f,, consists of the
first-order polynomial of inputs as given in Eq. (10).
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The output of a fuzzy inference system with n rules
is obtained by weighting the real values of
consequent part for all rules with the corresponding
membership grade. The output is obtained as

follows:

y=3 w1 13)

where

=
I

M=
=

w ' (14)

T

(15)

s

w, =] 1 4,(x,).

1

-
I

3.2 Training of the Fuzzy Inference System

The fuzzy inference system is optimized by
adapting the antecedent parameters (membership
function parameters) and consequent parameters
(the polynomial coefficients of the consequent
part} so that a specified objective function is
minimized. The adaptation methods of most fuzzy
inference systems rely on the back-propagation
algorithm [11]. The back-propagation algorithm is
a general method for recursively solving for
parameter optimization. Since this conventional
optimization algorithm is susceptible to getting
stuck at local optima, the genetic algorithm is used
in this work. However, the genetic algorithm
requires much computational time if there are
many parameters to be optimized. Therefore, the
least-squares method that is a one-pass
optimization method is combined for a part of the
parameters. The genetic algorithm is used to
optimize the antecedent parameters ¢; and s;, and
the least-squares algorithm is used to solve the
consequent parameters g, and r;. A simple
explanation on the genetic algorithm was given in
the above subsection.

In this work, to increase the efficiency of the

conventional genetic algorithm, three schemes are
applied to accomplish the following good
performance of the genetic algorithm: (a) initial
coarse tuning and final fine tuning by changing the
bit number of chromosomes versus generation; (b)
prevention of an initial premature convergence
without reaching optimal solutions and the
acceleration of a final convergence by using two
different selection methods of the crossover site
that is randomly selected anywhere in a
chromosome or randomly selected between only
parameters in a chromosome; (c} prevention of
final drifting without convergence by maintaining a
certain part of chromosomes with higher fitness
(refer to [11] for details).

If we fix some parameters of the fuzzy inference
system by the genetic algorithm, the resulting
fuzzy inference system is equivalent to a series
expansion of some basis functions. This basis
function expansion is linear in its adjustable
parameters. Therefore, we can use the least-
squares method to determine the remaining
parameters. If a total of input-output pattern data
for training are given, from Eq. (13) the
consequent parameters can be chosen such that
the pattern data satisfy the following equation:

y =Wgq, (16)
where y is the output data, q is the parameter

vector, and the matrix W includes the input data
defined as follows:

y=p'y2 e M,
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Fig. 2. Schematic Diagram of the Proposed
Estimation Algorithm for Sensor Signals

The superscripts in the above notations indicate
one of N input-output pattern data. The fuzzy
“neural network output is represented by the
- Nx(m+1)n dimensional matrix W and the
{m+1)n-dimensional parameter vector q. In order
to solve the parameter vector q in Eq. (16), the
matrix W should be invertible but is not usually a
square matrix. Therefore, we solve the vector by

using the pseudo-inverse as follows:

q=WW'Wy. (17)

4. Applications

The signal estimation algorithm that combines
the above-mentioned methods is described in
Figure. 2. The input-output data were obtained for
the load-decrease transients from the simulation of
the MARS code [12] which is a unified version of
the COBRA/TF and RELAP5/MOD3 codes,
which consist of a total of 14 different signals.
These data were standardized for being input to
the fuzzy neural network. The proposed algorithm
was applied to the steam generator water level,
the hot-leg flowrate, the pressurizer water level
and the pressurizer pressure sensors. Noise is
added to model the real data of the nuclear power
plant. The noise is proportional to the maximum
variation Om. Of each signal and is chosen from a

uniform distribution on the interval (-0.026

0.0201ma). In all computer simulations, the wavelet
denoising technique was applied to all
measurement signals and the Daubechies wavelet
function was used [13]. Each signal consists of a
total of 700 discrete time points where the
sampling period is 1sec.

Table 1 shows the correlation coefficient matrix
which indicates the relationships among all
gathered signals. The fuzzy neural network was
trained using one fifth of the given data in the
training stage and was verified using the remaining
data in the verification stage. Table 2 shows the
results of all application cases and the proposed
PGP method is compared with other two
methods; genetic method and PCA method.

In the application to steam generator narrow-
range water level estimation, the maximum error
and the total squared error have similar magnitude
for the three methods but PCA method is worse in
the aspects of using many inputs, which is
indicated by a fitness value. The steam generator
narrow-range water level is almost closely related
with the wide-range water level as shown in Table
1 and also, as we expect. The PGP method and
the genetic method use the wide-range water level
signal including other one or two signals,
respectively, when their methods are applied to
estimating of the narrow-range water level.

In the application to hot-leg flowrate estimation,
there is no input signal closely related with the
hot-leg flowrate as shown in Table 1. Therefore,
the maximum error and the total squared error are
relatively larger than those of other application
cases. The PCA method is very bad and the
genetic method is best except for using many
signals. In the application to the pressurizer water
level estimation, there are many signals closely
related with the pressurizer water level even
though they are correlated with each other. The
PGP and genetic methods show similar
performance. In the application to pressurizer
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Table 1. Correlation Coefficient Matrix for Gathered Signals

SE | FF | sp | sT | N | w | HT {cT | HE | AT | PP | PL | RP | PT
steam 1.0000 | 0.9897 |-0.9566 |-0.9573|-0.0031 | -0.0039] 0.9851 [0.4858 | 0.3202 | 0.9541 |-0.1417 | 0.9544 | 0.9946 | -0.1441
flowrate(SF)

;e::mem 0.9897 | 1.0000 |-0.9353|-0.9362-0.0919 -0.0916| 0.9843 |-0.4388 | -0.3475| 0.9605 |-0.0896 | 0.9599 | 0.9877 | -0.0920
::‘;‘spj 10.9566|-0.9353] 1.0000 | 0.9999 |-0.0260 -0.0252/-0.90780.7168 | 0.0436 | -0.8368] 0.2918 {-0.8317|-0.9564] 0.2942
f::;“(sn -0.9573|-0.9362]0.9999 | 1.0000 |-0.0263| -0.0254-0.9085[0.7152 | 0.0476 |-0.8377| 0.2932 |-0.8328|-0.9568| 0.2956
S/G water

ool [.0031|-0.0919 .0.0260 00263 | 10000 | 0.9985.0.0368 {0.1170 | 00570 -0.0560)02076 0.0495| 0.0207|-0.2076
zﬁ(\‘;’"ﬁ;ﬁ“e -0.0039|-0.0916]-0.0252 |-0.0254| 0.9985 | 1.0000/-0.0372{0.1153 | 0.0565 |-0.0562|-0.2065|-0.0496/ -0.0212] -0.2065
i]e(:;egmn 0.9851 | 0.9843 |-0.9078 |-0.9085 |-0.0368 | -0.0372| 1.0000 |0.3655 | 0.4000 | 0.9891 | 0.0180 | 0.9852 | 0.9904 | 0.0156
:C:n*:}]:eén 10.4858-0.4388(0.7168 [ 0.7152 [-0.1170/ -0.1153(-0.3655 {1.0000 | 0.6178 -0.2247| 0.5781 [-0.2110{-0.4899( 0.5796
hotleg 10.3202-0.3475]0.0436 | 0.0476 | 0.0570 | 0.0565/-0.4000-0.6178 | 1.0000 | -0.5152|-0.2655 |-0.5446|-0.2837| -0.2644
flowrate{HF)

z(im’)age 0.9541 | 0.9605 |-0.8368 |-0.8377|-0.0560 -0.0562] 0.9891 [0.2247 |-0.5152] 1.0000| 0.1131 | 0.9978| 0.9593| 0.1109
PR 10.1417]-0.0896|0.2918 | 0.2032 |-0.2076 | -0.2065/ 0.0180 |0.5781 | 0.2655 | 0.1131 | 1.0000 | 0.0727 | 0.0727| 0.9999
pressure(PP)

PZR water

el 0.9544 | 0.9599 |-0.8317 |-0.8328|-0.0495 | -0.04961 0.9852 0.2110 | 0.5446 | 0.9978|0.0727 | 1.0000 | 0.9540 | 0.0705
::»:rmp) 0.9946 | 0.9877 |-0.9564 |-0.9568|-0.0207 | -0.0212| 0.9904 |-0.4899 | -0.2837| 0.95931-0.0727 | 0.9540 | 1.0000-0.0751
pr pr)  [0:1441]0.0920|0.2942 | 0.2956 | 0.2076 | -0.2065(0.0156 |0579% |-0.2644) 0.1109] 0.9999 | 0.0705 -0.0751| 10000

pressure estimation, the pressurizer pressure has a
close relationship with the pressurizer temperature
because the pressurizer is in a saturated state,
which is also shown in Table 1. In the genetic and
PGP methods this pressurizer temperature signal
is used and in the genetic method additional two

signals are used.

In the summary, from Table 2, it is shown that
although PCA method uses the largest number of
input signals, PCA method is the worst of the
three methods. But the PCA method is the fastest.
It is determined that the genetic and PGP methods
show similar performance as the input selection

methods of fuzzy neural networks with application
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Table 2. Final Results for Four Application Cases [after 30 generations training for input selection (genetic

and PGP methods only) and After 50 Generations Training for the Fuzzy Neural network]

Fig. 3. Estimation of a (standardized) Steam
Generator Water Level Signal Using the
PGP Method

to sensor signal estimation. However, the genetic

methed is about three times slower than the PGP

method even though calculation time depends on

Sensors S/G water level Hot-leg flowrate Pressurizer water level Pressurizer pressure
Methods PCA |Genetic | PGP | PCA | Genetic | PGP PCA |Genetic | PGP | PCA |Genetic | PGP
Total
% 10,0045 [0.0096 |0.0098 |4.2039 | 0.0310 |0.2843 | 0264 |0.0084 |0.0073 [0.0321 |0.0228 [0.0214
squared error
Training -
Maximum
data o 0.0127 10.0184 {0.0175 |0.4041 | 0.0399 {0.1056 | 0.0177 {0.0161 [0.0149 {0.0355 |0.0294 |0.0306
or
Fitness” | 0.7419 |0.8903 |0.9108 |0.1507 | 0.7689 | 0.6669 |0.7110 |0.8789 | 0.8822 |0.6910 |0.8602 |0.8923
Total
o2 0.0176 |0.0375 |0.0389 |16.8232| 0.1220 {1.1524 | 0.0610 |0.0338 | 0.0290 |0.1325 |0.0982 {0.0906
Verification| Sauared errors
data Maxirmum
' 0.0128 10.0185 10.0180 | 0.4104 | 0.0437 }0.1331 | 0.0310 |0.0164 | 0.0152 |0.0557 |0.0590 |0.0381
error
fnput number NA L2 | 13 | N NA |4
toPCA 13 / /A 3 13 / 13 N/A 1
Number of s |3 |3 |4 7 |4 |5 |4 | a5 |3 |2
FNN inputs
F
) al WL, WL, all }S FFSP FF,CT | all |NLCT|[ST,HT| al |[ST,NL| PT
Input signals used . . NL.CT . .
signals |HF, AT | AT | signals AT RP PT | signals |AT,PT | CT,PP|signals | PT
1) This fitness was calculated in combination with the genetic optimization of the fuzzy neural network parameters.
30 — 25 30 35
25 T?nealured is<1_>-H--‘—mrgta,:sured 20 254 ‘f:‘i—n?naasured s 30
20 —e— estimated —O—estimated {145 204 | —®—estimated 25
154 1.5 2.0
s 1.04 /% s 104 15 <
T 05 E £ 45l EY
o] !
s §er - §
£ 0 5 £ 054 )
-1.04 ¥ -1.04 0.5 ®
-1.5 - 154 1.0
20 2.0 15
28 T T T T T T . 25+ T T T ——1— T -2.0
[} 100 200 300 400 500 600 700 o 100 200 300 400 S0 60 | 700
timefsec] timefsec)

Fig. 4. Estimation of a (standardized) Hot-leg
Flowrate Signal Using the PGP Method

the test cases and the relationship between input
signals and an output signal. Figures 3 through 6
show the measured and estimated signals of each



466 d. Korean Nuclear Society, Volume 33, No. 5, October 2001

3.0 25
25 verification -20
—O— measured

2.0 —O—estimated |- 1.5

15+ - 10

1.0 -4 05
s
g 0.5 -4 00 §.
2 oo {05 &
£ -]
8 05 {10 ¢
-1.0 +-15 &

-1.5 | training 20

—&— measured
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Fig. 5. Estimation of a (standardized) Pressurizer
Water Level Signal Using the PGP Method

test case. From these figures, it is shown that a
fuzzy neural network with the proposed input
feature selection method actually estimates the
relevant sensor signal using other sensor signals.

5. Conclusions

In this work, an input features selection method
was proposed for the application to signal
estimation using a fuzzy neural network. This
proposed method combines the PCA, the genetic
algorithm and the probabilistic concept. The
reduction of number of input signals is actually
accomplished by the genetic algorithm which
requires the substantial computational burden.
Thus, the heavy computational burden is reduced
by using the correlation coefficient matrix which
provides information on a close or distant
relationship between input signals and an output
signal. Each element of the correlation coefficient
matrix connotes a relationship between the
corresponding signals. Each input is selected with
a probability of which its selection is proportional
to the square of the correlation value. The usage
of the correlation coefficient matrix takes effect on
excluding from the first time the input signals
coming into a fuzzy neural network which are

35 3.0
training verification
3.0 | —@—measured —O— measured 425
—a&— estimated —O— estimated
254 =420
2.0 415
<
F 451 {10 &
B =
- :
£ 1°° ¢
o a
< 05+ 400 ©
5
0.0 -4 05
0.5 —4-1.0
1.0+ T T T T T T -15
0 100 200 300 400 500 600 700
time[sec]

Fig. 6. Estimation of a (standardized) Pressurizer
Pressure Signal Using the PGP Method

almost irrelevant with the output signal. The
proposed PGP method is about three times faster
than a conventional genetic method even though
calculation time depends on the test cases and the
relationship between input signals and an output
signal. Also, by combining the PCA method which
can reduce the number of signals to the fuzzy
neural network, the computation time for
optimization of a fuzzy neural network can be
shortened.

The proposed input feature selection method
was applied to the estimation of the steam
generator water level, the hot-leg flowrate, the
pressurizer water level and the pressurizer pressure
signals in pressurized water reactors and
compared with other algorithms (PCA method,
genetic method) and showed better performance
compared to the other two methods.
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