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Abstract

A one-dimensiona! neutronics formulation is established within the framework of the

nonlinear analytic nodal method such that it can result in consistent one-dimensional models
that produce the same axial information as their corresponding reference three-dimensional
models. Consistency is achieved by conserving axial interface currents as well as the planar
reaction rates of the three-dimensional case. For current conservation, flux discontinuity is
introduced in the solution of the two-node problem. The degree of discontinuity, named the
current conservation factor, is determined such that the surface averaged axial current of the
reference three-dimensional case can be retrieved from the two-node calculation involving the
radially collapsed group constants and the discontinuity factor. The current conservation factors
are derived from the analytic nodal method and various core configurations are analyzed to
show that the errors in K-eff and power distributions can be reduced by a order of magnitude by

the use of the current conservation factor with no significant computational overhead.
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1. Introduction

A three-dimensional (3D) neutronics code can be
considered as the ultimate means of achieving
high fidelity in the neutronics simulation of the
reactor core. Nonetheless, the one-dimensional
{1D)} neutronics model are often needed to replace
the 3D model in many practical circumstances.

The needs are two folds; 1) the significant

235

reduction in computing time and 2) circumventing
the lack of detailed neutronic data for the 3D
model. When the core characteristic parameters
are predominant in the axial direction and the
radial flux shape has negligible effects on the
global behavior such as the cases of uncontrolled
bank withdrawal, xenon transient, BWR flow
instability etc, 1D models can be useful. In the
aspect of high fidelity real time simulation, such
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1D models have a great advantage over the 3D
models that are required for a spatial kinetics code
coupled with the system thermal-hydraulics.

In the case that a 3D model is available and a 1D
model is desired for execution time, it should be
possible to generate the 1D model through a
consistent radial collapsing procedure. The 1D
model obtained as such can then exactly reproduce
the 3D results at least at the reference conditions
on which the 1D model is based. However, this is
possible only when the steady state and transient
solution methods of the 1D kinetics module are
consistent with the base 3D kinetics module. Most
radial collapsing methods to generate the 1D cross
sections conserve only the axial node average
reaction rates. In most 1D kinetics codes [1,2],
there are no provisions made for conserving axial
currents that will ensure reproducing the reference
3D results in the 1D calculation.

In this paper a new correction factor in a 1D
model is proposed that makes the 1D model
consistent with the corresponding 3D model. The
1D model is formulated within the framework of the
nonlinear analytic nodal method [3]. It will be derived
such that surface properties as well as the node
average ones are conserved. In the following
sections the correction factor called current
conservation factor (CCF) is derived for the 1D
model consistent with 3D model. The CCF is
generated at the same time when the planar 1D
cross-sections are collapsed through the base 3D
code and tested for three kinds of steady state cases.

2. Derivation of the One-Dimensional
Kinetics Solution Method

The 1D kinetics equation can be derived by
integrating the 3D time-dependent neutron
diffusion equation over the radial domain. The
solution of the 1D kinetics equation is relatively
simple because it involves only a block tridiagonal

linear system which can be solved directly by the
Gaussian elimination scheme. In order to retain
good spatial solution accuracy and consistency,
the nonlinear analytic nodal method (ANM)
implemented in the base 3D code PARCS|3] is
used in the 1D solver. The 1D kinetics equation is
rigorously derived and the planar averaged group
constants are defined. During the derivation, CCF
is introduced which guarantees the same axial
neutron currents to be obtained from the 1D
equation as the 3D reference values. With the
planar averaged group constants and CCF’s, it
becomes possible to reproduce the 3D reference
solution from the 1D model. In order to obtain the
planar cross-sections as functions of state
parameters such as fuel temperature, moderator
density and boron concentration, a generalized
tabular cross-section representation scheme is
considered. It is possible to simulate the reactor
core with these 1D cross sections. The detailed
solution methods for the eigenvalue and the
transient fixed source problems as well as the
temporal discretization methods are omitted here
since they are already documented well in the
reference [3].

2.1. Derivation of the One-Dimensional
Kinetics Equation

The 3D time-dependent two-group neutron
diffusion equation in Cartesian coordinate reads:
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Before integrating Eq. (1) over the radial domain,
we factorize the flux into two independent
functions, which are defined as the 1D flux (¢} and
radial shape function {®), respectively, as the
following:

P (x,5,2,0) =@, (2,0)P(x,y,2,1). 4)

The integration of the left hand side (LHS) of Eq.
(1) can then be performed using the factorized flux:
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In the above derivation, it was assumed that the
neutron velocities are time-independent. Since Eq.
{4) is an arbitrary factorization, it is possible to
impose a constraint on the radial shape function
to make the factorization unique. The constraint is
chosen such that Eq. (5) can be simplified.
Namely,

f&‘“‘ = (6)
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where A is the area of the radial domain. The
second term on the right hand side(RHS) in Eq. {5)
vanishes because the integral term is constant over

time and the LHS term reduces to:
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The integration of the removal term on the RHS
of Eq. (1) becomes:
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where the planar averaged removal cross-section

is defined as:
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The other types of planar averaged cross-sections
appearing in the source terms (Q,) can be defined
similarly.

The integration of the radial leakage term is
simplified by the Gauss theorem as:

[ax 3 }M= J dy+£.]xydx

(10)
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where is the leakage cross-section defined as:
1
=—1¢J dy +¢J (bC] 11
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The integration of the axial leakage term proceeds
first by decomposing the axial current term as:

J,=-p,% Dg[¢7 ia gi‘.’lj (12)
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The integration now yields:
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The first term in the RHS of Eq. (13) can be

simplified by introducing the planar averaged

diffusion coefficient defined as:
D <. 9, 14
F o Z_f D xq)g . (14)

The second term is, however, not easy to simplify.

This term would be zero if =0, namely, the

z
radial flux shape is uniform over the axial
direction, which is not the normal case. By
keeping this term explicitly by the following
definition of shape dependent current:
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Eq. (13) reduces to:
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By using Eqgs. (7), (8), (10}, and (16), the 1D
kinetics equation is now obtained as follows (after
removing A from both sides):
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where the effective removal cross-section, 3 rgs 1S
defined as follows by adding the radial leakage
cross-section:
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and the total axial current, fg, combines both
components of the current, i.e. :

Jo=T,+7, . (20)

il

When a flux distribution is available from a
reference 3D calculation, the planar averaged
group constants can be obtained by evaluating
Eqs. (6), (9), (11) and (14} for each plane. If the
current due to the difference in the radial shape
(J:,), which is small compared to the current due to
the difference in the 1D flux (J,), is neglected,
then Eq. (18} can be solved for the 1D flux, ¢, In
such case, however, it is not possible to exactly
reproduce the 3D base values of the eigenvalue
and the axial flux distribution in the 1D calculation.

A problem arises when J, is explicitly
considered. Since this term does not contain the

derivative of the 1D flux as identified in Eq. {15),
inclusion of this term makes Eq. (18) no longer a
diffusion equation. Moreover, since this term

ob
involves 3 £ . which can not be evaluated in
z

normal 3D nodal calculations, defining a collapsed
group constant for the integral in Eq. (15) is not
possible. In order to overcome this problem in the
framework of the nonlinear nodal method, the
concept of flux discontinuity is introduced here
such that the total axial current (J;) determined in
a 3D reference calculation is conserved in the 1D
nodal calculation. With the discontinuity factor
whose definition is detailed in the next section, it
now becomes possible to exactly reproduce the
3D results in the 1D calculation at least at the
reference condition and the 1D model can then be
applied to other perturbed states.

2.2. Two-Node Problem to Determine
Current Conservation Factor

Suppose two neighboring planes for which the
planar averaged group constant, fluxes, and
interface currents were obtained from a 3D nodal
calculation. For these two planes, it is possible to
formulate a two-node problem to determine the
nodal coupling relation which is used to represent
the interface current in terms of two node (or
planar) averaged fluxes as:

Iy ==-D (o, - 02)-D, (o} +9?) (21)
5 - 2D,D;
v vy 22
g z

where the superscripts t and b stand for top and
bottom node of the two nodes, respectively, and
ISg means the base nodal coupling coefficients
based on finite difference approximation. In
normal two-node problem, the interface current



Current Conservation Factors for Consistent --- K.B. Lee, et al 239

as well as the correctional nodal coupling
coefficient (CNCC), Dg, is the free parameter to
be determined from the two-node nodal
calculation. In order to solve the normal two-node
problem, four constraints are imposed per group.
They are two node average fluxes and flux and
current continuity at the interface. In a two-node
problem, however, the interface current is not a
free parameter, rather it is considered as an
additional constraint.

The two-group ANM solution for a node is given
by the following (refer to Section 4.2 of the
reference [3] for the details of the derivation of the
ANM solution):
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In the above equation, the ¢ coefficients are
determined by the transverse leakage and/or the
transient fixed source, which are zero in the 1D
steady-state case. The basis functions above are
represented concisely in terms of the two generic

functions defined below and here the first
argument, m, signifies the mode of buckling:

sn(m, Ak, u) or cn(m, Ak u)=

Jf m=0and Ak, >1
Jdfm=0and Ak, =1 @
sinh(u) or cosh(w) ,if m=1 or Ak, <1

sin(#) or cos(u)

u orl

In a two-node problem, there are then eight
coefficients (2*4 a’s) to be determined. In order to
determine them uniquely, the eight constraint
conditions must be specified and two of them are
the flux continuity condition for the two groups

which reads {the others are four node-average flux

constraints - 2 nodes x 2 groups - and two current
continuity conditions - 2 groups):

b b h_zb ot _h_:
¢g¢g(2J—4g¢g[ 2J (25)

where §, is the discontinuity factor that is assumed
to be known in normal two-node calculations.

If the two interface currents (one for each group)
are added as the additional condition in the two-
node problem, then two additional unknowns
should be introduced. For this purpose, it is
possible to represent the discontinuity factors as
follows:

fe=l-¢6, ; ¢=1-¢g, (26)

and to take e, which is called as CCF , as the
additional unknown for each group. The ten
unknowns can then be simultaneously determined
by imposing the ten constraints.

The homogeneous solution for the two node
problem (note that in the 1D steady-state problem,
there is no particular solution because the
transverse leakage is zero) can be represented as
follows in terms of the several basis functions
which differs depending on the magnitude of k_:

{sin(xz), cos(xz), sinh( ziz), cosh(pz)} , &, >hy
q)f(z)e {2}, sinh( pzz), cosh(szz)} . ko=ky (27)
{sinh(xz), cosh(xz), sinh( iz), cosh(zz)}, k. > ky

In a two-node problem, the homogeneous solution

can be compactly represented as:

@i |t st alsn(x?z)+alen(x'z) (28)
= - Jor g=bort
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The total 10 unknowns composed of 8

coefficients of the two nodes and 2 CCF s can be

solved with the following constraints:

1) node average fluxes conservation:

1 02
—y _ b P o B
(Og - .[M 7 ¢Z (Z)dZ fOf q - b’ t, g - 1;2 . (29)
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2) surface average current conservation at the
interface:

2=t 12

722 =-D}@) o)
o, d 130
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3) flux continuity using CCF factors at the
interface:

hb t
a- € )¢: [7:] =(1+ € )¢; (_ %J (31)

Note that there are additional constraints in Eq.
(30) which require the current determined in the
two node problem to be the same as the average
current obtained from the reference 3D
calculation. The above constraints constitute 10
equations that can be solved for 10 unknowns.

The final solution form should be different
depending on the basis function which is
determined by the node properties. Here, the
solution is provided only for the case that the base
functions are sin(z) and cos(z) corresponding to
m=0, Ak,>1. The eight coefficients determined
from the simultaneous solution of the 10
equations are as follows:

o 2 S 1D@DITYS + D21 + DR () (3} - ')
1 25:5:05 __sb)xb ’
(32)

ot 2 Sl 12)2DU"s' + Dy(-2J” + DK (k') (-5 +5'5;)
1 25{521(’: —S')K’ (33’)

a: 3 Sech(hbﬁb /2)(_21—51bj13Drb + ['Zb(szSD + Blbhb(,ub)z(ﬁb _ rb@b)) ‘

DD} (r - ')t (34)

ot < SHH 122D + D 2" + Db () (-5 +1';))
3 NIt ty .t :
DD, (r' - s"Yu (35)

o osc(h’k* 1)1k (G, - $°5)
' 2 -5 ’ (36)

ot = S 12k @) - 5'7;))
! =

37
2(r' -s" ’ 87
AR i b br —b , bob

gt = B 2)hb# (,, P ) (3

2(r° -s")

t, ¢ tote —t t—=t
a; _ CSCh(h 14 /Z)hr/l (t 0, +7 @, ))) (39)
2(r' - s) 0

ined

s(h*12)-pL(-h'I2
G ) SR

* QbR 1)+l (-h'12)’ ’

3. Test Problems

CCF values derived in the previous section are
generated when the 1D cross-section set is
prepared with planar collapsed cross-section. And
they are used when solving the intra nodal flux
distribution in a two node problem kernel of 1D
model.

In order to test the effect of CCF, three kinds

ABCD ABCD ABCD

top

bottom

Case-1 Case-2

Case-3

Fig. 1. Three Test Cases
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Table 1. Sample of the CCF Values
Node Case-1 Case-2 Case-3
No. CCF-1 CCF-2 CCF-1 CCF-2 CCF-1 CCF-2
2 3.922047E-02 | 3.792532E-02 | 3.932028E-02 | 3.799754E-02| 4.095733E-02| 3.965351F-02
3 1.402784E-03 | 1.540256E-03 { 1.401115E-03 ( 1.526394E-03( 1.460416E-03| 1.692759E-03
4 6.207732E-04 | 1.281259E-03 | 6.067341E-04 | 1.238928E-03| 6.193009E-04 | 1.354002E-03
5 7.097761E-04 | 1.247093E-03 | 6.572262E-04 | 1.142919E-03| 6.553792E-04 | 1.406484E-03
6 4.847944E-04 | 7.626906E-04 | 3.002599E-04 | 4.897273E-04 5.145261E-05| 6.294915E-04
7 2.859150E-04 | 4.469273E-04 | 5.295197E-05 | 9.835972E-05| -4.922900E-04 | -3.372619E-05
8 1.689825E-04 | 2.624045E-04 | -1.926969E-04 | -2.936846E-04 | -5.825792E-04 | -8.159370E-04
9 7.776116E-05| 1.208078E-04 | 1.470752E-04 | 3.410101E-04 | -4.909438E-04 | -1.378600E-03
10 -2.420514E-06 | -3.479503E-06 | 2.128189E-04 | 1.172492E-03 | -1.158163E-03 | -2.673722E-03
11 -8.231506E-05 | -1.273399E-04 | -3.193745E-03 | -7.698134E-03 | -2.277768E-03 | -3.021050E-03
12 -1.749327E-04 | -2.703663E-04 | -9.997496E-03 | -1.439397E-02 | -2.921803E-03 | -3.646835E-03
13 -2.939006E-04 | -4.556907E-04 | -5.189781E-03 | -8.247424E-03 | -2.120458E-03 | -2.667255E-03
14 -4,968247E-04 | -7.686452E-04 | -7.415104E-03 | -1.050758E-02 | -1.097869E-03 | -1.046316E-03
15 -7.109716E-04 | -1.232297E-03 | -2.313249E-03 | -4.181173E-03 | -2.601829E-03 | -5.937549E-03
16 -6.252996E-04 | -1.352798E-03 | -9.782316E-04 | -2.300859E-03 | -1.345732E-03 | -3.896898E-03
17 -1.613005E-03 { -1.334228E-03 | -2.025886F-03 | -3.963753E-03 | -2.356987E-03 | -5.068253E-03
18 -3.987261E-02 | -3.330637E-02 | -4.307671E-02 | -3.804341E-02 | -4 868531E-02 | -4.426072E-02
Table 2. Comparison of the Core Eigenvalue(K-eff) at a Steady State
Method Case-1 Case-2 Case-3
3D reference K-eff 1.087519 1.078697 1.075649
1D without CCF K-eff 1.087554 1.078791 1.075771
Error(pcm)* -35 94 -12.2
1D with CCF K-eff 1.087522 1.078706 1.075660
Error{pcm)* -0.3 -0.9 -1.1
* . Error = (3D - 1D)*100000
Table 3. Comparison of Maximum Axial Power at a Steady State
Method Case-1 Case-2 Case-3
3D reference Peak 1.5097(9) 2.5804(7) 2.2552(7)
Peak 1.5058(9) 2.5727(7) 2.2506(7)
1D without CCF
Error(%) * -0.256 -0.300 -0.202
Peak 1.5092(9) 2.5793(7) 2.2543(7)
1D with CCF
Error{(%) ** -0.033 -0.046 -0.039

** . Error = (3D - 1D)/3D*100

(#) means the node number
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Table 4. Comparison of Peripheral Node Power at a Steady State
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Method Case-1 Case-2 Case-3
3D reference Node Power 0.1637(2) 0.4954(2) 0.4776(2)
Node Power 0.1729(2) 0.5235(2) 0.5072(2)
1D without CCF
Error(%) ** 5591 5.657 6.202
Node Power 0.1654(2) 0.5005(2) 0.4828(2)
1D with CCF
Error(%) ** 1.027 1.024 1.082
Table 5. Comparison of CPU Time(seconds)
Method Case-1 Case-2 Case-3
3D reference 8.22 8.96 8.41
1D without CCF 0.39 0.49 0.66
1D with CCF 0.44 0.45 0.63
Computer : PC 300MHz Machine
3.00 T T ™ T 8.0
2.50 ‘: 30 Eq:v_vef, ST 3 ________ 6.0

Case-1 g-!
——
Case-1 g-2

——
Case-2 g~1

——
Cass-2 g~2
i

CCF Vailue

Case-3 g-1

——
Case-3 g-2
o

3 5 7 9 T 13 15 17
Number of Node Interface

Fig. 2. CCF Values vs. Node Interface for Three
Cases

of steady state calculations are performed. The
test core is based on NEACRP benchmark
problem[4]. The axial flux{(power) distribution is
mainly distorted by the control rod insertion, so
the test cases are selected as case 1; all rod out
case, case 2; rods inserted half to the active
core height and case 3; several rods are
inserted sequentially. Figure 1 shows the three

+ Error{%) of 10 witt?out cof
S Evrur(‘bé) of 1D with oot

AN
' '

by
o

Axial Power
Error(%)

Core Relative Height

Fig. 3. Comparison of Axial Power Distribution
(Case-3)

test cases.
4. Results and Conclusions

Table 1 and Figure 2 show the CCF values
obtained from the three test cases. Table 2 shows
the results of K-eff values compared with the 3D
reference value when the CCF is used and not
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used. The errors of K-eff values are reduced about
one tenth when using CCF. The axial power
distribution from 1D calculation agrees well to that
of 3D reference value as shown in Figure 3.
Tables 3 and 4 show the comparison results of
peak power and peripheral power. The errors of
power are decreased to the range of one fifth or
tenth in the case using CCF. But as shown in
Table 5, the 1D calculation time is very short
compared with the 3D calculation time, and there
is no additional CPU time due to using CCF in the
1D computation.

. With the planar averaged group constants and
CCF’ s for the specified state, it becomes possible
to reproduce the 3D reference solution from the
1D model. Thus the 1D model with CCF can
provide more accurate results at the steady state,
and the error propagation due to the difference
from the initial state will be eliminated. It is
expected that the accuracy of the 1D transient
calculation can be improved as well with the use of
CCF s provided that the dependence of CCF s on
the control rod configuration is functionalized

properly.
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