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Abstract

Investigated in this study are the modal characteristics of the coaxial cylindrical shells with

fluid-filled annulus. Theoretical method is developed to find the natural frequencies of the shell
using the finite Fourier series expansion, and their results are compared with those of finite
element method to verify the validation of the method developed. The effect of the fluid-filled
annulus and the boundary conditions on the modal characteristics of the coaxial shells is
investigated using a finite element modeling.
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1. Introduction

Coaxial shells or cylinders containing fluid have
been widely used as structural components in
various applications. One example is reactor
internal structures such as core support barrel and
upper structure barrel coupled with each other by
fluid-filled annulus {1]. To assure the reliability of
those components and to obtain information that
will enable a designer to predict plant vibration
amplitude during normal operations of a nuclear
power plant [2], it is necessary to investigate
extensively flow-induced vibration, necessitating
the investigation of the modal characteristics.
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Several previous investigations have been
performed to analyze the free vibration of fluid-
filled, coaxial cylindrical shells {3, 4]. However,
to the
approximated methods and could provide only the

previous theories were limited
in-phase and out-of-phase modes of coaxial shells
with small annular fluid gap compared to the shell
diameters. Therefore, they can only be applicable
to the low axial and circumferential modes of
coaxial shells with small annular fluid gap.
Practically, there exist many ambiguous vibrational
modes in addition to the in-phase and out-of-
phase modes.

This study develops an advanced general theory
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to calculate the natural frequencies for all
vibrational modes of two coaxial circular
cylindrical shells coupled with fluid. To support
the validity of the proposed theory, finite element
analyses are carried out for various boundary
conditions. Also it has been shown analytically
and experimentally that the immersion of a body
in a dense fluid medium lowers its natural
frequency and significantly alters its vibratory
response as compared to that in air [5, 6].
Therefore the effect of the inclusion of the fluid-
filled annulus on the natural frequencies of the
coaxial shells is investigated by comparing
frequencies between shells with and without fluid-
filled annulus. The effect is also addressed with
respect to the boundary conditions at both ends
of coaxial shells.

2. Theory
2.1. Equation of Motion

Consider fluid-filled coaxial cylindrical shells with
clamped boundary conditions at both ends. The
cylindrical shells have mean radii R;, and R,
height L, and wall thickness h, as shown in Figure
1. The Sanders’ shell equations [7] as the
governing equations for both shells where the
hydrodynamic effects are considered, can be
written as :
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Fig. 1. Coaxial Cylindrical Shells with Fluid-filled
Annulus

where k, is h?/12R?, u Poisson’s ratio, t time, p;
dynamic liquid pressure and u,, v, w, axial,
tangential, radial dynamic displacements of shells,
respectively. Also, subscripts 1 and 2 represent
the inner and outer shells, and comma () in the
equations denotes a partial derivative with respect
to the corresponding variable. For a complete
description of the shell motions, it is necessary to
add boundary conditions to the equations of
motion. Consider the simplest end arrangements
of the shell on the top and bottom supports. At
both ends of concentrically arranged shells, the

boundary conditions will obviously hold:
for the bottom support of the inner shell,

M(0) = Naf0) = 03(0) = wn(0) = O, (Za)
for the top support of the inner shell,

Mx1(L) = Nx1({L) = v1(L) = wl{l} = O, (2b)
for the bottom support of the outer shell,

M2(0) = Neo{0) = v2{0) = w2(0} = O, (2¢)
for the top support of the outer shell,

ML) = NeoL) = vaL) = wolL) = O, (2d)

where M,; and N,, denote the bending moment
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and the membrane tensile force, respectively. All
geometric boundary conditions applicable to the
ends of the shells can be reduced to the following
equations :

for the clamped-clamped condition,
01(0) = wi(0) = v5(0) = w(0) = O, (3a)

vifL) = wilL) = vyL) = wy(L) = O, (3b)
for the clamped-free condition,
01(0) = wy(0) = va(0) = w,{0) = O, (3c)

Nu(L) = Ma(L) = Neoll) = ML) = 0, (3d)

for the simply supported-simply supported

condition,
01(0) = w1(0) = v2(0) = w2(0) = 0, (3e)
MalL) = ML) = 0. (3f)

The relationships between the boundary forces
and displacements are
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Ny and Q,; denote the membrane shear force and
transverse shear force per unit length,
respectively.

2.2. Modal Functions

A general relation for the dynamic displacements
in any vibration mode of the shell can be written in
the following form for the cylindrical coordinate r, .

u;(x,6,1) u,;(x,6)
v,(x,8,0) |=|v,(x6) |explion), j=1,2. (5
w;(x,8,0)| |w,(x0)

where u/x,8), v(x,0) and wix,8) are modal
functions corresponding to the axial, tangential
and radial displacements, respectively. These
modal functions along the axial direction can be
described by a sum of linear combinations of the
Fourier series that are orthogonal.

i i Ay sin (M) cosnd
uj(x’ 0) . n=l m=) . L
v,(x,6) = ¥ {B«w +Y.B,, cos(ﬂzfx-)} sinné (6)

Wj (x’ e) n=l ms}

2{@,,] + ile cos(%)} cosné

The derivatives of the above modal functions for
the shell can be obtained using the finite Fourier
transformation [8]. The modal functions and their
derivatives of the cylindrical shell were described in
reference [7].

2.3. Equation of Fluid Motion

The inviscid, irrotational and compressible fluid
movement due to shell vibration is described by
the Helmholz equation :

! 1

1
¢m+;¢’r+;2—¢w+¢m= 7P s 7)

[+
where c is the speed of sound in the fluid medium
equal to ¥B/p,, B is the bulk modulus of elasticity
of fluid and p, stands for the fluid density. It is
possible to separate the function @ with respect
to x by observing that, in the axial direction, the
rigid surfaces support the edges of the shells;
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thus

PHx,r.0,t)=i0d(r.0,x)exp(iwt)

=iwr](r,0)f(x)exp(icot), ®)

where @ is the fluid-coupled frequency of the shells
and i = 4 1. Substitution of equation (8) into the
partial differential equation (7) gives

76:8), o+ 1 0(.60), +-Ln(r6), m(ﬂ) 7(-.6)
r r [
n(r.6) )

=_ﬂﬁr_=(ﬂ)z_
f(x) L

It is possible to solve the partial differential

equation (9) by the separation of the variables.
The solution can be obtained with respect to the
cylindrical coordinates, r, 8 and x.

for M2,0

L ¢
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where J, and Y, are Bessel functions of the first
and second kinds of order n, whereas I, and K,
are modified Bessel functions of the first and
second kinds of order n. ¢ means the spatial
velocity potential of the contained compressible
fluid and @, is related to the speed of sound in
the fluid medium as ;

2 2
(ﬂ) —(gj form=1,2,3, .. (11)

L c
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The boundary conditions of the velocity potential
¢ appear as follows;
(a) impermeable rigid surfaces on the bottom is

9¢(x,0,r)

=0;
F (12)

x=0

{b) as there exists no free surface, the axial fluid
velocity at the rigid top is also zero, so

ag (x,9, r)

o =0; (13)

x=],

{c) the radial fluid velocity along the outer wetted
surface of the inner shell must be identical to the
radial velocity of the flexible shell, so

6¢(x,0,r)

ar =‘”I (xre); (14)

r=R

{d) the radial fluid velocity along the inner wetted
surface of the outer-shell must be identical to the
radial velocity of the shell, so

6¢(x,0,r)

Py =-w,(x,0). (15)

R,

Substitution of equations (6), (10a} and (10b) into
equations (14) and (15) gives the relationships :

for ma/L > w/c,
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Now, equation (16) will be reduced to
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1,'(@.R) K,'(@.R)] (D, C,,

o [I,'fa..,kg K,'famxﬂ {D.":} - {— cm} (170)
When mn/L<w/c, I, ( }and K, ( } in equations
(16a), (16b) and (17b) should be replaced by J,,' { )
and Y, ( ), respectively. When the hydrostatic
pressures on the shells are neglected, the
hydrodynamic pressures along the inner and outer

wetted shell surfaces can be given by
p;(x.60.0)=6,p,0°¢(x,0,R))exp(iwr), (18)
where 8= 1 for j = 1 and 8;= -1 for j = 2. Finally

the hydrodynamic forces on the inner and outer
shells can be written as

Rjzpj(x’ogt) _ p,,a)zR‘zé', @

> D’ J"Z'I{cm,rwc,,zq,,y.
(19)

+ i [Cm]"w + GOy ]cos (—”lim—‘)} cos nfexp(iwt)

2.4. General Formulation

The dynamic displacements and their derivatives
can be represented by a Fourier sine and cosine
series in an open range of 0 < x < L and with the
end values using the finite Fourier transformation
[7]. Substitution of the displacements and their
derivatives into the governing Sanders’ shell
equation (la), (1b) and (1c), leads to an explicit
relation for B,., C.,; and a set of equations for
Annnjy Brnjy Cronj as follows ;
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where the end values uS, U5, v
ﬁ",- in equations (20) and (21) are defined as ;

=

2u,(0,6) L 2u,(L,6)
Lo - s u, = s
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The equivalent hydrodynamic mass effect on the
inner and outer shell is included in the coefficient da3
and des, respectively. The coefficient dss indicates
the équivalent hydraulic pressure on the inner shell
induced by the outer shell motion, and similarly des
stands for the equivalent hydraulic pressure on the
outer shell induced by the inner shell motion.
Generally speaking, the coefficient dse# dea.
Therefore the matrix equation (21) is asymmeric and
is coupled by two coefficient terms dzs and des.

The forces and at the ends of the shells can be
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written as a combination of some boundary values
of displacement and their derivatives using
equation (3). The boundary values of displacement
and their derivatives, 79, 75, W and T can be
transformed in a combination of the boundary
values of u;, @W; Ny and Q,; by equation (4), as
written in the form

8
5  [u % N, 0 0 0 0]5
Vi{ |ut W N, 0 0 0 0 &y (23)
%0 o o w o Ny o
B Lo o o wt @ Ny ||
0]
Lguj
where
! 0 0
N:q sin nB I qu (0, 0)
- 0 0
Nf“’ = 0 sinné N4(L,8) - (24)
QL, 0 0 1 0 0,0.6)
" cosné ) 0,(L,6)
0 0 -
cosnd

Substituting equation (23) into equations (20)
and (21) gives

B,, By By By B
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where B, and 8, in equation (25) are the derived
coefficients, and ({] is a 8 X 6 derived coefficients
matrix. Eventually, all Fourier coefficients A,.,,
B..., and C,.; are rearranged with a combination of

the end point values as shown in equation (26).

The geometric boundary conditions that must be
satisfied are associated with displacements v; and
w;. Hence, it follows that

4O =52+ S 800 -0, (27a)
vl(L)=g[BM, +§;Bm,(—l)"'}=0, 27b)
v,(0) =§[an +§Bm} =0, 27¢)
V(D)= i‘ [Bmz + ; B, (~1)"'] =0, (274)
w,(0) = i. [c,,", +gcm,] -0, (27e)
(D)= Cu+ $Cu7 ] -0, 278
w2(0)=g[cw,, +mi..c"’“]=°’ (27g)
wy(L) =§;[cm,, +gcm(-1)"]=o. (27h)

On the other hand, the natural boundary
conditions that must be satisfied are associated
with M,; and Nj;.

mO=(F e (v (282)

+3 K%)(u, (Y Ul rma, )+ (Rﬁl)(n By +Cyn )] =0,
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Substitution of equations {25) and (26) for the
coefficients, Bo, Conjy Bmny and Cn,; into the eight

[ilz] B, +nC, ,)](—1)("2 fjf

constraint conditions which came from the
geometric and natural boundary conditions,
written as equations (27) and (28), leads to the
homogeneous matrix equation ;

[E Jnl- o}, (29

where [E] is the 16 x 16 matrix derived from
equations (27) and (28), and

[)=[w uf wg b W W oW WM,
o o Y 30
NL No, N, 0o 0h o ou). ©O

When the cylindrical shells are clamped at both
ends, the associated boundary conditions are
written by equations (3a)} and (3b). Hence the
geometric boundary conditions expressed by
equations (27a) - (27h) must be satisfied. However,
=0atx=0and
x = L are automatically satisfied by equation (5),

U1=0,U2=0, LT)1 =0 and a)z

the modal functions set. Therefore from the first,
to the eighth rows of the matrix in equation (29)
are enforced and the terms associated with uS, u’,
0%, and @5 are released. The 8 X8 frequency
determinant is obtained from equations (29) by
retaining the rows and columns associated with Ng
o Niy, Q% and QY. For the clamped boundary
condition, the coupled natural frequencies are
numerically obtained from the frequency
determinant.

For the clamped-free boundary conditions, the
associated boundary conditions are written by
equations (3c), (3d). Hence the geometric and
natural boundary conditions of equations (27a),
(27¢), (27e), (274), (28c), (28d), (28q) and (28h)
must be satisfied. However, v; = 0, v, = 0, @)=
Oatx = 0and Niy= Nip= 0, QL=
QL = 0 at x = L are automatically satisfied.
Therefore the 1st, 3rd, 5th, 7th, 11th, 12th,

15th and 16th rows of the matrix in equation

0and W, =

(29) are enforced and the terms associated with
uS, 9, Niy and Q% are released. The 8x 8
frequency determinant is obtained from
equations (29) by retaining the rows and columns
Niy;, and Q3. For the
clamped-free boundary condition, the coupled

associated with, u, @},

natural frequencies are numerically obtained from
the frequency determinant. For the simply
supported case, the frequency determinant can
be easily obtained by similar method.
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3. Analysis
3.1. Theoretical Analysis
On the basis of the preceding analysis, the

frequency determinant is numerically solved for
the clamped boundary condition in order to find

Table 1. Dimensions and Material Properties
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the natural frequencies of the coaxial circular
cylindrical shells with a bounded compressible
fluid. The inner and outer shells are coupled with a
fluid-filled annular gap. The inner cylindrical shell
has a mean radius of 100 mm, a length of 300
mm, and a wall thickness of 2 mm. The outer
cylindrical shell has a mean radius of 150 mm with

) Shell Fluid
Unit
Inner Outer
Length m 0.300 0.300
Mean radius m 0.100 0.150
Thickness m 0.002 0.002
Young' s modulus Pa 69E9 69E9
Poisson’ s ratio 0.3 03
Density kg/m?3 2700 2700 1000
Sound speed m/sec 1483

Table 2. Coupled Natural Frequencies of the Fluid-filled Coaxial Shells(out-of-phase/in-phase)

Circumferential ~ Axial Frequency (Hz) Discrepancy
mode mode
n m’ Theory FEM % RMS  Crest Factor
1 391/1737 405/1794 3.5/3.2
2 848/ 916/ 7.4/
1 3 1398/ 1398/ 0.0/ 5.3/3.2 1.4/1.0
4 1909/ 2044/ 6.6/
1 436/997 436/1002 0.0/0.5
2 907/ 938/ 3.3/
2 3 1401/ 1480/ 5.3/ 3.6/0.5 1.5/1.0
q - - N
1 403/671 400/669 -0.8/-0.3
2 858/1345 865/1339 0.8/-0.4
3 3 1352/ 1396/ 3.9/ 27/04 1.5/1.0
4 1811/ 1888/ 4.1/
1 383/562 382/551 -0.3/-2.0
2 791/1076 791/1054 0.0/-2.1
1.7/1. 1.7/1.1
4 3 1268/1677 1289/1649 1.6/-1.7 /1.9 4
4 1729/ 1781/ 2.9/
1 386/658 388/635 0.5/-3.6
2 749/1009 752/973 0.4/-3.7
.2/3. /1.
5 3 1192/1516 1205/1469 1.1/-3.2 1.2/3.3 17711
4 1648/2087 1682/2038 2.0/-2.4
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the same length and wall thickness. The physical
properties of the shell material are as follows:
Young' s modulus = 69.0 GPa, Poisson’ s ratio =
0.3, and mass density = 2700 kg/m® Water is
used as the contained fluid with a density of 1000
ka/m>. The sound speed in water, 1483 m/s, is
equivalent to the bulk modulus of elasticity, 2.2
GPa. Dimensions and material properties used for
the analysis are shown in Table 1.

The frequency equation derived in the preceding
section involves the double infinite series of
algebraic terms. Before exploring the analytical
method for obtaining the natural frequencies of
the fluid-coupled shells, it is necessary to conduct
convergence studies and establish the number of
terms required in the series expansions involved.
In the numerical calculation, the Fourier expansion
term m is set at 100, which gives an exact enough
solution by convergence. The coupled natural
frequencies of the fluid-filled coaxial shells for the
clamped boundary condition at both ends of two
shells are shown in Table 2.

3.2. Finite Element Analysis

Finite element analyses using a commercial
computer code ANSYS 5.5 [9] are performed to
verify the analytical results for the theoretical
study. The finite element method results are used
as the baseline data. Three-dimensional model is
constructed for the finite element analysis. The
fluid region is divided into a number of identical 3-
dimensional contained fluid elements (FLUID80)
with eight nodes having three degrees of freedom
at each node. The fluid element FLUID8O0 is
particularly well suited for calculating hydrostatic
pressures and fluid/solid interactions. The circular
cylindrical shell is modeled as elastic shell elements
(SHELL63) with four nodes. The model has 3840
(radially 4 x axially 20 x circumferentially 48) fluid
elements and 1920 shell elements as shown in

B
[ares

O S N (D N D D O O B A

ELMNT'”&L OF COAXI

Fig. 2. Finite Element Model of Coaxial
Cylindrical Shells with Fluid

Figure 2.

The fluid boundary conditions at the top and
bottom of the tank are zero displacement and
rotations. The nodes connected entirely by the
fluid elements are free to move arbitrarily in three-
dimensional space, with the exception of those,
which are restricted to motion in the bottom and
top surfaces of the fluid cavity. The radial
velocities of the fluid nodes along the wetted shell
surfaces coincide with the corresponding velocities
of the shells. For the shell, three boundary
conditions are considered such as clamped-
clamped, clamped-free and simply supported-
simply supported conditions at both ends.

Sufficient number of master degree of freedoms
is selected to calculate 200 frequencies and the
reduced method is used for the eigenvalue and
eigenvector extractions, which employ the
Householder-Bisection-Inverse iteration extraction
technique.

4. Results and Discussion

Mode shapes of the fluid-coupled coaxial shells
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MODAL ANALYSIS OF COAXIAL SHELLS WIFH FLUID

Fig. 3. Typical Mode Shape of Out-of-phase
Mode (m’ =1, n=3)

o L

MODAL ANALYSIS OF COAXIAL SHELLS WIFH FLUID

Fig. 4. Typical Mode Shape of In-phase Mode
{m' =1, n=4)

are obtained by the finite element method and
typical mode is plotted in Figure 3, which shows
the deformed mode shape of the fluid and shell
elements for the circumferential wavenumber n =
3. The dotted lines in the figures represent the
undeformed shapes of the cylindrical shells.

X
MODAL ANALYSIS OF CORXIAL SHELLS WIJR FLUID

Fig. 5. Typical Mode Shape of Mixed Mode
(m’ =1, n=6 or 2)

The frequency comparisons between analytical
solution developed here and finite element method
are shown in Table 2 for the clamped boundary
conditions at both ends. The discrepancy is
defined as

Discrepancy(%) = frequency by FEM - theoretical frequency %100.(31)
frequency by FEM

The largest discrepancies between the theoretical
and FEM results are 7.4 % for the circumferential
wave number, n=1 and 5.3 % for n=2.
Discrepancies defined by equation (31) are always
less than 8% with RMS value of 5.3% and crest
factor of 1.7, therefore the theoretical results
agree well with FEM results, verifying the validity
of the analytical method developed.

All of the mode shapes can be classified into
three mode categories according to the relative
moving directions between the inner and outer
shells during the vibration : in-phase mode (Figure
4), out-of-phase mode (Figure 3) and mixed mode
{Figure 5). The vibrational mode shapes show
some ambiguous vibrational modes, neither
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Fig. 6. Frequencies of Coaxial Shells for
Clamped-Clamped Case

apparent in-phase modes nor apparent out-of-
phase modes, which are called mixed vibrational
modes. Reviewing the vibrational mode shapes
revealed that as the axial mode number increases,
the mixed vibrational modes appear frequently. As
the circumferential mode number increases, the
out-of-phase and in-phase modes in the serial
vibrational modes appear alternatively.
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Fig. 7. Frequencies of Coaxial Shells for
Clamped-Free Case

The frequencies between coaxial shells with and
without fluid-filled annulus are compared as shown
in Figures 6 through 8 for different boundary
conditions at both ends of the shell. In the case of
shells without fluid-filled annulus, the inner and
outer shells give almost the same frequencies for
lower circumferential mode numbers, but as the
circumferential mode number increases the
frequencies of the inner shell were found to be
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larger than those of outer shell frequencies.
Contrary to this, for the case of shells with fluid-
filled annulus, the frequencies of the inner shell are
always higher than those of outer shell as the
frequency deviates its lowest point. All three cases
of different boundary conditions have the same
trend.

The effect of fluid-filled annulus on the
frequencies can be assessed using the normalized
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frequency defined as

Frequency with fluid - filled annulus 32)

Normalized frequency = .
equency Frequency without fluid - filled annulus

Figures 9 through 11 show the normalized
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natural frequencies for three different boundary
conditions. The reduction of the frequencies due
to the inclusion of fluid-filled annulus is almost the
same for the different boundary conditions. The
frequencies of the outer shell decreases more than
those of inner shell and the reduction rate ranges
from 0.4 to 0.6 for the inner shell and from 0.1 to
0.6 for the outer shell. Also the lower
circumferential modes are more affected by the
inclusion of the fluid-filled annulus for the outer
shell, but the inner shell has almost the same
reduction rate all through the circumferential

modes.
5. Conclusions

An analytical method to estimate the coupled
frequencies of the coaxial cylindrical shells filled
with fluid in the annular gap is developed using the
series expansion method based on the Fourier
transformation. To verify the validity of the
analytical method developed, finite element
method is used and the frequency comparisons

between them are found to be in good agreement.

The effect of fluid-filled annulus on the frequencies

is investigated using a finite element method

generating following conclusions ;

1) The reduction rate of the frequencies due to the
inclusions of the fluid-filled annulus is almost the
same for all boundary conditions.

2) The inclusion of fluid-filled annulus affects the
outer shell more than the inner shell.

3) The frequencies of the shells with fluid-filled
annulus decrease to 0.4 ~ 0.6 and 0.1 ~ 0.6 of
those of shells in air for the inner and the outer
shells, respectively.

4) For the case of outer shell, fluid-filled annulus
effect is more significant for the lower
circumferential modes.
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