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Abstract

Various interpolation methods have been compared for reconstruction of LMR pin power

distributions in hexagonal geometry. Interpolation functions are derived for several

combinations of nodal quantities and various sets of basis functions, and tested against fine

mesh calculations. The test results indicate that the interpolation functions based on the sixth

degree polynomial are quite accurate, yielding maximum interpolation errors in power densities

less than 0.5%, and maximum reconstruction errors less than 2% for driver assemblies and less

than 4% for blanket assemblies. The main contribution to the total reconstruction error is made

by the nodal solution errors and the corner point flux errors. For the polynomial interpolations,

the basis monomial set needs to be selected such that the highest powers of x and y are as

close as possible. It is also found that polynomials higher than the seventh degree are not

adequate because of the oscillatory behavior.
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1. Introduction

Advanced nodal methods have become standard
tools for core design and analysis by replacing the
conventional fine-mesh finite difference methods.
This is due to the high accuracy and efficiency of
the coarse-mesh nodal schemes and the
capabilities to recover pin-wise information from
coarse mesh solutions. The reconstruction
methods to extract the pin-wise power
distributions from coarse reactor representations
have been studied extensively and have reached a
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high level of development for light water reactors
(LWRs) in Cartesian geometry.[1-7] All these
methods intuitively assume that the detailed flux
shape in an assembly can be approximated by a
superposition of a detailed inner assembly form
function on a smoother intra-nodal shape
function. The assembly form factor is derived from
the single assembly calculations. The intra-nodal
flux shapes are derived from the nodal solution
consisting of nodal fluxes and surface currents.
The methods developed for the reconstruction of
fluxes include

homogeneous intra-nodal
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polynomial[1-2} and exponential interpolation
methods[3-4], analytical methods[5], and direct
solver methods based on finite difference
techniques[6].

Relatively a few studies have been performed for
hexagonal geometry. A reconstruction method for
hexagonal geometry was first proposed by Yang et
al.[8] for predicting pin burnup characteristics of
liquid metal reactors (LMRs). In this method, the
intra-nodal flux distributions are interpolated using
sixth order polynomials constrained to satisfy the
nodal information. More recently, Finnemann et
al.[9] and Yamaoka et al.[10] proposed direct
solver methods. In these methods, the boundary
conditions for each assembly are first interpolated
using the global solution, and then the diffusion
equations for each assembly are solved with the
constructed boundary conditions. In the former
method, the global solution is obtained with a
nodal method, and the diffusion equations are
solved with a finite difference method. On the
other hand, in the latter method, the global
solution is obtained with a finite difference
method, and the diffusion equations are solved
with a Greens function method.

In this paper, we investigate the interpolation
methods for reconstructing pin power distributions
in hexagonal geometry in more detail by extending
the study in reference 8, since they are more
efficient than the direct solver methods.
Specifically, we have examined various ways for
reconstructing intra-nodal flux distributions from
full core nodal diffusion calculations performed in
hexagonal geometry using the nodal option[11] of
the DIF3D code[12]. As alternatives to the
interpolating polynomial employed in reference 8,
various combinations of nodal quantities and
different basis functions are investigated. In
addition to the collocation method used in
reference 8, the least square method is employed
to determine the expansion coefficients. Section 2

describes these variations of interpolation
methods. Section 3 presents the results of
numerical tests for a liquid metal reactor, and
Section 4 concludes the paper.

2. Reconstruction Methods

The DIF3D nodal scheme employs a nodal
expansion method and the interface current
formulation for solving the multi-group diffusion
equation. In hexagonal-z geometry problems, the
nodal unknowns for each node and each energy
group are five flux moments and eight interface
partial currents. Equivalently, the nodal
information for each node and each group
consists of one node-averaged flux, eight surface-
averaged fluxes, eight surface-averaged net
currents, and four flux moments (one for each axis
of the hexagonal prism).

In the interpolation methods, each intra-nodal
flux distribution is approximated by a function in a
predetermined function space such that the
resulting function reproduces a desired set of the
above nodal values. For example, in reference 8,
the flux within a node is assumed to be separable
in the hexagonal plane and axial directions, and
then the axial and hexagonal plane flux
distributions are interpolated with a cubic
polynomial and a sixth order polynomial of two
variables, respectively. The interpolation
coefficients are determined by requiring these
polynomials to reproduce desired subsets of nodal
quantities and local corner point fluxes. The
corner fluxes are approximated using the nodal
quantities of the three nodes surrounding a corner
point and additional continuity conditions.

In this study, we employ the same separability
assumption used in reference 8 and focus on the
reconstruction of the hexagonal plane flux
distributions. Various combinations of constraints
and different basis functions are investigated. In
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Table 1. Linear Functionals Associated with Nodal Quantities

Nodal Quantity

Linear Functional

L= [ #(x, y)atvdy

V = node volume

Node-averaged flux

L= [ #9495 (i=1,2,-.6)

Surface-averaged flux

A = surface area

Lo =8 [ # 99lx(s), #9ds (i=1,2,,6)

Surface-averaged net current

D = diffusion coefficient

n; = unit normal vector of surface S;

Lf"(¢)=-117 fvw.(x, ) o(x, Ydxdy (i=x,u,v)
w(x, y)= sgn(x)
w,(x, )= sgn(y+x/V3)
w,(x,y) = sgn{y—z/V3)

Planar moment

Li(¢)=¢(x;,y) (i=1,2,-,6)

Corner point flux x= /COS‘(ZZ—EDA , ¥i=Isin ’gl X
{ = side length
L?+(¢)= by Vlx, v)
d__.
Flux derivative at corner point L (@)= t;- vé(x;, )
t; = unit tangent vector of surface S;

addition to the above nodal quantities, the fluxes
and flux derivatives at comer points are included in
the constraints. Using a method similar to that of
reference 8, the flux and flux derivatives at a
corner point are determined in terms of the nodal
quantities and diffusion coefficients of the three
nodes surrounding a corner point.

To determine the flux and flux derivatives at a
corner point, the planar flux distribution is
assumed to be biquadratic (less the x* y? term) in
each of the three nodes surrounding a corner
point. A system of 24 equations (for the eight
coefficients of this expansion in each of the three
nodes) can be obtained by (a) requiring the node-
averaged fluxes, surface-averaged fluxes, and
surface-averaged net currents to be reproduced, (b}

enforcing additional continuity conditions on the
midpoint net currents and on the flux derivatives at
a corner point in the tangential directions of
interfaces, and (c) imposing a source-free condition
at a corner point. By solving these equations for
the coefficients, the planar flux distribution in each
node is obtained. The flux and flux derivatives at a
corner point are determined by evaluating the
resulting planar flux distribution.

2.1. Polynomial Interpolation Methods

If the hexagonal plane flux distribution is
interpolated for each group g by a polynomial in
an N-dimensional polynomial space Fy, then it can
be represented as



306 dJ. Korean Nuclear Society, Volume 31, No. 3, June 1999

P (x,v) = g‘.ICi",f,,(x, ) (1)

where {fi, f2, -+, fa} is the basis of Fn. The
expansion coefficients c,? are determined by the
collocation method in which a desired set of nodal
quantities and corner point values are required to
be reproduced exactly by the resulting polynomial.
Each of the nodal quantities and corner point
values can be associated with a linear functional
defined on the function space Fy as shown in
Table 1. Therefore, if {L,, L,, ***, Ly} is the set of
the linear functionals associated with the nodal
quantities required to be reproduced, this leads to
the problem of finding the coefficient vector ¢ for

a given vector of nodal values @ = (@, @, -, @)
such that
Le=o 2

where L is the generalized Gram matrix whose
element in the m-th row and the n-th column is L.,
{f).

This problem can be solved only if L,’s are
independent in the algebraic conjugate space of
Fn, say Fy*.[13] That is, the rank of the Mx N
matrix L must be M. In order for the rank of L to
be M, it is necessary to choose the function space
such that N>M. However, this is not a sufficient
condition. The M linear functionals are not always
independent in Fy* even when N>M. Therefore,
the minimum degree of the polynomial and the
associated sets of basis functions with which the
given nodal information can be reproduced were
first determined by evaluating the generalized
Gram matrix analytically and by reducing it to the
row-echelon form. Table 2 shows the minimum
degree of polynomial for several combinations of
the available nodal quantities and the fluxes and
flux derivatives at six corner points.

As shown in Table 2, the dimension of the

minimal polynomial space is generally greater than
the number of constraints. As a result, the
interpolation polynomial cannot be determined
uniquely with the given constraints. In order to
determine the unique interpolation polynomial in
each minimal polynomial space, the subspaces
whose dimension is equal to the number of
constraints and in which the associated linear
functionals are independent were determined by
examining independent monomials. Using these
subspaces, several numerical tests were performed
to evaluate the accuracy of interpolation schemes.
Reference solutions were calculated using the
triangular finite difference option of DIF3D with
very fine triangular meshes. For the purpose of
these preliminary tests, the values of nodal and
corner point quantities were obtained by utilizing
the reference solutions. Using these nodal and
corner values, the hexagonal plane flux
distributions were interpolated in each of these
subspaces and compared to the finite difference
reference solution.

These numerical tests showed that the
interpolation accuracy strongly depends on the
selected set of basis functions. Among the various
subsets of the independent monomials with
respect to the given set of linear functionals, the
best interpolation accuracy was given by the subset
selected such that the highest powers of x and y
are as close as possible. Based on these test
results, the monomials in this subset were selected
as basis functions. These basis monomials are
included in Table 2 for several combinations of
nodal quantities and corner values.

Since the generalized Gram matrix can be
evaluated analytically,[8] Eq. (2) can be solved
analytically for arbitrary values of nodal quantities.
As a result, the coefficients of basis monomials in
Eq. (1) are obtained as linear combinations of
selected nodal quantities, and the interpolation
polynomial is uniquely determined. This
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Table 2. Minimum Degree of Polynomial and Basis Monomials for Various Combination of

Nodal Quantities

Mini
Nodal Number of fntmum .
Case . a . Degree of Basis Monomials
Quantities Constraints
Polynomial
NAV
SAVs 1, %, v, %% xy, v, 57, 5Py, 0, o,
1 SNDs 19 628" Xy B xd v N AP et o
q
CPVs Y
NAV
SAVs 1 x, v, %% xy, v, o8, %%y, %%, o8, X,
1 SNDs 22 7(36) Ky, xA2, xy’, vt 8k, O,
CPVs xy®, X%y, Py
PMTs
NAV
SAVs 1, x, v, %%, xy, V%, &, Py, xf, oF,
<y, <52, xy®, vt %0, xy, X o
i SNDs 31 8 (45) 4 5 6 .5 42 33 24 5
CPVs Xy,V, X, XYy, Xy,Xy, Xy, ry,
52 43 34 44
CPDs XY,Xy,Xy,Xy
NAV
SAVs 1, x, vy, %% %y, v%, 7, &%y, %, v°, %,
. SNDs 34 9 (55) <y, x5, x?, vt o8, xy, X o
CPVs ' vP 38, By, k2, P, K P,
CPDS x5y2, X4‘93, X3y4’ X2y5, xyG, X4y4, x5y4
PMTs

*NAV = node-averaged flux, SAV = surface-averaged flux,

SND = surface-averaged normal derivative, PMT = planar moment,

CPV = comer point flux, CPD = corner point flux derivative

®Dimension of the corresponding polynomial space

interpolation function can be further manipulated
to be invariant under the symmetry transformations
of hexagon[14] by performing 12 symmetry
transformations of hexagon on this interpolation
polynomial with appropriate permutations of
nodal and corner values and by taking an average
of the 12 resulting functions. For example, for a
given set of node-averaged flux §,, surface-
averaged fluxes ¢ °,, corner point fluxes $;,
surface-averaged net currents J°;, flux derivatives

at corner points d°%, and planar flux moments

¢ 5, the hexagonal plane distribution of the g-th

group flux is determined as
Be(ry)= 6, F(x9)+ 2:1{¢;-Ff(x,y)+ b Filx,y)
+ I Pl y) +d5 FI (x9) +di FE (x,9) (3)

+ 92T

where F s are the cardinal functions[15]
corresponding to individual nodal quantities. The
functional forms of cardinal functions depend on
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the selected nodal quantities and basis monomials.
However, in each interpolation method, they form
a biorthonormal set for the linear functionals
corresponding to the nodal quantities to be
reproduced.

2.2, Least Square Method

The nodal values calculated with the nodal
expansion method are not exact, but have some
errors. Especially, the planar flux moments have
relatively large errors compared to the values
determined using the fine-mesh finite difference
solution. Furthermore, the fluxes and flux
derivatives at a corner point are determined
approximately using the nodal values and diffusion
coefficients of the three nodes surrounding a
corner point. Therefore, it may not be the best
way to determine the expansion coefficients in Eq.
(1) such that the reconstructed flux distribution
reproduces the nodal quantities exactly.

As an alternative to the collocation method, the
least square method has been tried. In this
method, the expansion coefficients in Eq. (1} are
determined such that the 2-norm of the difference
in nodal information between the reconstructed
flux distribution and the nodal calculation is
minimized. Specifically, it has been tried to
improve the expansion coefficients of the
collocation method by reflecting the additional
nodal information which are not used in
determining the coefficients. Using the cardinal
functions of the case | of the polynomial
interpolation methods (where one node-averaged
flux "¢, six surface-averaged fluxes $°;, six
surface-averaged net currents J°;, and six corner
point fluxes $°; are used), the hexagonal plane
flux distribution was expanded as

P lx,y) = gam-Fi(x, ¥) (4)

In the collocation method, the coefficient a, of
each cardinal function is given by the
corresponding nodal or corner value as discussed
in the previous subsection. In the least square
method, these coefficients are re-estimated by
utilizing additional three planar moments (note
that corner values are not given by nodal
calculations).

Applying the 22 linear functionals
corresponding to the 22 nodal or corner quantities
to Eq. (4) in an appropriate order, we obtain the
following matrix equation in which the number of
equations are more than unknowns:

I\, _ (%

(a)*= (%) g
where [ is the 19 X 19 identity matrix and B is the
3% 19 matrix composed of the images of cardinal
functions F, with respect to the three functionals
corresponding to the planar moments. The vector
a is the unknown coefficient vector, ¢, is the
vector composed of the above 19 nodal or cormner
quantities, and $ ; is the vector composed of
three planar moments.

Denoting the matrix on the left-hand side and
the vector on the right-hand side of Eq. (5) by A
and ¢, respectively, the least square solution of
Eq. (5) is given by the vector a that minimizes
ilAa— ¢ il,. Consequently, the coefficient vector

a is given by the solution of the following matrix
equation:

(I+B™B)a= ¢,+ B¢, 6)

where bold B is the transpose of B. By solving
this equation, the expansion coefficients are
obtained as the linear combinations of 22 nodal or
local quantities. Here, it is noteworthy that the
coefficient of cardinal function F,, becomes just
the node-averaged flux as in the case of the
collocation method. This is due to fact that the
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images of the cardinal function F,, with respect to
the functionals associated with three planar
moments are zero. In other words, the node-
averaged flux, which is more accurate than the
other nodal quantities, is reproduced by this least
square method.

2.3. Hybrid Function Interpolation Method

The multi-group diffusion equation for a
homogenized hexagonal node can be represented
as

— Vi (x,9) + K (x,9)=S,(x.y) (7

where x? = 3 ,./D, and S, is the fission and
scattering source in group g. &' and D, are the
removal cross section and the diffusion coefficient,
respectively. Even though S; and ¢, are not
independent because of the fission source, an
approximate solution of Eq. (7) can be obtained by
assuming that they are independent. In this case,
the solution is given by a sum of the homogeneous
solution of Helmholtz equation and the particular
solution due to the source S, .

If we approximate the source S, by projecting it
on a polynomial space, the particular solution of
Eq. (7) can be approximated by a polynomial. In
addition, the solution of Helmholtz equation can
be represented as an infinite sum of the

¥l x + 1) Guar all unit

exponential functions e
vectors (£, £.). If this summation is truncated, the
solution of Eq. (7) can be approximated by a linear
combination of exponential functions and a
polynomial. Based on this observation, it has been
tried to interpolate the hexagonal plane
distribution using the basis functions composed of
a polynomial and exponential functions.

In this method, the fourth order polynomial and
the exponential functions in the directions normal
to each surface of the hexagon was used as basis

7
% Blanket
% Reflector/Shield

Fig. 1. Planar Layout of 450 MWt LMR Core.

| Driver

‘ Controt

functions. That is, the hexagonal plane flux

distribution was expanded as

$,(x,9) =ataxtayt a4x2 +agyt gy + @’ + agxly

+agy + ayy’ + apr' + ey’ + ay )

xdx V302 —x{x-V33/2

+be™ + be +bse

—x,(x+V39)/2 2lx—V3912

+b4e"’x+ b5e '|‘b6€
The 19 expansion coefficients were determined by
the collocation method such that one node-
averaged flux, six surface-averaged fluxes, six
corner point fluxes, and six surface-averaged net

currents are reproduced.
3. Numerical Tests

The accuracy of the above reconstruction
methods has been tested by performing
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Case |
Case H
Case 1l
Case IV
Hybrid
LsaQ

Fig. 2. Maximum Interpolation Errors (%) in
Power Densities.

benchmark calculations for a two-dimensional
{mid-plane) representation of a 450 MWt liquid
metal reactor[16). As shown in Figure 1, this core
is a small heterogeneous core with internal
blankets, and hence the leakage effect is relatively
large. Reflector and shield assemblies surround the
whole core, and the hexagonal lattice pitch is 16
cm. The reference solution was obtained by
performing a nine-group diffusion calculation with
the one-sixth-core model. The triangular finite
difference option of the DIF3D was used in this
calculation with 864 triangular meshes per each
hexagon.

The group fluxes and power density in each
triangular mesh were reconstructed using the
reconstruction methods described in the previous
section, and compared to the reference solution.
In order to determine the error contributions
attributable to the errors in the nodal information
provided by the DIF3D nodal scheme and the
approximations in the reconstruction schemes,
separate interpolation calculations were also
performed using the nodal and corner values
collapsed from the reference solution. These
calculations give the interpolation errors due to the
approximations in each interpolation method.

Figure 2 shows the maximum interpolation

Fig. 3. Maximum Reconstruction Errors (%) in
Power Densities.

errors in power densities for individual driver and
blanket assemblies, These results show that the
interpolation functions (of the case I, Il of the
polynomial interpolation methods, and the least
square method) based on the sixth or seventh
degree polynomial are excellent. Even in the
blanket assemblies which have large flux gradients
and small power densities, the maximum errors
are less than 0.4%. Except one assembly, all these
maximum errors occurred at the assembly
periphery. However, the eighth degree polynomial
of the case Ill and the ninth degree polynomial of
the case 1V result in large interpolation errors. In
general, these large errors occurred around the
middle part between the center of hexagon and
surfaces. This is due to the oscillatory behavior of
higher order polynomials[15] and the nodal
information concentrated on the node interfaces.
The hybrid interpolation method also shows large
interpolation errors in blanket assemblies. This
implies that a fourth order polynomial and the
exponential functions in the directions normal to
the surfaces are not adequate to represent large
flux gradients accurately.

It is worth mentioning again that the
interpolation accuracy strongly depends on the
selected set of basis functions even when the same
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set of nodal information and the same polynomial
space are used in the interpolation. For example,
from the preliminary numerical tests discussed in
Section 2.1, it was found that the sixth degree
polynomial of the case | of the polynomial
interpolation methods is more accurate up to
about five times than other sixth order polynomials
derived with the same nodal information but
different basis monomials. For a given set of nodal
information, among the various sets of the
independent monomials with respect to the
associated functionals, it is desirable to select the
monomial set such that the highest powers of x
and y are as close as possible.

Figure 3 shows the maximum reconstruction
errors (including the errors in the nodal
information) in power densities for individual driver
and blanket assemblies. These results show that
the sixth degree polynomials of the case | of the
polynomial interpolation methods and the least
square method are better than the other
interpolation functions. The maximum errors in
the reconstructed power densities are less than 2%
for driver assemblies and less than 4% for blanket
assemblies. The least square method is only
slightly better than the case I of the polynomial
interpolation methods. This result and the
interpolation errors shown in Figure 2 indicate
that the planar moments do not improve the
interpolation accuracy much.

Comparing these reconstruction errors to the
interpolation errors, it can be seen that the nodal
solution errors and the corner point flux errors
make much larger contribution to the
reconstruction error than the interpolation error
itself. In order to determine the errors due to the
corner flux approximation separately,
interpolation calculations were also performed
using the reference nodal values and the
approximate corner fluxes, which were computed
with the reference nodal values as described in

Section 2. The maximum errors in the
reconstructed power densities are less than 1, 2,
and 3% for driver, internal blanket, and radial
blanket assemblies, respectively. By comparing
these power densities with those reconstructed
with the nodal solution, the reconstruction errors
attributable to the nodal information were found to
be less than 1.5, 2.5, and 4% for driver, internal
blanket, and radial blanket assemblies,
respectively. These results indicate that the
maximum errors due to the nodal information and
the corner flux approximation are not additive
since they occur at different positions. The
maximum errors due to the corner flux
approximation always occurred at corner points,
while the maximum errors due to the nodal
information generally occurred around the
midpoints of interfaces.

Compared to the interpolation errors, the
reconstruction errors of the seventh degree
polynomial of the case Il of the polynomial
interpolation methods are very large in radial
blanket assemblies adjacent to reflectors. (Note
that the interpolation accuracy of this case is
slightly better than the case 1.) This implies that the
planar moments of these assemblies calculated
with the DIF3D nodal scheme have relatively large
errors. In fact, these assemblies have large flux
gradients, and hence relatively large planar
moments. As a result, the absolute errors in planar
moments calculated with the nodal scheme are

also relatively larger for these assemblies.
4. Conclusions

Various interpolation methods have been
examined for reconstruction of LMR pin power
distributions from nodal diffusion calculations
performed in hexagonal geometry using the nodal
option of the DIF3D code. For several
combinations of nodal quantities, interpolation
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functions are derived using various sets of basis
functions. The collocation method and the least
square method are employed to determine the
expansion coefficients. The accuracy of these
interpolation functions has been tested by
performing benchmark calculations for a 450
MWt LMR.

The test results indicate that the interpolation
functions based on the sixth and seventh degree
polynomials are quite accurate, yielding maximum
interpolation errors in power densities less than
0.4%. The sixth degree polynomials obtained by
the collocation and the least square method yield
maximum reconstruction errors that are less than
2% for driver assemblies and less than 4% for
blanket assemblies. The main contribution to the
reconstruction error is made by the nodal solution
errors and the comner point flux errors. In order to
improve the overall accuracy, therefore, it is
necessary to reduce the nodal solution error.

The interpolation accuracy strongly depends on
the selected set of basis functions even when the
same set of nodal information and the same
polynomial space are used in the interpolation. As
a result, it is desirable to select the basis monomial
set such that the highest powers of x and y are as
close as possible. It is also found that polynomials
lower than the fifth degree cannot represent the
large flux gradients in small heterogeneous core
accurately. Polynomials higher than the seventh
degree are not adequate either because of the
oscillatory behavior.
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