Journal of the Korean Nuclear Society
Volume 27, Number 3, June 1995

(Technical Report)
Validation Testing of Safety-critical Software

Hang Bae Kim and Jai Bok Han
Korea Atomic Energy Research Institute

(Received December 21, 1994)
Safety-critical ZZE4go]2] A FA1H

sty - sRle
FHUAG AP L
(1994. 12. 21 A)

Abstract

A software engineering process has been developed for the design of safety critical software for
Wolsong 2/3/4 project to satisfy the requirements of the regulatory body. Among the process, this
paper described the detail process of validation testing performed to ensure that the software with
its hardware, developed by the design group, satisfies the requirements of the functional specifi-
cation prepared by the independent functional group. To perform the test, test facility and test sof-
tware were developed and actual safety system computer was connected. Three kinds of test cases,
i.e,, functional test, performance test and self-check test, were programmed and run to verify each
functional specifications. Test failures were fedback to the design group to revise the software and
test results were analyzed and documented in the report to submit to the regulatory body. The test
methodology and procedure were very efficient and satisfactory to perform the systematic and auto-
matic test. The test results were also acceptable and successful to verify the software acts as speci-
fied in the program functional specification. This methodology can be applied to the validation of
other safety-critical software.

2 o

WA LAE 2, 3, 437 safety-critical &= Eg|olol gt FA| 7| o] 8 FAEHE wE4]7]7] 915}
of £ Ego} el Azt ARE R £ =Folde 2FolA AFAHA Al dsle] 7|5}
e, AFAgelat AATFANN At £z Edo)7t SHE 7151 EoA Foddh 9 FAE =5
s & galshs Zelnt. o] AFAIY T 53457 At Al Advie} A|H & L= e} AL
sglon, AFAYL 71548, AeAd Y AIAAA G G2 FA =AU AFdAAE B4, &
2HEE 4S5 AL gl Frso] 4T edolst £ A, HF AT Loz A=) FA7]%
o AEE Zolcth Awd AFAF whH Aals g golx AFHo|glon, APAAE LT e

385

dJ. Korean Nuclear Society, Vol. 27, No. 3, June 1995

7t 715 A E 23 A7 THE AS AR AFHE vdFnt B AL o} E saf-
ety-critical £Z Eflo] ZAFolx HLH 4 gl-& Ao},

1. Introduction

Recently, software has been increasingly adopted
to the safety critical systems in the nuclear power
plant to take the advantages, such as flexible logic
and easy change, over the conventional hardware
and to improve the overall reliability of the plant by
reducing spurious trips. But the potential concerns,
such as error sensitivity, inherent to the software are
always the issue for the reliability and trustworthiness
of the safety critical software. [1] To overcome the
concems, various Kkinds of efforts have been perfor-
med to develop standards, design process and wverifi-
cation methodology relating to the safety critical sof-
tware. A software engineering process has been suc-
cessfully applied to the development of the software
for the Safety Shutdown Systems for Wolsong 2/3/4
Nuclear Power Plant project.

Among the serial steps of engineering process, this
paper describes the details of the validation testing

performed for the Shutdown System (SDS) Program-

mable Digital Comparator(PDC). For the validation
testing, test facility has been setup and the test sof-
tware has also been developed for systematic and
automatic testing. In order to perform the test, the
test facility was connected to the actual PDC and the
test cases were programmed and run on the test fa-
cility. After the test, test failures had been fedback to
the design process to revise the software until no fail-
ure found and the test results were documented to
submit to the regulatory body.

2. Requirements
2.1. Standard

There are many standards, draft standards and
guidelines that provide the requirements for the as-

surance of safety critical software. But no single stan-
dard or guideline fully satisfies the requirement that
the software is assured to be of high integrity. High
integrity means software can be trusted to work dep-
endably in critical functions, and if fails to do so, cat-
astrophic results may occur. [2]

In 1990, Ontario Hydro and AECL. CANDU jointly
prepared the Standard for Software Engineering of
Safety Critical Software to specify the requirements
for the engineering of safety critical software used in
realtime control and monitoring systems in nuclear
generating station. [3] This standard was developed
to incorporate the basic concept of IEC 880[4] and
the practical experience gained in licensing the safety
critical software for Darlington Nuclear Generating
Station. [5] Though intended not to be restrictive in
terms of methodologies, it establishes the require-
ments for certain practices such as mathematical
specifications, formal verification, reliability testing,
and hazard analysis. The engineering process for the
development of the PDC has proceeded in accord-
ance with this standard. In this standard, the objec-
five of validation testing is described as to test that
the executable code integrated with the target hard-
ware and any pre-developed software meets the req-
uirements specified in the Design Input Document
(DID). The inputs to the test are the DID, code, sub-
system hardware and pre-developed software. It also
describes the detail requirements of validation test
procedure required to cover.

2.2. Quality Project Plan [6]

The purpose of this plan is to specify the system-
atic approach to be used for the whole software en-
gineering process which provides confidence that the
software system conforms to the established technical
and functional requirements. It applies to software

Vdlidation Testing of Safety-critical Software--- H.B. Kim and J.B. Han 387

development, verification and support process, and
describes the organizational criteria, standards to be
followed, documentation plan, facilities and tools to
be used, and informal technical reviews. It meets the
requirements of CAN/CSA Q396.1.1{7] and the
Standard for Software Engineering of Safety Critical
Software.

2.3. Software Functional Specification

The functional requirements for the safety critical
software are developed from the reactor safety analy-

sis of the expected station response to postulated init-

iating events. The functional design specification res-
ulting from the analysis is described in the Program
Functional Specification(PFS). [8] It is prepared by
the functional group who has a black box knowledge
of the implementation of the software design and is
independent from the design group. This document
provides the detailed information about which trips
are required, what process signals to measure, what
the trip setpoints and the hysteresis should be, and
how these values should change as a function of the
operating state of the plant.

For simple example, the trip requirement for the
Steam Generator Feedline(SGFL) Low Pressure is
specified as “If any SGFL pressure signal is below
the trip setpoint{3.9 MPa), open the parameter trip
D/O.” This specific requirement is designed into saf-
ety critical software and undergone validation test by
test case described in section 5.3.1.

3. Software Design and Verification

In accordance with the PFS, software design group
performs the software development and design verifi-
cation. Software development process consists of sof-
tware requirement definition, software design and
code implementation. After finishing the design, de-
sign verification process is performed, and unit and
subsystem testings are performed by the design
group.

Unit testing begins at the module level with thor-
ough debugging and testing by the software designer
to detect logic errors and to test functional complete-
ness.

Physical inputs, real time interaction with other
modules, and other external stimuli are intentionally
simulated rather than real.

Subsystem testing is then performed by the inde-
pendent verifier to ensure that the group of program-
s or modules operate correctly as the software is
integrated into the computer system as a whole. I
also verifies the data transmission between modules
within a computer.

Once the software has been frozen, it is handed
over to the functional group for validation and re-
liability tests.

Software design and wverification process are sum-
marized as follows. {See Fig. 1)
Functional requirement - Program functional
specification
(functional group)
Software design - Software requirement

definition

- Software design
- Code implementation
Requirement verification - Software requirement
review

- Software design review
- Systematic design veri-

Design verification

fication

Code verification - Code review

- Systematic code verifi-
cation

- Code hazard analysis

- Unit testing

- Subsystem testing

- Validation testing
(functional group)

- Reliability testing
{functional group)

Testing

STANDARD AND QPP

—

PROGRAM FUNCTIONAL SPECIFICATION

Validation ,—] Design
VALIDATION TEST S/¥ REQUIREMENT
REQUIREMENT SPECIFICATION
| [
P VALIDATION TEST TEST FACILITY SOFTVARE I<
PROCEDURE DEVELOPMENT DESIGN
I I |
VALIDATION TEST FACILITY SOFTWARE
TEST CASES VERIFICATION VERIFICATION
[I
VALIDATION UNIT AND
CROSS-REFERENCE SUBSYSTEM TEST
L— VALIDATION TESTING —l
Test Case Error 1 Software Error

TEST REPORT

Fig. 1. Software Design and Validation Process

4. Validation Test Facility

Computer based test facility is developed to im-
prove the speed to allow the scope of the test to be
widened, reviewability by logging all test actions, rep-
eatability and maintainability of the validation test.

4.1. Test Hardware [9]

Test computer is configured for functional testing
of the PDC. It is capable of generating and reading
analog voltages and digital - signals and performing
timing measurements on the responses of the PDC.
The hardware consists of test computer, data acqui-
sition hardware and 48V power supply. The PDC
inputs are connected to the test computer outputs in
order to simulate the process signals and its outputs
to the test computer inputs in order to evaluate the
PDC responses. (See Fig. 2)

dJ. Korean Nuclear Society, Vol. 27, No. 3, June 1995

DAH : Data Acquisition Hardware 1/0 BOARD
Al
o A/O
MONITOR | H Pc [a or1 PDC
H D/O
f KEYBOARD ,L—] | g%vp':,?\v,v ER] WATCHDOG

Fig. 2. Test Facility Configuration

The test computer consists of IBM-PC AT-486
compatible with built-in floating point co-processor,
clock speed 33MHz, 16 MB RAM, hard-drive 200M
, SUGA color monitor, 2 serial and 1 parallel
port, two floppy drives and standard mouse and key-
board. The data acquisition system. consists of 1/O
boards, buffers and mounting chassis.

4.2. Test Software [10]

A software tool has been developed using the Lab-
VIEW application software supplied by National In-
strument Corporation. It transforms the test cases
into specific testing actions on the test computer as
follows.

—Generate test signals via process 1/0 and/or data
link to the PDC

—Receive the corresponding response signals from
the PDC

—Compare the response signals from the PDC with
the expected results set by test case

—Report pass or failure of each test

4.2.1. Instruction Set

Various kinds of instruction sets are supported by
the test software and the key instructions are as fol-
lows.

CALL : Run a subroutine
CHECK :Check if a variable is in the expected
state

Validation Testing of Safety-critical Software--- H.B. Kim and J.B. Han 389

COMPARE : Compare the observed values with the

expected value

DEFINE : Assign a name to an I/O point

LET : Assign a value to a variable

RAMP :Increase or decrease test signal linearly
with time

REPORT : Write a test result to the log file

SET : Set the value of an 1/O point of the
PDC

TITLE : Identify the test case to be run

4.2.2. Special Names and Variables

Special names and variables are defined internally
by the test software and followings are the key nam-
es and variables.

TIMING DO : assigned to the D/O whose response
time to be measured.

COSNn : the time of change of state #n

TOLERANCE : the amount by which an analog sig-
nal may differ from its expected value
while still being considered equal.

X :a special variable used for COM-
PARE instruction not to flag specified
variable as failure in comparison.

5. Validation Test

The unit and subsystem tests are white box tests to
detect errors in software coding and execution of the
design. On the other hand, validation test is a black
box test that is designed to ensure that the PDC

meets the functional requirements for the design. Val-

idation test is performed by the functional group pur-
posely without a detailed knowledge of the design of
PDC software to keep independence with the design
group.

The majority of the validation test are automated
and test program, called test cases, are written using
a test software that is run in the test computer which
simulates the environment of the plant external to
the PDC. The process I/Os of the test computer are
connected to the process 1/Os of the actual PDC.

For Validation testing, following documents are req-
uired to prepare.

— Validation test requirement document

— Validation test procedure

— Validation cross-reference document

— Validation test case

— Validation test report

5.1. Requirements for Validation Test [11]

This document describes the functional require-
ments for validation test itself. It includes general req-
uirements such as objective and responsibility, test fa-
dlity hardware and software requirement, documen-
tation requirement, test case requirement and the re-

quirement for extension of credit to other PROMs.
5.2. Validation Test Procedure [12]

This procedure explains the test process, analysis
and storage of test results, disposition of failed tests
and design principles of test cases. It also describes
the detail steps of each test cases and procedure for
extension of credit.

Validation test is performed as following steps.
—Ensure that the desired PROMs to be tested are in

the memory
—Connect the test computer to the PDC
— Start the PDC and test computer
—Follow the test instructions
—Run the test cases
— Analyze the test results

The results of automated tests are recorded in the
electronic log files and the results of the manual tests
are recorded in the checKlist.

By analyzing the test results, if the PDC responses
are not consistent with the functional requirements
then the PDC software fault must be addressed to
the design group through the Software Change Re-
cord (SCR). In this case, the validation process shoul
d be repeated from the beginniné until no failure oc-

curs.

390

It is possible to extend the credit from a fully tes-
ted and credited set of PROMs to other PDC PROM-
s by binary comparisons of software core image.

5.3. Validation Test Case

Validation test cases are programmed using test
software and run in the test facility. Validation test
cases are divided into three categories : functional
test, performance test and self-check test. The test
cases can be chained to automatically start the next

test case when a test is finished.
Test cases are prepared in accordance with the fol-

lowing principles.

— Completeness to test as many inputs as practical

—Clarity to make the test simple

—Modularity to use subroutine whenever possible

—Robustness to allow suitable margins for inputs
and outputs not to cause spurious test failures.

5.3.1. Functional Test

Functional test is to verify specific PDC functions
specified in the software functional specification and
consists of following tests.

Single trip test is to test immediate normal and ir-
rational trips on every instrument loop.

Table 1.

dJ. Korean Nuclear Society, Vol. 27, No. 3, June 1995

Delayed trip test is to test individual delayed trips
on the parameters such as Primary Heat Transport
(PHT) high pressure and PHT low core differential
pressure.

Dual trip test is to test the independence of trip
parameters and of loops within a parameter.

Power calculation test is to test the calculation of
the weighted average power and compensated ion
chamber linear power.

Parameter trip conditioning test is to test that the
immediate parameter trips are conditioned out at cer-
tain low power.

Setpoint modification test is to ensure that trip set-
points dependent on power or pump mode are set
to the specified values.

For example, single trip test is programmed in T-
able 1 and 2.

5.3.2. Performance Test

Performance test is to ensure that timing require-
ments are met as specified in the functional specifi-
cation and consists of following tests.

Single trip timing test is to ensure that an analog
signal past the immediate trip setpoint on any given
instrument loop will result in a parameter trip D/O
being opened within the required time.

TITLE SINGLE -Test of single immediate trip

CALL DEFINE
CALL INITIAL

; Define I/0O names
; Initialize system

; Steam Generator Feedline Low Pressure Parameter (SGFLP)

DEFINE Al =Al_ SGFLP

DEFINE DO _PARAMETER =DO _ SGFLP
LET LOW_SP=3.900

LET NOMINAL =4.700

LET Al_TOL=0.026

CALL SINGLE.SUB

TESTEND

; Define test Al as SGFLP loop
; Define relay logic D/O

; Specify low setpoint

; Specify nominal value

; Set Al tolerance

; Call subroutine

Validation Testing of Safety-critical Software--- HB. Kim and J.B. Han 391

Table 2.

TITLE SINGLE.SUB-Trip test subroutine for specified loop

SET Al=NOMINAL
SET DO _PARAM =CLOSED
COMPARE

SET AI=LOW_SP+AI_TOL
SET DO _ PARAM =CLOSED
COMPARE

SET AI=LOW_SP—Al_TOL
SET DO __PARAM =OPEN
COMPARE

SET Al =NOMINAL
SET DO _PARAM =CLOSED
COMPARE

s

EXIT

; Set Al to nominal value and
; ensure that everything is normal

; Set Al just above low setpoint

; Expect no parameter trip
; Compare PDC output with expected value

; Set Al just below low setpoint

; Expect parameter trip

; Set Al back to nominal value
; Expect no parameter trip

Multiple trip timing test is to ensure that the par-
ameter trip D/O opening times are within specified
limits when simultaneous trips occur on parameters.

Delayed trip timing test is to ensure that the speci-
fied time requirements for the trip delay and mini-
mum trip duration are satisfied.

Typical functional test is explained as follows using
single trip timing test.

—Call DEFINE and INITIAL subroutine to define
I/O names and initialize the system

—Identify the A/l and D/O parameter for the instru-
ment loop

—Set setpoint and maximum specified trip time

—Set A/] close but not exceeding setpoint and en-
sure no trip occurs. Set A/l exceeding setpoint
and wait until trip occurs, then log the trip time
(continue 100 times)

—Set A/l back to nominal value and calculate the
average trip time and log maximum trip time.
Check if the maximum value exceeds the specified
maximum value.

—Continue other parameters.

5.3.3. Self-check and Error Handling Test

These tests simulate hardware failures so that the
PDC error detection and handling capabilities have
been verified during unit and subsystem testing.

Incorrect PROM insertion test is to manually check
the safeguards built into the PDC PROMs to ensure
that PROMs intended for a particular PDC cannot
run undetected to a different PDC.

Watchdog trip test is to simulate the watchdog test
pushbutton being closed which instructs the PDC to
stop toggling the watchdog update D/O and allow
the watchdog to time out.

Analog and digital I/O wraparound test is to verify
that analog and digital /O faults are detected by the
wraparound self-checks.

Invalid or irrational input test is to ensure that the
PDC responds as specified to signals beyond ir-
rational alarm limits and to high signal spreads.

Power failure and restart test is to ensure that the

392

safest possible initial values specified in the functional
specification are selected for PDC outputs if no sig-
nals can be read at start-up.

5.4. Validation Cross Reference [13]

The validation cross reference document is inten-
ded to provide a cross reference between PDC func-
tional requirements and the test cases programmed
to verify those requirements. Each functional require-
ments specified in the PFS are confired by match-
ing the test cases one by one to allow a reviewer to
confitn easily that every requirements have been
thoroughly tested.

5.5. Validation Test Report [14]

After the validation testing, test report is prepared
to describe the test results including the status of test
software and hardware, test methodology, log files
produced automatically by test cases during testing
and summary results. If there were any failures
and/or problems during testing, Software Change
Request (SCR) was prepared and sent to the re-
sponsible group for correction.

6. Conclusion

This paper described the detail process of vali-
dation testing performed for the actual project.
Though the software testing could not be perfect
inherently, the tests appeared to be acceptable and
successful to test that the safety critical software, des-
igned by the design group, satisfies all the functional
requirements specified by the functional group. The
test facility and software developed for the project
was very efficient to test the software systematically
and automatically.

It is expected that this well structured validation tes-

ting process can be applied for the testing of other
safety critical softwares. And also it is planned to in-
troduce our experience of reliability testing, which is
the next process to the validation testing.

J. Korean Nuclear Society, Vol. 27, No. 3, June 1995

References

1. DL. Pamas, AJ. van Schouwen, S.P. Kwan,
“Evaluation of Safety Critical Software”, Com-
munication of the ACM, Vol. 33, No. 6, June
1990, pp. 636 —648.

2. DR. Wallace, D. R. Kuhn, L. Beltracchi, “Stan-
dard for High-Integrity Software”, Nuclear Safety,
Vol. 35, No. 1, January-June 1994, pp. 86—97.

3. Standard for Software Engineering of Safety Crit-
ical Software, rev.0, December 1990.

4. IEC 880 “Software for Computers in the Safety
Systems of Nuclear Power Stations.”

5. JR. Popovic, G.J. Hinton, “CANDU Computeriz-
ed Safety System”™, EPRI Conference, Advanced
Computer Technology for the Power Industry,
Scottsdale, Arizona, USA, December 1989.

6. 86-68350-QPP-001, “Quality Project Plan, Prog-
rammable Digital Comparator Shutdown System
Number 27, rev.1, August 1994.

7. CAN/CSAQ396. 1189 “Quality Assurance
Program for the Development of Software used
in Critical Application”

8. 86-68300-PFS-000, “Program Functional Speci-
fication, Shutdown System Number 2 Program-
mable Digital Comparators”

9. 86-68000-220-101, “Hardware Manual, Vali-
dation and Reliability Test Manual”, rev.0, Aug-
ust 1994.

10. 86-68000-220-102, “User’s Manual, Test Lan-
guage Interpreter”, rev.1, August 1994,

11. 86-68000-DR-001, “Design Requirements, Shut-
down System Numbers One and Two Validation
Test Requirements”, rev.0, August 1993.

12. 86-68300-TP-001, “Test Procedure, Shutdown
System Number Two Validation Test
Procedure”, rev.1, August 1994.

13. 86-68300-220-011, “Wolsong 2, 3 & 4 SDS2
Validation Cross-Reference”, rev.0, August 1994.

14. 86-68300-TR-000, “Test Report, SDS2 Prelimi-
nary Validation Test Report”, rev.0, September
1994.

