Journal of the Korean Nuclear Society
Volume 26, Number 2, June 1994

Near-Field Transport of Radionuclide Decay Chains

Chul-Hyung Kang
Korea Atomic Energy Research Institute
(Received January 17, 1994)

Wl ALA] #l & B3] A<2] Near-Field o] &

PASE I~
YA AT L
(1994.1.17 A %)

Abstract

Much attention has been given to predict the near-field mass transfer of a single radioactive
species from a waste solid into surrounding porous medium. But only limited considerations have
been given to predict the coupled mass transfer of species with a radioactive decay chain. In this
study we present an analysis assuming that the members of a decay chain dissolve congruently with
a solubility-limited matrix. We give general, non-recursive analytic solutions for the transport of a
radioactive decay chain in a finite porous medium when nuclides are released congruently with the
matrix. As an illustration we consider the decay chain U — 2°Th - ?*Ra from spent fuel. These
solutions may be useful and potentially important in performance assessment of radioactive waste
repositories.
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1. Introduction

In radioactive waste and mixed waste studies,
much attention has been given to predict the
fransport of a single radicactive species from the
waste form into surrounding porous medium, But
only limited considerations have been given to
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predict the coupled transport of species in a
radioactive decay chain. Failure to account for
nuclides generated during transport may underesti-
mate releases to the biosphere.

Although many solutions and computer codes for
the transport of radioactive chains exist, most of
them have limitations. Some use approximation
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approaches. Some are limited by the number of
chain members. Others give a recursive solution.
Chambré et al. [1] obtained the general, non-recur-
sive ‘analytic solution for the transport of radioactive
chains of arbitrary length. Lung et al. [2]
implemented the general solution in finite and semi-
infinite porous media for time-dependent mass
transfer assuming that each member of the decay
chain is at a specified constant concentration at the
waste surface and for band release at the waste sur-
face. In the analysis of the concentration boundary
condition, however, there were unresolved problems,
e.g., the interior maximum in the concentration profile
which exceeds the surface concentration prescribed at
the solubility limit, or the negative mass flux at the
waste surface. These solutions may be useful for many
situations with radioactive and mixed wastes where a
constant concentration, such as the solubility, can be
specified. However, for radioactive species dissolving
from a solid waste form, as in high-level radioactive
waste or spent fuels, a more sophisticated analysis is
needed. In this study, we solved the equations, as-
suming, more realistic, that the members of arbitrary
length of a decay chain dissolve congruently with solu-
bility limited matrix.

2. Theoretical Analysis

Congruent dissolution of two species means that
the ratio of the time-dependent mass rates of dissol-
ution of those species equals the ratio of the time
dependent concentrations of those species in the dis-
solving solid. Congruent dissolution is expected if
there is no preferential leaching of any constituent in
the waste solid. For example in a reducing environ-
ment the UOz matrix of spent fuel appears to dis-
solve congruently with the soluble constituents of
spent fuel However, if any constituent is of
sufficiently low solubility, the species may not be able
to dissolve all as it is released from the solid matrix
by uranium dissolution. The dissolution of the low-
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solubility species is not congruent with the dissolution
of the uranium, although the release of the species
and uranium from the UO: matrix solid may be
congruent. The released low-solubility species can
form a precipitate at the waste surface.

Here it is assumed that a matrix species whose
dissolution is controlled by solubility, and other
species dissolve congruently with the matrix. In light
of the introduction, the “matrix” for this purpose
could be uranium dioxide in spent nuclear fuel in a re-
ducing environment, or it could be the precipitate of
8], 24U, and other uranium isotopes that will form
on the surface of spent fuel in an oxidizing environ-
ment or on glass waste. In this case we have to deal
separately with the matrix species and the chain
members.

The governing equation for the matrix species is

ON,, N, _ n®Nm
KmT + vT + MKnNp = D 32
0<z<L,t>0 (1)

which is to be solved for the concentration of the
matrix species, Nn(z, t). Here subscript m means the
matrix species, D is the dispersion coefficient, Km the
retardation coefficient, A~ the decay constant, and v
the groundwater pore velocity.

With the initial condition

Nm(2,0) =0, 0<z<1L (2)
and the boundary conditions

Np(0,) = ¢,, t 20 (3)
—Dco:z"'+wN,,.=th for z =L, t>0. (4)

where ¢ is the solubility limited concentration of
the matrix species, and h is the mass transfer coef-
ficient describing the mass transport at z=L, and is
assumed to be constant. From a previous analysis [3]
one can estimate the time necessary for the transient
mass transfer coefficient to reach a steady state value.
For example, for cylindrical waste form the criterion
for the time necessary to establish the steady state
mass transfer coefficient is given by Ut/Kro~1.2. Here
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U is the ground water pore velocity, ro is the radius of
the waste form, and K is the retardation coefficient.
For U =1m/yr and ro=25 cm, the time to reach the
steady state varies from 3 years to 300 years, as the re-
tardation cofficient varies from K=10 to K=1000.
This time period is much smaller than the time period
in which we are interested. Thus one can assume
reasonably the mass transfer coefficient to be constant
for all time for this range of ground water velocity. For
very low ground water velocity or very high retardation
coefficient, one may use different mass transfer
coefficients at early times and later times. This early
time mass transfer coefficient may be obtained by
averaging the transient mass transfer coefficient over
time.

The governing equations for the members of the
decay chain are

AN, Ny . 82N,

Kl_at + v—az + MKiN = D 522
ON. 8N. O2N.

sz'{ + va—: 4+ A KN, = D—éz—: + MKMN, (5)
AN; IN; 2 N;

K"Et_' + va—z' + MKGN; = Daaz}:' + Mic1KiaaNiy

where Ni =Ni(z, t) is the concentration of the i

member. The functions Ni(z, t), i=1, 2, --- are sub-
ject to the initial conditions
Ni(z,0) =0, 0<z< L (6)

and the type Ill boundary condition at the waste sur-
face

—Dc% 4 veN; = M(t) for z=0,t>0 (7)

where ¢ is the porosity.
The boundary condition at z=L for the i member is

—Dc%JrucNi:hN.- for z=L, t>0. (8)

Mit) is determined from the definition of the congru-
ent release

Ma(t) _ Mi(t)
M@ - M 20 )

or

Mi(t)
a2

Mit) = Mn(1)
where Mn(t) and Mn(t) are the inventory and the mass
flux of the matrix species, respectively, and Mi(t) and
Mi(t) are those of the i member.

To solve this system one proceeds as follows.

1. Solve the goveming equation, (1), with side
conditions, (2), (3) and (4), and compute the
mass flux of the matrix species Ma(t) at the inner
interface.

2. From equation (9) compute M(t).

3. Solve the governing equations, {5) with appropriate
side conditions, (6), {7) and (8}, for the chain
members.

To obtain the concenfration of the matrix species,

Nm(Z, t), let
Nu(2,8) = U(z) + W(z,1) (10)
where U(z) satisfy

di 2
v 4 KU = p4Y , 0<z<l@ (11)
dz dz?

with side conditions

U@ = ¢ (12)

_Dci—tz]-+v(U=hU for z = L. (13)

The solution U(z) is given by

U(z)=e/?Pu(z) , 0<z<1 (14)

where
u(z) = (ae™9* + bet=*) {15)
co(az+ gm)et~t (16)

a=
(a2 + QM)C'"L — (a2 - Qm)e—q"L

—c.(ay — gm)e~InE

b= (ag + gm)etL = (a3 — gm)e=9mL (17)
Kpdm v
& = Endn (2 (18)
h —ve/2
az = _—Dv:/ (19)
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Now W(z, t) must satisfy

aw oW aw
Km-a—t + va—z + AnKmW = D'ET '

0<z< L, t>0
with the side conditions
W(z,0) = -U(z), 0 <2< L

WO,) =0, t >0

—Dta—w+vsw=hW for z =L, t>0.

8z

The solution W(z, t) is given by

W(z,1) = e**/?P ZA,sin(p,z)e-*'-' ,

=1

0<z<L, t>0
where
_D 2. 2
'\lm - I(m (ﬂl +qm)

-1 =
A= W/o di(z)u(z)dz

eull® = /OL EHE L
The functions ¢(z} are given by
$i(z) = sin(Biz)
with eigenvalues §1 given by

tan(BiL) = -—g;— .

Putting them all together

Npn(z,1) = e”*/*Pu(2) + f: Arsin(Biz)e 2],
=1

0<z<L, t20

The release rate Mn(t) is given by

Mu(t) = (- D(%— + veNm) | ;=0

il

i=1

(20)

(21)
(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

o0
S~ Deet? [(0)+ ) 241 ]
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= e¥(t) , t>0. (31)

where

W)= 57 — DR [W(0) + 3 24BN
=1

On substitution of (31) in to (9) one obtains

M) = «w(z)Mi;((‘,l), 130 (32)

Because the dissolution rate of the matrix is usually so
low, one can neglect the mass loss of the matrix and
decay members due to the dissolution. Then the in-
ventory can be written

Mp(t) = MSe™ 2=t |t (33)

v
o

v
o

Mit) = ) Byem M, ¢ (34)
j=1

Here M, is the initial inventory of the matrix, and By

is the coefficient of the Bateman equation

i o
Bij = z(%

k=1 "'z

MW = 2 (35)
k

=k
i

where M;, is the initial inventory of the k™ member.
Substitution of (33) and (34) into (32), then yields
the flux of the radionuclide

M(O) = €} mle Mg, 12 0. (36)
j=1m

To awoid mathematical and numerical difficulties in
solving the field concentration of chain members, we
divided the solution into two modules: (1) a module
to compute the boundary concentration with congru-
ent release model, and {2) a module to compute the
field concentration using the boundary concentration.

First solve the boundary concentrations of the chain
members, Ni(0, t}, then

9 i
Ni(0,t) = == [ Ba
M"'K' k=1

00
A .
T conv(p; k,i) dp +
E(ﬂ, + o)L + grym) + @ vipik,i) dp
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“conv(p;k,n)dp] , t > 0 (37

+XIWmE Y

j=1ms=j n= I=}
where

conv(pyi,n) = [B(t) e~ PN x o= bat

" .
/ #(r) e~ Qi= Am) T o= 8= 1) 4p
[

-An%-+mﬂﬂ+°mL+ﬂf?)+“

_ 1 - bt ~ (Ai=Am) 1y _

el vy wamy o )
D i 2 B
Kem r=1 L+l bm

e = e
A.‘ - /\m - 61-

1
A|‘—Am— 6n+ 5m

(e bt _ = (NimAnt bm) t)] ,

ay =vf2D

h—-vef2
w =252

Kn
=t o)

D
6o = N7 (ﬂl’ +q'1|)
n

1
o =D - g,

Yar = [(Ar = An) = "?rnr]

oy

I=—1——?
! ﬂ'+01

with eigen values fi given by

Bi(ay + a3)

t. L="———"
sn fi B —ar1az2

t>0.

(38)

{39)

(40)

(41)

(42)

(43)
(44)

(45)

{46)

Next, we solve the system with arbitrary concen-

tration boundary condition, i. ., Ni(0, t) =#(t).
Then the solution becomes

=
o1y = et/ D —2 g s ; - &
Ni{z,t) = ¢ X [ '§=1(L T I‘)»Bl sin Bz fi{t) ~ e +

v
—

i-113 i

+ Am

j=lm=j n

[V]z

3] 1

( 2 ) B sin Bz
L+ H';;{(Fmﬁ? + Yar)

£i() * e,

z>0, t>0, i=12 ... (47)

The details of this analysis are given by Chambré et
al. [2] and Kang [4]. For the computation of the infi-
nite surnmations in (37) and (47), one may adopt the
en(Se) transformation, which was developed by
Shanks [5].

3. Numerical lllustrations

We use the 2*U—2Th—?5Ra chain in a spent
fuel matrix of UQ: to illustrate the solution. This is
an important chain in the safety assessment of rad-
joactve waste repositories. The inner layer we consider
might consist of backfill around a radioactve waste
package, or a damaged rock region. The values used
are here for a backfill around a waste package in a
wet-rock repository:inner layer thickness L =0.30m,
masstransfer coefficient h =107 m/yr, groundwater
velocity v=0 m/yr, diffusion coefficient D=107°
em?/s and porosity of the inner layer ¢ =0.3 [2, 6].
Table 1 shows data on the ®*U—*"Th—%*°Ra
chain.

Figure 1 shows the nomalized flux of the matrix
species and each member of the decay chain, *U—

Table 1. Data Used in lllustrations

Nuclide =y =y PTh  *%Ra
Ki 120 120 1500 300
T, o 45%x10° 77x10° 16x10°
M3orMS,g 174x10° 338 0 0
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Fig. 1. Normalized Matrix Species and Radionuclides
Mass-Fluxes at the Waste-Backfill Interface as a
Function time.

Th-» 25 Ra at the waste surface. The fiux of the
matrix species decreases as time increases and 22U
fills up in the backfill region. At about t ~300 years
the backfill is almost filled up, and the flux decreases
rapidly. The 28U reaches steady state about t=~1000
years. The trend of the flux of #2*U is almost the
same as that of the matrix species until the decay ef-
fect of 2*U becomes important at t ~10°years. The
fluxes of Z°Th and ?*Ra have dips at t=~ 1000 years.
These dips come from the fact that the flux of the
each member depends on the inventory and the flux
of the matrix species, see {9). In early times the flux
of the matrix species decreases, while the inventories
of 2@Th and *°Ra increase due to the decay of the
21U. The increasing rates of these inventories exceed
the decreasing rate of the flux of the matrix species.
Thus the fluxes of these two daughters increase.
However, for the time period, 300 { t { 1000 years the
flux of the matrix species decreases rapidly, thus the
fluxes of Z°Th and ?Ra decrease even though their
inventories still increase. After this time period the
fluxes increase until the decay effect of #*U becomes
important.

Figure 2 shows normalized concentrations as a
function of time at the interface of the two layers,
z=L, shown as a solid curve. For comparison, the
concentration at the waste surface, z=0, is also
shown. The concentration at the layer interface is
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Fig. 2. Normalized Concentration in the Backfillas a
Function of time at Waste-Backfill, 2==0, and
Backfill-Rock Interface, z=L.

zero at early time because it takes time for nuclides
to diffuse to the interface. At later times the concen-
tration at the interface becomes almost the same as
the concentration at the waste surface. This means
the concentration in the inner layer has become flat
at later time. This is different from the case of the
concentration boundary condition problem [2], which
showed the concentration at z=L to be greater than
that at the z=0 for some nuclides due to the interior
maximum as mentioned in the introduction.

Figure 3 shows normalized flux profiles at both
ends of the inner layer as a function of time. The
solid curves represent the fluxes at the waste surface
and the dashed ones represent the fluxes at the
outer interface. The trend of the flux at the outer
interface is the same as the trend of the concen-
tration af that point. The mass flux of 2234 at z=0
becomes almost equal to that at z=L for t)1000
years, which means the backfill can no longer retard
the migration of uranium. But 2*Th does not show
this behavior, and the flux at z=L is smaller than that
at z=0. The backfill still provides some degree of re-
tardation effect for 2°Th. The flux of ?Ra at z=L is
somewhat higher than that at z=0 for t ) 10° years.
This is because the retardation coefficient of ®°Th is
higher than that of ?Ra. Therefore the production
rate of Z°Ra inside the backfill is greater than that in
the waste.
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Fig. 3. Normalized Radionuclide mass Fluxes into the
Backfill, z=0, and into the Rock, z=L, as a Func-
tion of time.
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Fig. 4. Fractional Release Rates of Radionuclides Norm-
alized to Their 1000 year Inventories as a Function
of time.

Figure 4 shows fractional release rates of the
nuclides at both ends of the backfill. The frac-
tional release rates are based on their 1000-year in-
with the solubility of
=107%g/cm®. In this figure the solid curves rep-

ventories, uranium,
resent the fractional release rates at the inner
interface and the dashed ones represent the fractional
release rates at the outer interface. Because the
values in this figure are based on 1000-year inven-
tories, the fractional release rates at 1000 years at
the interface are identical for all nuclides, by the defi-
niton of congruent Because of the
continued growth of ?*Ra and ?’Th in the waste

release.
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solid, the release rates of these species increase with
time. Because of this ingrowth and the 1000-year
normalization, the post-1000-year fractional release
rates of 2°Ra and ?*Th are greater than that of 2*U.
The trends of the fractional release rates in to the
outer layer are the same as those into the inner

layer except at early times.

4. Conclusions

The general non-recursive solutions for the mass
transport of a radioactive decay chain in the finite me-
dium are obtained when nuclides are released
congruently with the matrix species. Before this analy-
sis became available, the concentration boundary con-
dition was used to analyze the mass transport of the
radionuclide. In the analysis of the concentration
boundary condition, however, there were unresolved
problems, e. g., the interior maximum in the
concentrtion profile which exceeds the solubility limit,
or the negative mass flux at the waste surface. In the
problems, eg., the interior maximum in the

To show numerical illustrations the decay chain
24— 2Th—>*°Ra in a spent fuel waste is used.
This is an important chain in the safety assessment of
radioactive waste repositories. However the solutions
are not limited by this choice, and can handle a decay
chain of an arbitrary number of chain members.

These solutions may be useful and potentially im-
portant in performance assessment of radioactive

waste repositories.
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