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Abstract

The new discrete elements method (DEM) is applied to the one-group neutron transport
equation in one-dimensional slab geometry. The fixed source and the criticality problems are
treated and three spatial differencing schemes (the DD, the SC; and the LC schemes) are
tested to determine the most computationally efficient in the DEM.

In all cases, the accuracy of the results obtained from the DEM shows an improvement over
that obtained from the standard discrete ordinates calculations. And the LC scheme gives the

most accurate results in the DEM.
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I. Introduction

The discrete ordinates method (DOM) for
obtaining numerical solutions to the integro-
differential form of the transport equations has
been used extensively in reactor calculations. In
this method, a set of discrete directions for Q is
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chosen, and the transport equation is evaluated
for these fixed directions. Each discrete direction
can be visualized as a point on the surface of a
unit sphere.

In more physical respects, the assumption
underlying the neutron transport equation is that
neutrons stream in straight lines between collisions
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and that all directions of streaming are possible. In
the DOM, only a few streaming directions are
allowed. In effect, this restriction changes the basic
physical model. This fact is the most important
cause of the inaccuracy of the DOM and the ray
effects in a two-or three-dimensional problem. So
efforts to accurately solve the neutron transport
equation have been sustained. That is, various
angular quadrature sets"” and higher order spatial
schemes®*® have been developed. But the essen-
tial feature of the DOM which is the use of the
fixed discrete directions is not altered.

To improve this limitation of the DOM, the dis-
crete elements method (DEM) was proposed by
K.A. Mathews in the early 1980s.® In the DEM,
the angular variable of the neutron flux is discre-
tized into a number of solid angle elements in a
unit sphere, and the neutron transport equation is
evaluated for these directions by suitable averag-
ing processes. Therefore, within each solid angle
element, the neutron streaming directions can be
steered by changing physical conditions of a
medium.

The element directions are determined by the
appropriate numerical quadrature rule and the
conventional DOM for each solid angle element.
Evaluating the transport equation in the steered
element directions is then done by using the spa-
tial differencing scheme.

As a result of such a treatment of the angular
variables, we can consider more accurate stream-
ing directions of neutrons in the DEM than those
in the DOM. Therefore we can strongly diminish
the cause of the inaccuracy in the discrete ordin-

ates results.
II. Theory

Let us consider the time-independent one-

group transport equation in slab geometry”

KD )+ T ) =al ), ()
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where

qlx, )= zu S, pr—s 1 Y%, pe)d o slx, ).
2)

The notation is conventional
By integrating Eq.(1} over the solid angle ele-
ment domain ., we obtain the discrete elements

form of the one-group neutron transport equation
o
ox [ 4 n(x) W n(x)] + Zt(x) Tnix) =qg_(x), 3

m=12-. M.
In Eq.{3), we have defined the average element
angular flux W¥n(x), element current J,(x), and ele-

ment source g, (x) as

1

Wnlx) =7 S,lm W(x, p) dp, (@)
1

L= 1, AW ) dge, ©)
1

W= |, k) dg, ©)

with the element weight defined as
Wn= du. 7
= (A ()

In addition, we have also defined the element
direction (called” the flux weighted mean stream-
ing direction”) as
AT, p) d g
Hlx)= . (®)
Ly W) d g

where #m is the domain of angle of the m-th

discrete angle element. If we obtain ¥.(x) for all
m by solving Eg.(3), the scalar flux can be deter-

mined as

D= 3 Wa Lol ©)

To solve this set of M coupled differential equa-
tions [Eq.(3)], discretization of the spatial vari-
ables by applying finite difference techniques is
required. To this end, various spatial differencing
schemes have been developed. At present, there
are three representative spatial differencing
schemes(i.e., the DD, the SC, and the LC
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schemes). When the spatial variable is discretized
into the spatial grid with [ mesh points, we assume
that = (x)= = and Hn(x)= #m over a mesh cell i.

First, we introduce the Diamond Differencing
(DD) scheme®*® (for Hw.>0)

_2—¢m 2en 9,
W1 z—m‘l’mm 2+ 21 em ‘ET (10)
where
_ ZpAX
Em=— (11)

It is observed that even if Wn-1 2 and q_ are

positive, Eq.(10) can give a negative value for ¥..

vz if €m>2. Therefore computer codes using

the DD scheme include a negative—flux—fixup.
For another choice, we can use the following

Step Characteristic (SC) scheme “*** (for #.>0):
Wi 2= 1 2 exp(— €m)

a,
+ 5 [1~exp(— €] (12)
and
a, 1
W= (W o W ) (13)

For positive values of ¥ 1 2 and q_, we see that
Eq.(12) does not give a negative value for W1 »
and thus this scheme gives the positive flux.
Last, we have obtained the following Linear
Characteristic(LC) scheme®*> (for #.>0):
W1 2= Wo-1 2 exp(— €n)

q,
n ;~[1—exp(— ¢ ] (12)
qml 1 '.)_qml—l 2
e
11
x 1 [2*?,} [1-exp(— €] (14)
and
a, 1
. Tt ) (15)

This scheme always gives the positive flux.
In practice, we separate the #., <0 from the /m
>0 directions in order to construct marching

schemes that follow the direction of neutron

streaming. If we note that boundary conditions are
imposed on the incoming boundaries, it is appa-
rent that we can advance the solution away from
the incoming boundaries and in the direction of
neutron streaming.

Next our concern is how we can determine the
flux weighted mean streaming direction #a(x). [t is
achieved by integrating the integrals in Eq.(8).
These integrals are approximated by the three-
point Gauss-Legendre quadrature rule."® Of
course, the choice of other quadrature rules is
possible, but the Gauss-Legendre quadrature rule
is the most simple and effective. In applying the
Gauss-Legendre quadrature rule, it is necessary to
have three fixed auxiliary directions and the cor-
responding auxiliary fluxes in each element. These
are directly determined by the quadrature rule and
the conventional discrete ordinates calculation."™”
(The same source term is used in calculations of

both the DOM and the DEM.} Then, #.(x) can be

expressed as

_ W L Wnl(x) + Wit Mol Wt () Wil 2P {x)

Halx) W) F W) WA
(16)
where
we'=5/9, (17.a)
Wi =8/9, (17.b)
wi=5/9, (17.c)
and
/Jm‘:2(m—%)/M (m=12,--M/2), (18.a)
rte=ru+ 106/M, (18.b)
ta=pn,—J06/M, (18.¢)

where M/2 is the number of equal subintervals
into which the interval 0< # <1 is divided, and
three fixed auxiliary directions in each angular ele-
ment are labeled as up, center, and down, and
W (x) represents W(x, ¢ ), and so on. And with
this quadrature rule, the element weights are
given by

wn=2/M. (19)
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Then, using Eqs.(17.a) through (18.c), Eq.(16) for
Ha{x) becomes

o) = pep 00 [ — W)

T M0+ 1.69° 0+ W]
(20)

where all fluxes ¥ (x) are obtained from the DOM.

We can see in Eq.(20) that #a(x) is a function of
the position. That is, in each element and each
cell, according to the auxiliary fluxes, the main
streaming directions can be controlled. As a result,
the direction of streaming of neutrons is accurately
modeled.

In addition, the streaming direction as a function
of the position results in the discontinuity at the
interfaces of the spatial mesh cells. Therefore, for
conservation of particles, the continuity of the cur-
rent across cell interfaces is required. But within
each mesh cell, conservation of particles is auto-
matically preserved since the streaming directions
were assumed to be constant within mesh cells. In
the DOM, however, because the streaming direc-
tions are always fixed, the continuity of the flux
across the cell interfaces is sufficient for conserva-

tion of particles.
IlI. Numerical Experiments and Discussions

The DEM described in the preceding section is
implemented for the solution of two one-group
transport problems in one-dimensional slab
geometry. One is the fixed source problem. The
other is the criticality calculation. The discrete ele-
ments solutions using three spatial differencing
schemes are compared with those obtained from
the DOM. Through an error analysis, it is shown
that the DEM gives more accurate results than the
DOM and the LC scheme is the most efficient
spatial differencing scheme in the DEM.

1. Fixed Source Problem

We test the one-group isotropic scattering and
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source model problem in one-dimensional slab
geomeitry. A total of forty spatial intervals, which
are uniform within a 5 cm thick slab, is used in all
test calculations. The total and scattering cross
section are 2 cm™' and 1 e¢m™, respectively. The
isotropic external source strength is 2 neutrons/
cm? sec and vacuum boundary conditions are im-
posed at both left and right boundaries. Three
spatial differencing schemes are then tested and
the pointwise convergence criterion is 107°. To
evaluate the accuracy of each scheme in each
method, we introduce the following error norm

defined by | S (0 @) |

| 2 (D‘bench | y
i=1,2,-,L
Here, ®*™" is the benchmark solution, while @ is

@Il = (21)

the calculated value.

Table 1 presents the error norms of the DOM
and the DEM results for each spatial scheme, us-
ing the Sa results as the benchmark solutions.
Table 2 shows the ratios of the error norm of the
DEM to that of the DOM results for each scheme.
And these results are plotted in Fig.1. In each
spatial scheme, the DEM results converge to the
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Fig.1 Error Norm vs. Number of Angle Segments

in the Fixed Source Problem
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benchmark solution faster than the equivalent
DOM results. In particular, when the LC scheme is
used, the most accurate results are obtained.
When the calculations are performed in small
M(number of angle segments), the superiority of
the DEM is prominent. In the DEM, the values of
the error norms of the DD or SC scheme are
nearly constant with increasing M, that is, it
approaches a certain asymptotic value. Because
each spatial scheme itself has a certain order of
the error for a given spatial mesh interval (The DD,
the SC, and the LC schemes exhibit second-,
second-, and fourth-order truncation error, respec-
tively.), this asymptotic value is the minimal error
with the DD or the SC scheme for forty mesh
intervals. Therefore, the error can not be lessened
below this value. In the DEM results, though M is
only 2, the error is nearly the asymptotic value.
And the DEM with the LC scheme gives the best
results. Table 2 represents this fact clearly. When

Table 1. Error Norms for Each Spatial Scheme in
the DOM and the DEM

the same spatial scheme is used in the DOM and
the DEM, the DEM gives more accurate results
than the DOM, and when the LC scheme is used,
the degree of that is eminent.

In addition, the computing time to solve the
problem by the DEM takes four times than that of
the DOM for the same M. But for small M, the
DEM provides a solution more accurate than the
DOM for a given computing time. That is, the
DEM is more cost effective. But with increasing M,
it becomes blunt, however the results are more
accurate.

2. Criticality Calculations

In order to check the accuracy of the DEM with
another problem, the calculations are performed
to determine the number of secondary neutrons
per collision for criticality (called “c value” in
general) for a given slab thickness “a”. The cal-

Table 3. Number of Secondary Neutrons per Colli-
sion for Criticality in a Slab with 0.7366

DOM DEM mfp Half-Thickness
M2 DD SC LC DD SC LC
Exact®: 1.40000
2 10.01418(0.0139 | 0.01390 | 0.00124 | 0.00073 | 0.000d6 oM P
4 10.00381 | 0.00328 | 0.00332 | 0.00116 | 0.00064 | 0.00026
M DD SC LC DD SC LC
0.00204 1 0.00149 | 0.00142 | 0.00109 | 0.00060 | 0.00022
1.53976 | 1.53976 | 1.53967 | 1.40107 | 1.40112 | 1.40098
8 10.00144 ] 0.00094 | 0.00079 | 0.00107 | 0.00056 | 0.00019 2
(9.984) } (9.983) | (9.977) | (0.077) | (0.081) | (0.070)
16 10.00117 | 0.00043 | 0.00017 | 0.00103 | 0.00041 | 0.00009
1.42799 | 1.42804 | 1.42792 | 1.40051 | 1.40063 | 1.40048
2 Number of angle segments * 1 oo | oos | 199 | 0037 | 00ds) | 0034
Table 2. Ratio of the Error Norms in the DEM to . - - (0.037) | 0085 | (0.09
1.40891 | 1.40899 | 1.40885 | 1.40036 | 1.40048 | 1.40033
the Error Norms in the DOM for Each 6
i {0.636) | (0.642) | (0.632) | (0.026) | (0.035) | (0.024)
Spatial Scheme
8 1.40402 | 1.40411 | 1.40396 | 1.40028 | 1.40041 | 1.40026
M DD SC LC (0.287) | (0.294) | (0.284) | (0.020) | (0.029) | (0.019)
2 0.087 0.052 0.033 16 1.40087 | 1.40097 | 1.40083 | 1.40017 | 1.40031 | 1.40015
4 0.304 0.194 0.077 {0.062) | (0.068) | (0.059) | (0.013) { {0.022) | {0.011)
6 0.535 0.405 0.157 2 1.40027 | 1.40038 | 1.40023 | 1.40012 | 1.40025 | 1.40009
8 0.741 0.595 0.236 (0.020) | (0.028) (0.0%7) {0.009) | (0.018) | (0.007)
16 0.877 0.952 0.602 a: Refer to Ref.(12)

b: Relative errors in percent
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culations are made for slabs with the half thickness
of 0.7366, 1.2893, and 5.6655 mean free paths
and a total of forty spatial intervals is used. (Three
slab thicknesses will be designated as case 1,2,
and 3, respectively.) Also, three spatial schemes
are tested and the pointwise convergence criterion
is 1075,

For each iteration the ¢ value is evaluated from
the neutron conservation principle :

| awy, m)de ,
c=1+2 2 (22)

2 1

2 dxz Yx,u)dp

The spatial integration may be performed by using
Simpson’s rule."?

In Table 3 through 5, the results are shown for
the criticality calculations carried out in the slab
with three different thicknesses. All of these results
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Fig.2 Relative Error vs. Number of Angle Segments
for 0.7366 mfp Half-thick Slab in the Critical-
ity Calculation

are plotted in Fig.2 through 4. In all cases, the
accuracy of the DEM results is superior to that of
the DOM. It is observed that the SC scheme is
less accurate than any other schemes. This is be-
cause the SC scheme overestimates the flux at the
slab boundaries. That is. the leakage at this posi-
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Fig.4 Relative Error vs. Number of Angle Segments

for 5.6655 mfp Half-thick Slab in the Critical-
ity Calculation

tion [see Eq.(22)] is greater than a real value. In
case 1, as shown in Table 3/Fig.2, the DEM is
cost effective. In cases 2 and 3 for thicker slab,
with increasing M, the accuracy of the DOM is
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comparable to that of the DEM. Of course, even
these cases, the DEM results are more accurate
than the DOM results when the same spatial
scheme is used in both methods.

IV. Conclusions

The main conclusions that can be drawn from
our work are as follows :

1. The discrete elements equations, combined
with any spatial differencing schemes, produce a
set of equations that can be easily solved by using
the computer with the same iterative procedures
used in the conventional discrete ordinates
method.

2. For fixed source problem, the DEM supplies
a solution more accurate than the DOM, Special-
ly, when the DEM is combined with the LC

scheme, this advantage is remarkable. With small

Table 4. Number of Secondary Neutrons per Colli-
sion for Criticality in a Slab with 1.2893
mfp Half-Thickness

Exact®: 1.20000
DOM DEM

M DD SC LC DD SC LC

1.24700 | 1.24708 | 1.24693 | 1.20048 | 1.20063 | 1.20043
2 (3.917)> | (3.924) | (3.911) | (0.040) | (0.053) | {0.037)

1.20631 | 1.20644 | 1.20626 | 1.20025 { 1.20042 | 1.20023
! (0.526) | (0.537) | (0.522) | (0.022) | (0.036) | {0.019)

1.20200 | 1.20214 | 1.20196 | 1.20019 | 1.20036 | 1.20016
6 {0.167) | (0.179) | (0.163) | (0.016) | (0.030) | (0.014)

1.20103 | 1.20118 | 1.20099 | 1.20016 | 1.20033 | 1.20013
8 (0.086) | {0.099) | (0.083) | (0.014) | (0.028) | {0.011)

1.20029 | 1.20045 | 1.20026 | 1.20011 | 1.20028 | 1.20009
16 (0.025) | (0.038) | (0.022) | (0.010) | (0.024) | {0.008)

1.20013 | 1.20029 | 1.20010 | 1.20009 | 1.20026 | 1.20007
3 (0.011) | (0.025) | (0.009) | (0.008) | (0.022) | {0.006)

a: Refer to Ref.(12)

b : Relative errors in percent

M, the performance of the DEM is better than the
DOM for a given computing time. However, by
increasing M, the computing times required by the
DEM may be greater than those by the DOM, but
the results are more accurate.

3. For criticality calculations, the DEM works
better than the DOM. This is particularly promin-
ent in a thin slab. The SC scheme gives much less
accurate resuits than the DD scheme because of
the overestimation at the slab boundaries. The
DEM with the LC scheme gives the most accurate
results.

In"the present work, the DEM is applied to only

Table 5. Number of Secondary Neutrons per Colli-
sion for Criticality in a Slab with 5.6655
) mfp Half-Thickness

Exact® : 1.02000
DOM DEM

M DD SC LC DD SC LC

1.02119 { 1.02154 | 1.02118 | 1.02010 | 1.02045 | 1.02009
2 (0.118) | (0.151) | (0.116) } {0.010} | (0.045) | (0.010)

1.02018 | 1.02053 | 1.02018 | 1.02009 | 1.02043 | 1.02998
! (0.019) | (0.052) | (0.018) | (0.009) | {0.042) | (0.008)

1.02012 | 1.02046 | 1.02010 | 1.02008 | 1.02042 | 1.20007
6 (0.012) | (0.046) | (0.011) | (0.008) | (0.042} | (0.007)

1.02010 | 1.02044 | 1.02008 | 1.02008 | 1.02042 | 1.02007
8 (0.010) | (0.044) | (0.009) | (0.008) | (0.042) | (0.007)

1.02008 | 1.02042 | 1.02007 | 1.02008 | 1.02041 | 1.20006
16 (0.009) | (0.042) | (0.007) | (0.008) | (0.041) | (0.007)

1.02008 | 1.02041 | 1.02006 | 1.02008 | 1.02041 | 1.02006
%z (0.008) | (0.041) | (0.006) { (0.008) | (0.040) | (0.006)

a: Refer to Ref.(12)

b : Relative errors in percent

the one-group transport problems with isotropic
scattering and sources. Several possibilities still ex-
ist for the extension of the present work to more
general physical situations given as follows :

1. It is possible that the extension of the DEM
to other geometries.
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2. The inclusion of the DEM into a more gener-
al mulatigroup formalism would be a useful exten-
sion of the present study.

3. A third would be the inclusion of anisotropic
scattering. Including linear anisotropy in this work
is straightforward.
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