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Abstract

The steady-state rotation of plasma centrifuge is theoretically analyzed to understand the physics:
of rotating plasmas and its feasibility for isotope separation. The centrifuge system under consid--
eration consists of an annular gap between coaxial cylindrical anode and cathode in the presence
of an externally-applied axial magnetic field. A problem for coupled partial differential equations.
describing centrifuge fields is formulated on the basis of the magnetohydrodynamic equations. Two-
dimensional solutions are found analytically in the form of Fourier-Bessel series. The current
density and velocity distributions are discussed in terms of the Hartmann number and the
geometrical parameter of the system. At typical conditions, rotational speeds of the plasma up-
to the order of 10*m/sec are achievable, and increase either with increasing Hartmann number,
or with increasing ratio of the axial length to the inner radius of the cylinder. In view of much
higher speeds of rotation which can be achieved in plasma centrifuge, it is expected that its effi-

ciency is superior to mechanically driven gas centrifuges.
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I. Introduction

The plasma rotation by crossed electric and
magnetic fields has been studied experimentally
and theoretically with regard to applications as
a plasma centrifuge for isotope separation.(~15)
In plasma centrifuges, the gaseous isotope mix-
ture is brought into the plasma state through
an electrical discharge. The plasma is set into
rotation by Lorentz forces resulting from cross-
ed current density and magnetic fields. The
light and heavy ionic and atomic isotopes are
spatially separated according to their masses. In
contrast with mechanically driven conventional
centrifuges, the plasma container is not subject
to centrifugal stress and there is no maximum
material strength limit of moving parts which
imposes a limit on the achievable speeds of ro-
tation. Thus, the plasma centrifuges using elec-
tromagnetic forces permit to generate high velo-
cities unattainable in mechanical centrifuges.
Plasma centrifuges have an additional advantage
since they permit to control the driving forces
by adjusting the current flow. The velocity pro-
files can then be optimized for the highest
possible velocity at which stability is secured.

A theoretical work studied herein is mainly
concerned with the steady-state dynamics of high-
density plasma, which is confined in annular
volume bounded by two perfectly-conducting
coaxial cylindrical electrodes and two perfectly-
insulating end closures. If an axial magnetic
field is applied while a discharge current is be-
ing passed between the electrodes, an azimuthal
Lorentz force causes the plasma to rotate. In
general, the rotational motion of the plasma is
retarded by viscous effects, and steady-state
conditions are achieved when the momentum
increase due to the Lorentz force is balanced by
the frictional forces at the walls.

In order to reduce the magnetohydrodynamic
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equations describing centrifuge fields to a more:
tractable form, a number of simplifying assump-
tions must be made. All variables are assumed
to be axially symmetric, and all physical pro-
perties of the plasma are assumed to be constant.
The radial and axial components of velocity are
to be small compared with the azimuthal com-
ponent. Finally the radial current density at
each electrode surface is to be constant. In this.
paper, two important centrifuge fields, azimuthal
velocity and radial current density are found in
dimensionless form in terms of the various di-
mensionless parameters. They indicate that ex-
tremely high speed of plasma rotation is obtain-
able at typical conditions that can be realized
in practical applications of plasma centrifuges.
to isotope separation.

II. Model of Plasma Centrifuge

The plasma centrifuge shown in Fig. 1 con-
sists of two coaxial cylindrical electrodes which
are a perfectly conducting anode (r=R;, —c<z
<¢) and a perfectly conducting cathode(r=R,,
—cL2<c). It is suggested that the cylindrical
electrodes are placed very far from each other
(Ri{R;), and the two insulating end walls(z=

z
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Fig. 1. Model of plasma centrifuge
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“+e¢, R <r<R,) are placed very far from each
other (Ri{c) to reduce velocity losses due to
boundary layers at the electrodes and the end
walls. The plasma is produced in the space —¢
<LzZe¢, R;<r<R, through an electrical dischar-
ge in the gaseous isotope mixture between two
cylindrical electrodes connected by an external
source of current I. A current density distribu-
tion J(r,z) intersects an axial external magnetic
field By in the annular volume. The resultant
Lorentz force Jx B, rotates the charged isotope
mixture with the velocity Vj(r,z) around its

axis of symmetry.

ITI. Theoretical Formulation and
Analytical Solution

The steady-state rotation of the plasma cen-
trifuge is theoretically investigated based on the
magnetohydrodynamic equations for dense plas-
mas. In this model, laminar flow is assumed,
and conceivable secondary flows superimposed
on the main rotational flow are disregared. Some
theoretical investigations indicate that the second-
ary flow in the motion of incompressible fluids
in an annular gap is not occurred if their Rey-
nolds number is not larger than a critical Rey-
nolds number. In view of the symmetry of the
centrifuge configuration with respect to z-axis,
the plasma flow field is then azimuthal, V= {0,
Vi(r,z), 0}, so that the plasma behaves incom-
pressible (p-V=0). It is assumed that the
gyration frequency « of the electrons is much
smaller than the collision frequency ! be-
tween electrons and neutral particles (wz(1).
It is generally accepted in partially ionized,
collision-dominate, dense plasma. In this case,
the current density is of the form J={J,(r,z),
0, J:(r,2)}, and the Hall effect is negligible in
the Ohm’s law. The magnetic induction is of
the form B={0, By(r,z), By} in accordance
with Maxwell’s equations and the homogeneous
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boundary conditions for B, and B,.

The plasma centrifuge is described by a bound-
ary-value problem for the azimuthal velocity
Vs (r,2) and radial current demsity J, (r,z)
field;

0 1 4 N *Vy _ B,

a [T P (rVo):} T = u ¢))

0 0 02J, 22V,

o [ o] +5E=BT @
where

Vﬁ(rsz) 17=R17R2:0’ —"SzS“H‘, (3)

Vﬁ (r,z) Iz=i~:c=0: Rl_<_rSRZ (4)

and

I -
Jf(r:z) lr=R1:R2=4TR1;’ —cLz<+e, (5)

J:(r,2) | e=2e=0, Ry<r<R,. 6
Equations (1) and (2) are the azimuthal com-
ponents of the equation of plasma motion and
the induction equation combined with p.J=0
and pXxB=gJ,
conditions (3) and (4) specify that the plasma

respectively. The boundary

does not slip at the chamber walls »=R,, R, and
z=xc. The boundary conditions (5) imply that
a total discharge current I leaves uniformly the
inner wire anode (r=R;) and arrives uniformly
at the outer cylindrical cathode wall (*=R,).
The boundary conditions (6) consider that no
radial current flows at the end plates at z=--¢
according to Ohm’s law, J,=a¢(&,+ V,B,), since
Vo(r,2) |:=1.=0 and E,(r,2) |,=:c=0 by aXx [E]
=0.

In order to solve analytically the boundary-
value problem for the coupled plasma fields V;
(r,z) and J,(r,2), it is convenient to formulate
equations (1)~ (6) in dimensionless form by

introducing dimensionless variables,

p=r/Ri, 1<pZp, pi=R./R,, )

{=z2/c, —1<50<+1, &
and

Ve, 0)=Vs(r,2)/ Vo, j,(p,0)=J.(r,2)/Jy,

€))

where the reference values V, and J, are defin-

ed as
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Vo=1/4aR\cBo, Jo=0 V By=1I/4xRic. (10)
“Thus, the boundary-value problem defined in
equations (1)-(6) becomes for V(p,{) and j,

N-zﬁ?V_+_@__ [_1- i(pV)] =H?j,,

ogz ~ do Lp dp
(1
_y 0%, 0 1 8., .
N 2‘"3'Cz—+a—p [T p (PJp)]
_, 02V
=N 2—&;2—, (12)
-where
V(p9c)[ﬂ=l7m:0’ —1_<_C§+1, (13>
V(IO7C>IK=11:09 1§P§Pl: (14>

Jo(p, 9] iP:17 m:_‘}; =15 p1s —1<58<+1, (1B

300, D l=n=0, 1<p<p1 (16)
“The dimensionless parameter N and H are defin-
ed by

N=c/R,, H=(0/p)'*B,R,. an

“The Hartmann number H, which is a measure
.of the ratio of Lorentz force to viscous force,
In general, one finds that as the Hartmann
number is increased, a stabilizing effect of the
magnetic field on the flow appears'®’,

The general solutions of the coupled partial
differential equations (11) and (12) are sought

in the form of the Fourier-Bessel series;
2
Vip,0)=-"3-5B1(2:0)

Panlz (Pnpl)
J12 (Pn) '_le (Pnpl)

2
Jo(0, O="SB,(pup)

H©, a8

anJ 2<Pnp )
J2 () l—le(;npl) 8.8, 19

‘where By (p,0) =J1($:0) Y1(pa) — Y1 (£.0)J1($2).
(20)
Ji(p.0) and Y (p,p) are Bessel functions of the
first order of the first and the second kinds,
respectively. p, is the n-th root of the tran-
:scendental equation
B, (pap1)=0. @n
Multiplying equations (11) and (12) by pB;(.p)
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and integrating with respect to p from 1 to p;
with orthogonality condition for B;(p.p), we

get
_aj-gzgc_)_ — sznzfn © =N2H?g, () ’ (22)

_a_zga"&ég)— - sznzgn (C)

2 T, Ji(#n)
+T [Jp (01,0 71‘(15;’715—
2
—i, 0| M= BLB oy
and the the boundary conditions;
fn ® 1{:11":-0, 24)
&4 () 1 g=11=0. (25)

By elimination, equationé (22) and (23) are
reduced to decoupled differential equations of

fourth order,
S —=N2(2p, 2+ HE) £,

+N*p,Afo=—H*N*a, (26)
g.nIII/ _NZ (2?7‘2_‘_ HZ)gn,,
+N4Pn4gn:Pn2N4an (27}

where

—2 [ il
“G="7 [P1J1(Pnpl> 1] :

F.(© and g,(L) have to satisfy also the coupled
equations (22) and (23). The general solutions
for £»(8) and g,(Q) of equations (26) and (27)
can be written as

(28)

cosh (w,*0)
cosh (w, ™)

4 4sinh(w,*®)
H@=4" 1 ™) +B,*

_sinh(w,”0) | 5 _ cosh(w, §)
4 “sinh (w,™) +B, cosh (w,™)
2
~ f;:f" , (29)

o sinh (w,*0) cosh (w,*C)
&0 =Cr sinh (w,*) a cosh (w,*)
_sinh(w, Q) _cosh(w, )
+Ca sinh(w,™) +Dn cosh (w,™)
+ Piz (30)

Four real roots of the characteristic equations of
homogeneous parts of equations (26) and (27)
are given by

tw, =+ 4 N{(H2+ 45,22 H}. €))]

Only four of the eight integration constants
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A=, B, C;*, D,* areindependent. Substitu-
tion of equations (29) and (30) into equations
(22) and (23) yields '

Ani I: (wni) 2 __anNZJ =H2N2Cni’

B,=[(w,=)2—p,2N?]=H*N?D,*,

G (w,™)2— 92N = (w,*)24,*,

D, [ (wa*)?—p,EN*]= (w,)*B,*, (32)
respectively. For the condition for existence of
nontrivial solution, the coefficient determinant
of equation (32) vanishes

_.—[<w +)2___P 2N2:’2 (wni) 2H2N2=0
(33)
in agreement with equation (31). From the
latter or equation (33) one deduces the relations,

(0,52~ p,2N2=+HNw,, (34)
which simplify equations (32). Application of
the boundary conditions (24) and (25) to equa-
tions (29) and (30) and use of the relations
(32) yield

ni=0, C,‘t:—‘o,
£ HNa, Hw,™
” z(w”++w”_) [ ]VPn2 +1]
+ _taw® [ Hw,”
D, TP (Wt w, ) [ Np.2~ +1] (35)

By combing equations (29) and (30) with
equations (35) the solutions for £,({) and g,(0)
in final form are

_ ACS) [ HN
f”(C) ”Pn [ lel (Pnpl) N ]L(")—n++wn—>
{ (Hw,, _ 1) cosh (w,*¢)
Np,2 cosh (w,™)
Huw,* cosh w0 H2
+(an2 H) cosh(w,™) J ?] :
(36)
— Jl (pn> 1
(0= nP,. [91J1(Pnpl)—l][(wn++wn‘)
{w,* +(Hw, |\ cosh(w,0)
Np,2 cosh (w,™)
. _(Huw, cosh(w,{) »
W (sz +1> cosh(w,™) . +1] :
37

In terms of f,({) and g,(0), the solutions for
the dimensionless fields V and j, of the plasma
centrifuge are by equations (18) and (19)
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2 272
Vo, 0= -TBi(pp) 75l E;npo

@, (38)
w5
Jo(p: 8 _Tg:Bl (Ba0) Ji? (Pn)l'— Ji? EPnPl)
£.(0). (39)

In the case that the axial length 2c is much

larger than the distance R,—R; between the
inner and outer cylindrical electrodes, the plas-
ma centrifuge fields V and J do not depend on
217, This system is described by the following

dimensionless equations and the boundary con-

ditions;
211 9 — 2
5 |5 5V ] =H%, (40)
7} 1 0, . .
a0 1:7 a0 (PJ(J):I =0, “n
and
V(P) |p=1:m=0, (42)
Jelo) lp:bp{'—_o, (43)

which are equivalent to equations (11)-(16) for-
N—oo,

The plasma centrifuge fields V and j, for a.
boundary-value problem give by equations (40).
and (43) have the simple solutions;

V(p)*— [plnp— £ lnp oy Pl 9‘2)]
(44)
Je(@)=p7". (45)
It can be shown that as N—oo (w,*—c0), solu-
tions (38) and (39) for the plasma centrifuge
with finite axial length are transformed into.
solutions (44) and (45) for that with quasi-
infinite axial length by using the following Fou--

rier-Bessel series!®;

1 _ J1 (pp1)
o =B [ TE(pn) — I3 (Battd) }
Jl (Pn) — .
[ pd1(Pnps) 1] ’ (46)
pl1—p) L2 LB plup= 25T B pap)tr”
[ Ji# (PnPl) M J1(p) __1]
J2(Pn) —J2(Papy) 01d1(Prp1) :

(47
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1V. Discussion and Result

As numerical illustrations, the axial (£) and
radial (p) dependences of the dimensionless
centrifuge fields V(p, ) and j,(p,&) have been

-1.5r
N=10%
S
Q.
3 -1of
i N=10
-0.5F
} N=5
N=1 \
OI 5 10
P
Fig. 2. V(p,0) versus p for p;=10, H=1, N=
1.5, 10, 10%
-100
S
<
>
-5C
o]

Fig. 3 V{(0,0) versus o for 0,=10, H=10,
N = 20, 40, 70, 100.

Fig. 3. V(p,0) versus p for p1=10, H=10, N=
20, 40, 70, 100.
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calculated in some interesting cylindrical region
(0=2.5) and cross-sectional plane ({=0), res-
pectively. Since the centrifuge fields V(p, )
and j,(p,0) depend only on p;, N and H, the
Hartmann numbers are treated as parameters,

x10%

N=700

N=400

N=2C0

0

| 5 IQ

i g P T
Fig. 4. V(p,0) versus p for p;=10, H=100, N=
2,4,7,10x 102

Vv(25,5) \N-I©
-0.5+

V(25,6) \Un=10

-1.0 -05 0 05 1.0

Fig. 5. ¥V=(2.5,0) versus { for p;=10, H=1, 10,

N=1,5, 10.
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H=], 10, 100. The geometry parameters are
taken as p,=R,/R,=10, and N=c¢/R,=1, 5, 10,
10* for H=1; N=20, 40, 70, 100 for H=10;
and N=2,4,7, 10x10? for H=100. The radial
positions of the anode and cathode are at p=1
and p=p,, respectively. The solutions in equa-
tions (36)-(39) indicate that V(p, &) and 7,(p,
§) and j,(p,) are symmetric with respect to
the central planes ({=0).

Velocity fields V(p,{) (Fig. 2~Fig.5): The
azimuthal velocity fields are symmetric about
{=0 and are distributed over the entire system,
1<p<p, 1811, with zero velocity at end
walls and surface of electrodes. The maxima of
| V| are at the central planes ({=0) and move
toward the anode wall (p=1) as H is increa-
sed or N is decreased. It is also observed that
| V] stretches along and dwindles at any point
0<p<1 as N is reduced. At large N velocity
is proportional to the square of the Hartmann
number by equation (48).

Current density fields j,(o,) (Fig.6 and
Fig. 7): The electric descharges become more
closely concentrated near the electrode walls as
H is increased or N is decreased. In the middle

o) of
2
<
Q.
~ osf \\
N
\\\\\ -
\.\ . ‘\’.// N=TO -
0 i 5 0
p
Fig. 6. j,(p.0) versus p for p;=10, H=10, N=
40, 70, 100.

J. Korean Nuclear Society, Vol. 14, No. 2, June, 1982

Rl

1,(p,0)

Fig. 7. j,(p,0) versus p for p;=10, H=1, N=
1.5, 10, 104

region the current density is smaller than other
region near electrodes, and is decreased as N
is decreased.

The graphical presentation of the plasma fields
indicates that it is desirable for the column
length to be much larger than the distance be-
tween anode and cathode (N=c¢/R,;>1 at the
same p,). It ensures in this case that a signi-
ficant Lorentz force and plasma rotation, and
that velocity losses due to boundary layers at
end walls are insignificant. The proposed cen-
trifuge scheme results in supersonic rotational
plasma velocities for moderate flow numbers H,
N, p; that are realizable in practical applicati-
ons. For example, in the case that I=10% amp,
By=1 tesla, c=10*mho/m and p;=10, R;=0.
5cm, we get V,=I/4nR,2NB,=3].8m/sec by
Eq. (10), V=2x10® from Fig.4 for H=100
and N=100. The speed of plasma rotation is
thus 10*m/sec in order of magnitude in typical
conditions of the plasma centrifuge.

Either the larger Hartmann number becomes
or the smaller R, becomes, the higher the rota-
tional velocity is achieved. But the anode is
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limited to have considerable radius since the high
currents pass through the anode. The associated
centrifugal forces produce a significant spatial
isotope separation. In view of much higher
speeds of rotation which can be achieved in
plasma centrifuge, it is expected that its effi-
ciency is superior to mechanically-driven gas

centrifuges.
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