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Abstract

The dynamics of a typical PWR fuel rod are investigated. Mathematical models of the
support grid and fuel rod were derived and verified experimentally. The finite element

model and SAP V computer program were used to calculate the natural frequencies and

mode shapes. A singlespan beam model is also given for predicting the fundamental mode

dynamics of prototype fuel rods. The results agree quite well with the finite-element

model results.
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1. Introduction

Fuel rod failure due to vibration is a
continuing concern for the design of liquid-
cooled reactors. Mechanical wear at the
contact regions between the fuel rod, grid
dimples, and grid springs has been observed.
Severe damages of fuel assemblies are rep-
orted due to impinging jet from baffle gap.
Proven design methods for predicting fuel
rod failure have not yet been developed
because of the iollowing reasons; 1) the
dynamic characteristics of the fuel rod
assembly are not adequately known, 2) the
proper criteria for predicting the amount of
wear have not been established and accurate

values for wear coefficients and friction
3) the
basic excitation mechanisms causing fusl

coefficients are not now available,

rod vibration have not yet been completely
characterized.

A fuel assembly can vibrate in two main
ways.” One is low frequency vibration of
the fuel assembly as a beam on end supp-
orts, and the other is high-frequency vibra-
tion of each individual fuel rod as a beam
on multiple grid supports. The former type
of vibration will mainly occur during seismic
or blow-down excitation and will not be

discussed in this paper. The latter type of

" vibration is considered to be the main cause

of fuel rod failure and wear occurring at
the rod-grid contact regions.
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Two types of mathematical models are
presented. One is a single-span beam model
in which a fuel rod is represented by a
simply-supported single-span Bernoulli-Euler
beam with a rotational spring at each end.
A closed-form solution is given fer the
normal mode of this model, and the adva-
ntages and disadvantages of this model are
discussed. The other model is a finite elem-
ent model of prototype fuel rods that we
use in SAP V? computer analyses of fuel
rod dynamics. In this model, a fuel rod is
represented by a set of finite elements con-
sisting of a massless elastic beam of elem-
ent-length with one-half of the element-mass
concentrated at each end, and each grid is
represented by a set of three springs repre-
senting the stiffnesses of the grid at the
rod-grid contact regions. It is proved exper-
imentally that the three-spring representa-
tion of a grid is a valid grid model for
normal-mode analysis of prototype fuel rods.

9. Mechanical Characteristics of Grid
Supports

2.1 Grid Sapports

Prototype fuel rods are supported along
their length by seven grid assemblies. Each
grid assentbly consists of a 17X17 array of
grid cellé.» Each cell has two springs and
four dimples which are formed on the sides
of the cell by a punching operation. A
typical ‘ cell is shown in Fig. 1. The fuel
rod is constrained axially only by the fric-
tion force in order to allow for thermal
expansion and irradiation growth of the rod.
The grid spring and dimples in the plane
of vibration will be called in-plane (section
AA of Fig. 1) spring and dimples, and the
other set of grid spring and dimples will be
called the side spring and dimples.

Grid Spring

Section A-A

Fig. 1. Grjd Cell

Since the mass of the spring and dimples
is small compared with the modal mass of
the fuel rod, we can represent each spring
or dimple by a set of three weightless
springs oriented perpendicularly to each
other and corresponding to the stiffnesses
in the radial, tangential, and axial directions
with respect to the fuel rod. Hence, 18
springs are needed for a complete represen-
tation of one grid.

To simplify the problem, we will make
the following assumptions; 1) the fuel rod
always vibrates in a plane perpendicular to
one of the walls in which the dimples are
located, 2) the grids springs and dimples
remain in contact with the fuel rod during
the vibration, 3) the axial stiffnesses of the
grid spring and dimples will have negligible
effect on the vibration characteristics of a
fuel rod. Then, thelequivalent stiffnesses of
the springs and dimples are

KD=Kd1+KdI (1)

K=K, +K,,
where K ig the equivalent dimple stiffness,
Ks-is the equivalent spring stiffness, and
K, Ku, K,,, and K,, are the radial dimple,
tangential dimple, radial spring, and tange-
ntial spring stiffnesses, respectively. The
location and stiffness of each of these
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(b) Single-Span Beam Model
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(a) Mathematical Model of Grid Cell

Fig. 2. Mathematical Model of Grid Cell and
Single Span Beam Model
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idealized springs correspond to those of the
actual grid springs and dimples, as shown
in Fig. 2a. Thus, each grid is represented
by three springs, two K, springs spaced
apart a distance » and a K; spring located
midway between them.
Measurement of the static tangential
stiffnesses is almost impossible because of
its geometry and size. Therefore semi-emp-
erical methods were used. The following
models were used for the purpose.
1. Model 3—19=Three-span test model,
span length= . 483m
2. Model 1—25=Single-span test model,
span length= _635m
3. Model 1—25SDR=Modle 1—25 with
side spring and dimple removed.
“The average spacing between each grid
spring and corresponding dimples was adju-
sted to ensure the spring preload is approx-
imately equal to 27N. The bending rigidities
ET of the test tubes were determined from
natural frequency tests. A clamped-free

boundary condition was used for its simpli-
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city. For a clamped-free beam (8,/)2 in Eq.
16 is 3.5160.% Hence EI=0.507ui*
is the mass per unit length and / is the

where g

length of the cantilever. To improve accur-
acy, several different lengths were adopted
for the test. The values were found to be;
El=22 4N.m?% u=0. 127kg/m for an empty
Zircaloy tube, and EI=26.7N.m?, p=0.870kg
/m for a depleted fuel rod with 130N axial
load and 1.73MPa at room temperature.

2.2 Stiffnesses of Grid Supports

The static radial stiffnesses of the grid
spring and dimples of a prototype grid were
measured using an Instron Uuiversal Testing
Machine. The edges of the spring and dimple
base plates were welded to a recessed steel
block. The radial dimple stiffness K, is
linear in the displacement range of interest
and has the value

K, =546 X10°N/m 2)
The radial stiffness K,, of the grid spring
is linear for small displacement and becomes
non-linear for large displacement.

K,=8.9x10'N/m for y<.3mm (3)

=3 5x10'N/m for y>, 5mm

These results indicate that the spring stiff-
ness will change as the spring preload
changes. However, this is of minor import-
ance since K., is much smaller than K,,.

A SAP V analysis was made on model 1
—25 SDR using the statically determined
radial stiffness values given in Egs. 2 and
3. The calculated natural frequency of 83.9
Hz agrees very well with the measured
value of 84Hz as is seen in Table 1. Ther-
efore, it was concluded that the statically
measured radial stiffness values and three
spring representation of a grid are valid for
dynamic analyses of fuel rods.

The measured natural frequencies of the
test models are compared with SAP V
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Table 1. Comparison of Test and SAP V Analysis

N Mode Frequencies, Hz Rotational Stiffness K¢ N.m/rad
-«<1 No.
% Measured SAP V Nominal Equivalent
1-255DR 1 84.0 83.9 Kob® _ 09 240
2 — 248.3 2
1-25 1 99.8 100.6 Kob® _ 30 200
2 — 281.6
3 — 557.9
3-19 1 153. 4 155. 1 Kol _ 410 100
2 175.3 171.2 2
3 199.7 192.7

results in Table 1. Model 1—25 has 19%
higher fundamental natural frequency than
does model 1—25SDR because of the tangen-
tial stiffnesses of the side grid dimples and
spring. The equivalent translational dimple
stiffness used in SAP V analysis was
deduced by the semi-emperical method des-
cribed in the Appendix. They are

Kp=K s+ Ks=1.55%X10° N/m (4)

Ks=K,+K,=1.00X10° N/m
The stiffnesses of a structure are tempera-
ture-dependent due to the temperature-
dependence of Young's modulus E. Young’s
modulus of Inconel 718 is reduced by 5% at
the operating temperature 316°C. Therefore,
the stiffness values to be used for dynamic
analyses of prototype fuel rods at normal
operating temperatures are ‘

Kp=1.458x10°N/m

Ks=9,30x10*'N/m

K;=9.33%10°N/m (5)

K;=5,25X10°N/m

K,,=6.00%x10*'N/m

K,=3.30x10*N/m

3. Multi-Span Fuel Rods
Tables for calculating the natural frequ-

encies of a continuous beam on equally
spaced simple supports are available.®®

However, the natural frequencies and mode
shapes of a beam on multiple unequally
spaced supports or on equally spaced but
more complicated supports (spring constrai-
nts) have to be calculated case by case.

3.1 Finite-Element Fuel Rod Models

The fuel rod, which has distributed mass
and elasticity, can be modeled by finite
elements. A portion of the fuel rod of
length 4! is represented by a weightless rod
of the same geometry and elasticity as the
fuel rod with one-half of the mass of each
section lumped at each end of the section
as shown in Figs. 3a and 3b. For a typical
prototype fuel rod span shown in Fig. 3c.

m=(I—0.0286)1/8

= (I —0. 0286) #+0. 0143¢/2
13=0, 0143

ta=lpf2

ps=(1,—0.0143) /2

The grid spring and dimples are modeled
by three translational springs Kp, K and
K,. The span between adjacent grids is
represented by ten finite elements as shown
in Fig. 3 and in Table 4, The fuel rod
geometries considered are the prototype six
span fuel rod, Model 6—26,
models 3—19 and 1—25.

in addition to
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Fig. 3. Finite Element Model of a Typical Fuel
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3.2 Natural Frequencies and Mode Shapes

The accuracy of the natural frequencies
calculated using the finite element method
depends on the finite element model adopted,
the number of finite elements used, and the
boundary conditions for the system to be
analyed. In general, the accuracy improves
as the number of finite elements increases.
The results, however, should be checked
either by experiment or by comparison with
an exact solution if one is availabe. The
accuracy depends on the number of finite
element used and impedance matching for
a shock response.””® The rule of thumb for
selecting the number of finite elements
needed for good engineering accuracy (nat-
ural frequency accurate within 0.7%) of
the natural frequencies of a singlespan beam
is to take about 8n elements where n is the
number of the highest mode of interest.

Each span of the multi-span fuel rod
model takes on the fundamental mode shapes

Rod Span of a single-span beam having a variety of
Table 2. Mode Shapes of Test Model 1-25
[ Coordinates Mode Shape
Grid No. Mass Points of
Mass Points 1 2

1 ‘ 0.0 2.210965E-02 5. 169385 E-02

1 2 1. 429 —6.842096 E -04 —9,207703E-03
3 2.858 —2.789955E ~02 —8.041608E-02

4 8.922 —2.238563E -01 —5.311205E-01

5 14.986 —4.913669E -01 —9.355967E -01

6 21.050 —7.498465E-01 —1.000000E -01

7 27.115 —9.337189E-01 —6.414098E-01

8 33.179 —1.000000E -01 8.104025E-01

9 39. 243 —9.337189E-01 6.414098E -01

10 45. 307 ~7.498465E-01 1. 000000 E-00

11 51.371 —4.913669E -01 9.355967E -01

12 57.436 —2.238563E-01 5.311205E~-01

13 63. 500 —2.789955E -02 8.041608E -01

2 14 64.929 —6.842096 E -04 9.207703E-03
15 66. 358 2.210965E-02 —5.169385E-02

Natural Frequency, Hz

100.6

821.6
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Table 3. Mode Shapes of Test Model 3-19

Grid Mass Coor%i?ates Mode Shape
No. Points Mass Points 4 és b5

1 1 0.0 2.449E-02 3.379E-02 2.418E-02
2 1.429 —1.825E-03 —2.906 E-03 2.465E-03

3 2.858 —3.304E-02 —4.636E-02 —3.394E-02

4 10. 424 —3.146E-01 —4.330E-01 —3.087E-01

5 17.991 —6.252E-01 —8.396E-01 —5.781E-01

6 25.558 —7.752E-01 —1.000E-01 —6.485E-01

7 33.124 —9.802E-01 -8.199E-01 —4.748E-01

8 40.693 —3.856 E-01 —4.073E-01 —1.772E-01

9 48.260 —5.095E-02 —3.862E-02 —1.406 E-04

2 10 49. 689 3.520E-04 —1.975E-03 —4.337E-03
i1 51.118 5.364E-02 2.529E-02 —2.546E-02

12 58. 648 4.514E-01 9.824 E-02 —3.744E-01

13 66. 251 8.420E-01 7.644E-02 —8.117E-01

14 73.818 1.000E-00 1.952E-05 —1.000E-00

15 81.384 8.420E-01 —7.644E-02 —8.117E-01

16 88.953 4.514E-01 —9.824E-02 —3.744E-01

17 96, 520 5.364E-02 —2.529E-02 —2.546E-02

3 18 97.949 3.519E-04 1.975E-03 —4.337E-03
19 99.378 —5.095E-02 3.862E-02 —1.406 E-04

20 106, 944 —3.856E-01 4.073E-01 —1.772E-01

21 114,511 —6.801E-01 8.193E-01 —4.748E-01

22 122,075 —7.752E-01 1.000E-00 —6.485E-01

23 129. 644 —6.253E-01 8.396 E-01 —5.781E-01

24 137.213 —3.146E-01 4.330E-01 —3.087E-01

25 144,780 —3.304E-02 4.636E -02 —3.394E-02

26 146.209 —1.825E-03 2.906 E-03 —2.465E-03

27 147.638 2.449E-02 —3.379E-02 2.418E-02

Natural Frequencies, Hz 155. 1 171.2 192.7

different boundary conditions up to the n=
N mode, where N is the number of spans.
Therefore, by using eight finite elements
for each span in our fuel rod models, the
error in calculated natural frequency is less
than 0.7% for the® natural frequencies of
the first N modes. Calculated natural
frequencies for several fuel rod models are
given in Tables 2,3, and 4. The results
show that the frequencies are very close to
each other up to the Nth mode. This indi-
cates that it is difficult to detune the rod
if the excitation frequencies are in this
range. The fundamental natural frequency

of a fuel rod on many un-equally spaced
supports is strongly influenced by the
longest span, when the number of supports,
total length, and the physical properties are
the same. In particular, the fundamental
natural frequency of a rod on equally spaced
supports is higher than that of the same
rod on unequally spaced supports.

For a finite element solution, the error
in mode shape is greater than the error in
natural frequency due to discontinuities in
slope that occur at each connection point.
An exact error criterion is not available.
However, it is believed that the mode-shape
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Table 4. Mode Shapes of Prototype Six-Span Fuel Rod

s | Norma-
:,_9_' s %E lized C- Mode Shape
I3 in-
OF| Zd, g?«:sdm $1 P2 33 P $s $s 97
1 0.0 5.713E-03] 3.036E-02 4.089E-02 4.942E-02| 1.249E-01] 5.926E-05 1.727E-02
1 2 1.640 1.070E-03] 5.697E~03; 7.593E-03] 9.124E-03| 2.287E-02] 1.012E-05] 2.822E-03
3 2.009 |—4.277E-06|—4.536 E-05—8. 657 E-05{-—1. 492 E -04|—5. 396 E-04|—7. 671 E-07|—2. 790 E -04
4 2.081 |—1.308E-03|—7.008 E-03|—9. 365 E~03|—1. 136 E-02|—2.876 E -02|— 1. 356 E-05/— 3. 854 E-03
5 4.279 |—1.397E-02|—7.419E -02|—9.865E-02|— 1. 181 E-01{~—2. 944 E-01|— 1. 231 E-04]— 3. 278 E-02
6 6.178 |—3.172E-02|—1.671 E~01|—2. 204 E-01|—2. 610 E-01{—6. 400 E-01|—2. 325 E -04|—5. 690 £ -02
7 8.078 |-4.797E-02/—2.497E-01|—3.261 E-01|—3. 801 E-01]|—9. 100 E-01}|—2. 633 E -04| —5. 478 E -02
8 9.978 |—5.755 E-02|—2.948 E-01|—3. 794 E-01]—4. 326 E-01!—1. 000 E -00|— 1. 893 E -04|— 2. 432 £ -02
9 11.878—5.739 E-02|—2.875E-01|—3. 625 E~01|—4. 004 E-01{—8. 773 E-01{—4.381 E-05| 1.806E -02

10 13.7791—4. 691 E-02/—2. 230 E-01}—2. 790 E-01|—2. 934 E-01|—5.879 E~01| 9.740E-05 4.775E-02
11 15.679/—2.806 E-02|~1.305E-01}— 1. 526 E-01|—1.477E-01|—2.470E-01| 1.479E-04| 4.599E-02
12 17.579—4.826 E-03|—2. 090 E-02/—2. 256 E-02|— 1. 842 E-02{—1.703E-02| 4.082E-05 9.713E-03
2 13 17.918—6. 156 E-05|—1. 710 E-04|— 1. 036 E-04|— 1. 083 E~05|—8. 393 E ~05{—3. 205 E -06/ —8. 235 E ~04

14 18.317] 5.699E-03| 2.416E-02| 2.528E-02 1.890E-02| 8.138E-03|—6.384E-05—1.426E-02
15 20.3311 6.754E-021 2.753E-01| 2.743E-01] 1.793E-01{—4.775E-02|—7.287 E-04/—1.460E-01
16 22.445) 1.529E-01} 6.109E-01} 5.949E-01] 3.661E-01—1.993E-01|—1.391 E~03]—2.499E-01
17 21.509] 2.265E-01) 8.864E-01} 8.447E-01| 4.949E-01|—3.512E-01|—1.480E-03—2.153E-01
18 26.572¢ 2.622E-01] 1.000E-00/ 9.282E-01] 5.144E-01}—4.305E-01|—8.570E-04;—4.760E-02
19 23.636! 2.480E-01l 9.121E-01} 8.1555-01] 4,176 E-01|—4.029E-01} 1.606E-04 1.486F -01
20 30.700. 1.874E-0l; 6.521E-01' 5.485E-01] 2.437E-01| 2.806E-01| 9.933E-04| 2.470E-01
21 32.764) 9.909E-020 3.127E-0li 2.324E-01 6.949E-02/—1.198E-01] 1.104E-03 1.889E-01
22 34.823 1.298E-02) 3.271E-02| 1.581E-02—5.571 E~03|—7.547E-03| 2.458E-04{ 2.892E-02
3 23 35. 1971 8.773E-05—3.663E-05—2. 083 E-04|—1.404 E-04|—3. 407 E-05|—1. 596 E-03|— 1. 202 E -03
21 35.566,—1.424 E~02/—3.200E~02/—~1.018 E~02| 1.374E-02| 3.757E-03|—3.602F ~04/—3.554 E-02
25 37.630—1.530E-01{—2.834E-01i—35.846 E-03] 2.453E-01{—1.782E-02{—3.980E-03|—3. 318 E-01
26 39.634—3.359E-01|—5.721 E-0l; 6.376E-02] 5.967 E-01|—8.002E-02|—7.511 E-03—5.450E-01
27 41.759|—4.890E-01/—7.840E-01} 1.535E-01| 8.895E-01|—1.4331E-01|—7.921 E-03|—4.503E-01
28 43.822/—5.590E-01|1—8.451 E-01, 2.236E-01| 1.000E-00|—1.773E-01|—4.516 E-03|—7. 557 E 02
29 45.8361—5.225 E-01|—7.359 E-01, 2.465E-01| 8.846FE-01|—1.673E-01] 9.709E-04/ 3.444E-01
30 47.950,—3.897E-01|—4.953E-01} 2.117E-01| 5.889E-01|—1.177E-01] 5.414E-03 5.403E-01
31 50.014|—2.022E-01|1—2.136 E~01] [.279E-01} 2.384E-01|—5.119E-02] 5.950E-03 3.997}%-01
32 52.078/—2.552E-02|—1.606 E-02 2.000E-02 1,222E-02{—3.516E-03| 1.308E-03] 5.844E-02
4 33 52.4471—7.152E-03| 2.138E-04! 5.0971-05—1.018E-04|—1.623E-05|—9.697 E-05—2.415E-03
31 52.816] 2.771E-02] 1.200E-02—2.377 E-02/—3.482E-03| 2.079E-03|—1.939FE-03|—7.028 E-02
35 51.879 2.895E-01} 4.484E-02/—2.718 £-02 9.445E-021—6.682E-04|—2. 106 E-02|—6. 326 E -01
36 56.944} 6.252E-01] 3.521E-02{~5.950E-01| 2.962E-01j—1.799 E-02{—3.883E-02|—9.992 £ ~01
37 59.008; 8.944E-01)—1.091E-03—8.410E-01| 4.846E-01|—3.758 E~-02|—3.905E-02|~7.574 E-01
38 61.0720 1.000E-00/—4.575E-02j—9. 104 E-01| 5.732E-01|—4.945E-02|—1.907£-02—1.3121-02
39 63.135 9.058E-01)—8.072E-02—7.768 E-01| 5.247E-01|—4.827E-02| 1.036E-02/ 7.396E-01
40 65.199 6.434E-01/—9.146 E~02|—4.932E-01| 3.595E-01|—3.471E-02| 3.195E-02 1.000E-00
41 67.263; 3.060E-01|—6.966 E-02)—1.803E-01| 1.509E-01|—1.536E~02| 3.176E-02] 6.461 E-01
42 69.323 3.145E-02|~1.393E-02|—3.294E-03 8.999FE-03{—1.087E-03| 6.507E-03] 7.444E-02
5 43 69.696—5.380E-05—1.351 E-04| 2.139E-04/—6.733E-06|—1.064E-05—4.272E-04] 1.558¥%-03

4

3

1

2

2

2

1

8

6

6

44 70.065—3.047E-02| 1.767E-02—6.803E-03]—4.067E-03] 6.546 £ -04]—9.326 E-03/—6.632E -02
45 72.129—2.649E~01| 2.200E-01|—2.123E-01| 3.256 E-02] 2.453E-04{—9.978 E-02—4.782E-01
46 74.194;—5.311E-01] 4.975E-01|—5.576 E-01] 1.248 K -01|—4.421 E-03|—8. 828 5-01—6. 588 E-01
47 76.2381—7.256 E-01} 7.228E-01{—8.633E-01| 2.170E-01{—9.941 E-03|—1.830E-01—4. 131 E-01
48 78.321|1—7.816 E-01| 8.081E-01|—1.000E-00] 2.670E-01l—1.349E-02{—8.837E-02 1.143E-01
49 8).385|—6.813E-01] 7.220%-01]—9.138E-01 .517E-01|—1.348E-02{ 5.010E-02; 5.630E-01
50 82.4491—4.603E-01] 4.963E-011—-6.377E-01] 1.797E-01—9.961E-03] 1.511E-01; 6.514E-01
51 81.5131—2.005E-01| 2.189E-01|—2.843E-01{ 8.138E-02/—4.621E-03] 1.495E-01 3.597F-01
52 86.577|—1.576 E~02| 1.743F-02|—2.292E-02 .675E-03|—3.893E-04] 3.084E-02 2.827E-02
6 53 86.946; 1.698E-04|—1.189E-04; 8.091E-05 6.375E-06|—2.711E-06|—1.610-03] 3.879E-03
54 87.315 1.232E-02(—1.358E-02 1.780E-02]—5.168E-03| 3.009E-04{—4.330E-02/—7.595E -03
55 88.546] 4.382E-02/—4.836E-021 6.472E-02/—1.910E-02| 1.141E-03|—2.743E-01] 1.960E-02
56 89.778 6.395E-02|—7.184E-02 9.584E-02|—2.860E-02| 1.739E-031—5.708 E-01] 1.088E-01
57 91.0101 7.335E-02|—8.293E-02| 1.113E-01|—3.351E-02| 2.068E-03—8.344E-01 2.130E-01
53 92.241} 7.314E-02|—8.314E~-02] 1.121E-01|—3.401E-02 2.124E-03]—9.906 E-01] 2.928E-01
59 93.4731 6.505E-021—7.426 E-02| 1.005E-01|—3.068E-02 1.934E~03|—1.000E-00] 3.221E-01
60 34.705] 5.134E-02|—5.881E-02] 7.987E-02(—2.448E~02] 1.554K-03|—8.641E-01] 2.937E-01
61 96.7921 2.322E-02|—2.670E-02| 3.639E-02|—1.121E~-02 7.177E-04|—4.313E-01| 1.545E-01
62 98.830] 1.967E-03/—2.269E-03] 3.102E-03]—9.600E-04| 6.186E-05—3.945E-02 1.465K-02
7 63 99.2491 1.895E-05—2.470E-05 3.720E-05—1.308E-05 9.960E-07|—1.485E-03| 7.348E-04
64 99.617|—1.581E-03| 1.819E-03]—2.481E~-03| 7.652F-04]—4.906 E-05] 2.992E-05/—1.082E-02
65 | 100.0 (—3.177E-03 3.660E-031—4.995E-03 1.542E-03]—9.904 E-05 6.1311-02/—2.238E-02
Normalized Na- .
tural Frequency ’ 1.00 1.05 1.14 1.22 1.35 2.31 2.87
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error is less than 10% for the finite element
model used. The normalized mode shapes
for fuel rod models 1-25, 3-19, and 6-25 are
given in Tables 2,3 and 4, respectively.

4. Single-Span Fuel Rod Model

4.1 Spring Stiffness

An approximate model for an intermediate
span of a multi-span fuel rod is shown in
Fig. 2b. In this model, the three grid
springs are replaced by two equivalent
springs, one translational and the other
rotational. The total equivalent translational
spring stiffness of a grid is

K,=2Kp+Ks (6)
where K, and K; are given by Eq. 1. The
equivalent rotational stiffness of the grid is
a function of the location of the axis of
rotation. If the axis of rotation is at
distance x from one of the dimples, then
the rotational stiffness of the grid is

k,=_’;t=KD (b — 264247
b 2
+K;s (7 —x) )
where F; is the applied moment, ¢ is the
resulting angle of rotation, and b is the
distance between dimples. During vibration
of a multi-span fuel rod in any particular
mode, the deflected shapes of the various
adjacent spans are often considerably diffe-
rent (see Fig. 5 for example) so that
the inertia forces acting on the rod on each
side of a grid are different and the axis of
the rotation is not located at x=b5/2. The
location of the axis of rotation relative to
the grid midpoint is different for different
grids and different modes. However, for
simplicity we will assume that x=5/2 when

calculating the rotational stiffness. Substi-
tuting x=5/2 into Eq. 7 we find the appro-

6rid o.
1 2 3 & 5 [ 7

ode  Freq. 2,000 —F5.930F17 250 F 17 250 F17. 25017 2ne . FLinx
No. tio Same 22

VAN
N

VANEYANS
N\

3 1.14 +

s Flow

1 1.00 t ¥ e

i

Fig. 5. Natural Frequencies and Mode Shapes of
the Prototype Six-Span

ximate total rotational stiffness of a grid
to be

k,=l%bi (8)

Since half of the translational and rotat-
ional stiffnesses of a grid act on each
adjacent span of a multispan fuel rod that
is vibrating symmetrically, only half of the
total stiffnesses of a grid are used for the
single-span models. That is

k k
K = L K =
’ 2 ’ ! 2 (9)

where K, and K, are the equivalent rotatio-
nal and translational stiffnesses, respective-
ly. The model shown in Fig.2 accurately
repreéents a multi-span fuel rod for which
the stiffnesses of the grids at each end are
one-half as stiff as the intermediate grids,
and for which the span lengths are equal
and the rod is vibrating in its fundamental
mode. This model only approximately rep-
resents a multi-span fuel rod for which the
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end grids have the same stiffnesses as the
intermediate grids.

4.2 Natural Frequencies and Mode Shapes

Equation of motion for the Bernoulli-
Euler'® beam shown in Fig. 2b is given by

ik ( a%y 9%y _
vt \Fl 55 )"‘“ T

where EI and p are the bending rigidity and
mass per unit length of the beam, respect-
ively. For a constant EI and an undamped
free vibration, we substitute y(x,f)=Y (x).
e into Eq. 10 and find

o (an
A general solutions of Eq. 11 is well known

Y (x) = A;Cy 4 AsS1 + AsCa+AsS: (12)
where C,=Cosh (8x) +Cos (8x),

C,=Cosh (8x) —Cos (x)

S, =Sinh (3x) +Sin (8x),

S,=Sinh (5x) —Sin (8x)
and Ai are the integration constants to be
determined from boundary conditions. The
boundary conditions for the

(10)

—pY=0, B‘=po’El

single-span

model are;
— a¥y dY d¥y
at  x=0 El—py= Rogu— Bl
=—K,Y (13)
d? Y dxy d¥y
at  x=l ElJ —K, > Bl
=KY

From Egs. 12 and 13, we obtain four hom-
ogeneous equations for four unknowns Ai.
For non-trivial solution, the determinant of
coefficients of Ai must vanish, from which
we obtain the frequency equation of the
model. The equation is

)’

o (1) ()
) (55) g

ET EI ) ("
(1—Cosh(pl) Cos(8))

(5 gy (1= (5

263

[Cosh (87)Sin (8!) +Sinh (/) Cos (/)]
K3 1 Kl K3 1
~2(r) @y (- (2) (2r) @
% [Cosh (81 Sin (81) —Sinh () Cos (1))

+4( Ibf;l N5 K> )(ﬁl>“ - Cosh (8!) Cos (gl)
2(511)2 ((zr o) ~(5r >2(ﬂ11)4 X

Sinh (8l) sin(8]) =0 (14
Jt can be noted the frequency equation is
essentially a weighted sum of a number of
with more
elementary boundary conditions. When the

frequency equations for beams

numerical values appropriate for the fuel
rod are used, it can be shown that the
analysis can be simplified without signific-
ant error by setting K; equal to infinity for
the present fuel rod assemblies. Then Eq.
14 reduces to

2<%_)2 (81)*Sinh (81) Sin (30)

+2( ) (81) [Cosh (81)Sin (1)
~Sinh (,Bl) Cos ()] (15)
+{1—Cosh (81) Cos (5)) 1=0
the frequency of the nth mode is
_Bh?: [ ET
L (16)
where 8./ is the nth root of Eq. 15. The

eigen value is plotted for »=1 and 2 in

Fig.4 as a function of the stiffness param-
eter 4
EI

A= [1+ K }—1

The normalized mode shapes ¢,(3.x) of a
single-span beam having a rotational spring
at each end (K,:oo) are

B (Ba%) =

(17)

—Sinh (8,%) + Sin (8.x)

+& (Slnh (%) 4 Sin (8a%)
——-g}l T,BIIT {Cosh (8,x)
—Cos (8:x)])}

(18)
+

and
»= {Sinh (84) —Sin (8.} / {Sinhn (8./)

J
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+Sin (;3,1)

Kgl

+-——— —75—[Cosh (8.0) —Cos (84) 1}

(13 £)
where the normalization factor ¢* is equal
to the maximum value of the expression in
the brackets in Eq. 18. It decreases monot-
onically from 2 to 1.616 as A increases from
0 to 1. Angle of rotation at the grids are
of great importance in calculating forces
acting on the dimples. Derivetives of Eq.

18 at x=0 or / render

i1_=_(ﬁ1,)2[cosh< ﬁzll ) Cos( Bl )]

N
=+ 1/311{(:0311( /i‘l )Sln( Bid )

—Sinh(-&5 )cos(-BL)) (19)
+-]§,”T[1—Cosh( 521 )Cos( Bl )”

where 4, is the angle of rotation at x=! for
n=1 mode, ¥ is the maximum vibration
amplitude, and / is the span length. Eq. 19
is plotted in Fig. 4 as a function the stiff-
ness parameter 1. Let us calculate the fun-
damental natural frequency and dimple
motion for model 1-25. The numerical
values used for SAP V analysis are: EI=

22.4N.m? [=0.635m, p#=0. 127kg/m and K,=

Y1
i 1

Ke %_‘ o o
s S
™ — /

Second! Mode

7.853

/ 4,730

2 '] }\

AN

©

] 2 4 6 8 1.0

(aioged) Stiffress Parameterd = 1/(1 + EL/k,t )  (Clamped)

Fig. 4. Natural Frequencies and Angle of Rotation

1.55x 10° N/m. Substituting into Eqgs. 9 and
17, we find K;=630N, m/rad, and 2=[1+ET
|Ksl)'=0.947. From Fig 4, we obtain f/=

4.34, and6!/y=1.05. Then the natural
frequency fi is
= B [ ET
5 om N =% 8Hz

Dimple displacement d; for y,=1 can be
obtained as follows

L=(5N ) (7)

=]1.06X X 0.01429=0. 024

1
0.635
Note that b/2=coordinate of mass point 2
in Table 2. SAP V analysis show f;=100.6
Hz and d,=0.027 as in Table 2. There are
only 29 difference in natural frequency
and 13% defference in dimple displacement.

5. Conclusions

1. There are 6 “fundamental” modes for
the 6-span fuel rod. When a mode shape
has a single loop per span, it is called a
fundamental mode. The ranges of the nor-
malized fundamental natural frequencies are
1-2.87. In particular the first 3 fundamental
1.05 and 1. 14 respective-

ly. Greater difficulties are anticipated for
detuning if the rods are excited in this

frequencies are ],

range.

2. The static stiffnesses of the grid spring
and dimples can be used in computer anal-
ysis of prototype fuel rods on multiple grid
supports. The measured and deduced values
are

Radial Stiffness of Dimple=K,,
=5.25X10°N/m

Tangential Stiffness of Dimple
=K4=9.33%10°N/m

Radial Stiffness of Spring=K.,
=3.3x10*'N/m

Tangential Stiffness of Spring=K,,
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=6,0x10*'N/m
3. The single-span beam model can be
used for calculating the lowest natural fre-
quency and corresponding mode shape of
prototype fuel rods. It is not accurate,

however, for analyses of the higher modes.

Appendix: Deduction of Tangential
Stiffnesses

The equivalent rotational stiffness K, in
Fig. 2b. at the grids of model 1-25SDR can
be calculated from the measured fundame-
ntal natural frequency as follows.

1. Calculate the fundamental natural fre-
quency of a simply-supported Zircaloy tube
that is 0.635m long.

A
fim= T JEl =5y 7 H,

“ox ul* (A.1)

2. Calculate the frequency parameter /-

corresponding to the fundamental natural
frequency of 84.0Hz. From Eqs. Al and 16
we find that

ﬁll=n\/%=4. 00 (A.2)

3. Find the corresponding stiffness para-
meter from Fig.4.
EI \-'__
[H‘K,,T] = .87
4. Solving Eq. A3 for K;, we obtain
K;~240N.m/rad (A.4)

In a similar manner we will now calcul-

(A.3)

ate the equivalent rotational stiffness at the
grids of model 1-25. Thus, fi/=7./99.8/51.8
=4, 36; from Fig.4 we-obtain 1=, 95, so that
Ky=670N.m/rad (A.5)
The equivalent rotational stiffness K, is
given by Eq. 7; that is
Ko= (K4 + Kap) (0*—2bx+2x7)
+ (K, +Ky,) (b/2—x)°
(Kt Kyy) (B°—2bx+2x%)
where x is the distance of the axis of rot-

(A.6)

ation measured from the left-hand side

265

dimple, and & is the distance between dim-
ples. If we assume that the axis of rotation
of both models is at the same location, then

(BE)1—25 670 _ Kut+Ka
(Ks)1—255DR — 240 0+ Ky,

or

Kd,:[{,,,(%)q, 0MN/m

(A.7)
For the tangential spring stiffness,-we will
take the same ratio (for present convenie-
nce and not on a logical basis). Thus,

— 670—240 \_ N
Kst—Ksr<T>’—6.3x10 I\/m

(A.8)
Therefore, the equivalent dimple and spring
stiffnesses and K, and Ks to be used for
dynamic analyses of grids are
Kp=Ku+K;=1.5x10° N/m
Ks=K+K,=1.0x10° N/m

(A.9)
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