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1. Introduction

The authors are involved with a multi-year research project
targeting the analysis and design of an Accelerator Driven
System as a future Minor Actinide (MA) transmutation sys-
tem. In this research, measurement data is used from the
Kyoto University Critical Assembly (KUCA) A-core ADS
facility. This ADS facility consists of a zero-power, sub-
critical core into which neutrons are injected, either from a
DT-source, or from a spallation source driven with 100MeV
protons. The subcritical core has a thermal neutron spec-
trum. For ADS the online monitoring of the reactivity is
crucial to ascertain a safe operating margin to criticality. In
an ADS, a pulsed neutron experiment is the obvious choice.
In this case, the so-called prompt α-mode of the reactor is
important. Development of related theory and analysis tools
is important for ADS development.

2. Theory

The basic equation describing the behaviour of a nuclear re-
actor is the time-dependent transport equation. In the case
of time dependence, a distinction must be made between the
prompt fission neutrons and the delayed neutrons, hence the
equations are, in operator notation:
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∂cj
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where T is the collision operator, S is the scatter oper-
ator, and F is the fission operator. If the operators are not
time dependent, the solution to this equation has the form
ψ(r, E, Ω̂, t) = eαtΨ(r, E, Ω̂), and similar for the precur-
sor concentrations [1]. The transport equation becomes:
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Ψ+∇ · Ω̂Ψ+TΨ = SΨ+ (1− β)χpFΨ

+
∑
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λjχd,jCj (1)

αCj + λjCj = βjFΨ (2)

Boundary conditions determine the admissible αj (the
eigenvalues) and the corresponding spatial shape functions

Ψαj
(the so-called α-modes). From elementary mathemat-

ics, the transport operator has one real eigenvalue α0 which
is the least negative, or even positive, of all eigenvalues. Af-
ter a sufficiently long time, the flux in the reactor is thus
given as ψ = eα0tΨα0 , with the special case α0 = 0 corre-
sponding to a critical reactor.

In a different type of analysis, the time dependence of the
neutron flux is removed by introducing an artificial steady
state, by replacing ν with ν/k in the fission operator. The
critical transport operator then becomes:

∇ · Ω̂Ψ+TΨ = SΨ+
1

k
χFΨ

Similar to the α-modes, admissible values of kj are de-
termined by the boundary conditions, and (for historical rea-
sons) the corresponding flux shape functions Ψλ are called
λ-modes. As long as the precursors do not move, there is no
need to distinguish between prompt and delayed neutrons in
the case of λ-modes.

2.1. Relation between α-modes and λ-modes

In the case of α-modes, a distinction must be made between
long time scales, where the delayed neutrons have an influ-
ence, and short time scales where only the prompt neutrons
play a part. Let αl be an eigenvalue and Ψl, Cl the corre-
sponding shape functions. Then, using Eqs. (1) and (2) we
find the delayed α-modes:
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]
FΨl (3)

If the effect of delayed neutrons is ignored, the prompt
α-modes are found:

αp
l

v
Ψp

l +∇ · Ω̂Ψp
l +TΨp

l = SΨp
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p
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Finally, for reference, the λ-modes satisfy the equation:

∇ · Ω̂Ψλm
+TΨλm

= SΨλm
+

1

km
χFΨλm

(5)

For delayed α-modes, |αl| < 1.0, so that the leading
factor αl/v can be neglected. The result is that the form of
the equations for the α- and λ-mode are similar. In fact, Ψl

and Ψm are identical if
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=
χ
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Under certain idealized cases, this equation will be sat-
isfied for J different values of αl; the α- and λ modes are
then identical. In general the conclusion is that for certain
values of αl, there is a correspondence between the delayed
α-modes and the λ-modes.

If the reactor is below prompt critical, there will be one
least negative eigenvalue αp

0; any other eigenvalue αp is
more negative than αp

0. αp has a large magnitude as it is re-
lated to the decay of the prompt neutrons. If a prompt mode
Ψp

l is substituted in Eq. (3), it would almost “fit” Eq. (3),
except for the delayed neutron term. However, this delayed
neutron term is divided by the (large) αp and hence its in-
fluence is small. We therefore conclude that for any prompt
α-mode there is a corresponding (nearly identical) delayed
mode: Ψp

l ≈ Ψl, and αp
l ≈ αl.

A note must be made here on energy dependence of the
modes. The α-modes include the term α/v, with v the neu-
tron speed. For high energy neutrons, this term will be much
smaller than for thermal neutrons. Thus the correspondence
between α-modes and λ-modes is also energy dependent.

3. Calculation of the Modal Shapes

For the calculation of the mode shapes, some simplifications
and approximations are introduced. First, diffusion theory is
used instead of transport theory; energy is discretized into
energy groups and space is discretized into finite volumes.
With these discretizations, all operators in the aforegoing
equations are matrices, and all continuous function become
vectors. The solution is found as the eigenvalues and eigen-
functions of a matrix. Let D denote the diffusion operator.
For the prompt α-modes, one obtains:

1

α
φ = [D+T− S− (1− β)χpF]

−1

(
− 1

V
φ

)
For the delayed α-modes, one finds after some manipu-

lations:

1

α
φ =

[D+T− S− (1− β)χp + ZF′]
−1

(
− 1

V
φ− χdc

)
where F′ is a modified fission operator, and for the

λ-modes:

kφ = [D+T− S]
−1
χFφ

All these equations have the form of a generalized eigen-
value equation, i.e. B−1Ax = λx, and can be solved on a
digital computer. The solution strategy is as follows:

1. Select a trial vector φA.

2. Depending on the type of mode under evaluation, cal-
culate a source term:

• For prompt α-modes qαp = −φA/V

• For delayed α-modes qα = −φA/V − χdcA

• For λ-modes qλ = χFφA.

3. Solve a fixed source problem:

[D+T− Ss]φD = [Sd + Su +K]φD + q

where the matrix K depends on the type of eigenvalue
to be computed. The scatter operator has been sepa-
rated into a self-scatter contribution, an upscatter con-
tribution and a downscatter contribution. The solution
φD is calculated with an iterative algorithm.

4. Based on the solution vector φD, adjust the trial vec-
tor φA and repeat until φD is a valid eigenvector with
corresponding eigenvalue.

3.1. Adjoint equations

For many applications, the adjoint modes are required, and
thus these adjoint modes need to be calculated. The adjoint
modes are solutions to the adjoint equations. The adjoint
equations are found using the “rules for adjointness” for each
operator in the equations. If the diffusion equation is dis-
cretized into a matrix equation as above, the matrices are
real and thus the adjoint counterparts are found by taking
the transpose of all relevant matrices.

3.2. Computer analysis

In the present research, the DALTON computer code [2]
is used for investigations into the properties of the α- and
λ-modes of a nuclear reactor. DALTON is a 3D multigroup
diffusion code which can calculate the prompt and delayed
α-modes, the λ-modes, as well as fixed source and time de-
pendent problems. Eigenvalues and -modes are determined
with the ARPACK software [3].

4. Results

In the first stage of this research, the properties of the prompt
and delayed α-modes are investigated. A slightly subcrit-
ical 1D test case was devised. The core has two regions,
fuel and reflector, and there are 12 energy groups (8 below
4 eV). The fuel is a mixture of HEU and poly-ethylene (PE),
and the reflector is pure PE, similar to the materials used
in the KUCA-A ADS, although fuel fraction and core size
are adjusted to find a slightly subcritical 1D system. In Fig-
ure 1a are given the fundamental prompt α-mode, delayed
α-mode, and λ-mode. In this case, α0 is relatively small
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and all modes are similar, except at very low energies where
the term 1/vg is relatively large. As an illustration, in Fig-
ure 1b are given the 4th order modes. In this case, αp is large
and as a result the prompt α-modes differ from the other two
modes.
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Figure 1: α- and λ-modes in 1D geometry.

A 2D test case was also devised: a rectangular core
(HEU and PE), surrounded by a thick PE reflector. The
system is deliberately asymmetrical to avoid problems with
degeneration of the eigenvalues. The same 12-group en-
ergy structure is used. In this case also the general similar-
ity between delayed α-modes and λ-modes was confirmed.
The prompt α-modes can be markedly different from the
λ-modes, as illustrated in Figure 2 where the 4th λ-mode
and prompt α-mode are shown.

Ultimately, the α- and λ-modes are only useful if their
application to a real reactor gives useable results. In the
present work, it was decided to analyze the KUCA ADS
benchmark [4], Case I-1. In this core, a slightly subcriti-
cal configuration was created and a pulsed neutron exper-

(a) 2D 4th prompt α mode

(b) 2D 4th λ mode

Figure 2: The 4th prompt α-mode as returned by ARPACK
and the corresponindg λ-mode in 2D geometry.

iment was performed. Results are listed in Table I. A full
3D, time-dependent analysis was performed with the DAL-
TON code of a pulsed neutron experiment with a pulse width
∆tp = 100 µs and a repetition width ∆tr = 20ms. In
Figure 3 is given the time-dependent neutron flux in group
11 (thermal flux), roughly in the center of the core. The
flux shape corresponds to the theoretical expectation. After
the source pulse, many α-modes are excited, but ultimately
only the fundamental prompt α-mode (αp

0) remains, and in-
deed, the flux decays as a simple exponential once the higher
modes have died away.

Table I: Results for KUCA Case I-1.

Measured Calculated

keff [ - ] 0.995 0.991524
αp
0 [s−1] -266 -297

Theoretically, the flux shape in the reactor during the
period of exponential decay should be the mode shape of
the fundamental prompt α-mode. In Figure 4 the calculated
mode shape for αp

0 is compared with the flux shape during
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Figure 3: Simulation of pulsed neutron experiment in
KUCA (benchmark case I-1).

the exponential decay period. While detailed investigations
are ongoing, the flux shapes appear very similar.

Prompt alpha mode group 11

(a) Calculated prompt α mode

KUCA Case I1 time step 51 group 11

(b) Flux shape during exponential decay

Figure 4: The calculated mode shape corresponding to αp
0

and the flux shape obtained in the exponential decay period.

Further investigations are ongoing, concerning the dis-
tribution of the precursors in the system. If the flux decays
as a pure exponential, as predicted by theory, the precur-
sor distribution is determined by the prompt α-mode. How-
ever, during a short time following the source pulse, many
higher modes are excited, and these higher modes all cause
the presence of precursors. As a result the precursor distri-
bution is not quite in the fundamental mode and as a result,
the clean exponential decay curve has a contamination from
these precursors. The influence of the contamination on the
count rate of a detector is a key issue in the determination of
the reactivity of the system.

5. Conclusion and Outlook

The theory behind prompt and delayed α-modes and
λ-modes was presented and the similarity properties of these
modes were shown. Trial calculations in 1D and 2D have
shown the general properties of the various modes in a sim-
ple model of a nuclear reactor. The goal of the present work
is the analysis of the KUCA ADS experiments with deter-
ministic codes. In the present work, one case (I-1) was an-
alyzed and while the results are not yet fully investigated,
preliminary results indicate a good correspondence between
theory and experiment. In the future, the influence of the
higher order alpha modes will be investigated in order to re-
alize a reliable estimation of reactivity.
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