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1. Introduction 

 

Nodal methods[1] typically utilize homogeneous cross 

section for assembly-size nodes. For this requirement, 

homogenization is needed for each node which may 

introduces errors or even decreases the computational 

efficiency. To eliminate the need of homogenization in a 

node, several methods for treating heterogeneous nodes 

have been developed. Fanning and Palmiotti[2] developed 

a heterogeneous nodal method based on Variational 

Nodal Method (VNM)[3]. It separates each of the 

integrals over the heterogeneous node into a set of 

homogeneous integrals according to the piece-wise flat 

distributed cross section to obtain the response matrices. 

However, it is difficult for this method to obtain 

satisfactory results in problems with large flux gradient. 

Smith[4] developed a heterogeneous nodal method which 

divides the nodes into sub-elements and expands the flux 

by finite element trial functions in space. This method 

obtains accurate results in the problems with large flux 

gradient. Another method for heterogeneous treatment 

was developed by Makoto Tsuiki[5]. The most distinctive 

feature of this method is that the flux in a node is 

expanded into a set of functions which are numerically 

obtained by single-assembly calculations without 

assembly homogenization. Highly accurate results can 

be obtained because the assembly heterogeneous effect 

is taken into account in the single-assembly calculation. 

However, computing the numerical expansion functions 

becomes an additional burden of this method. 

After our former work on heterogeneous nodal 

methods[6, 7], this paper derives a finite sub-element 

method based on VNM with diffusion approximation in 

three-dimensional Cartesian geometry. Tetrahedron sub-

elements are used to describe explicitly the 

heterogeneous assembly with pin-by-pin cross sections. 

So the heterogeneity in a node is allowed in this method 

which is quite different from existing homogeneous 

VNM. In addition, Flux and source in the nodes as well 

as net current in the nodal surfaces are expanded with 

finite trial functions. 

 

2. Theory 

 

The three-dimension within-group diffusion equation is: 
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where Φ  is the scalar flux (cm-2·s-1), J  is net current 

(cm-2·s-1), t  is the total cross section (cm-1), s  is the 

within-group scattering cross section (cm-1), and S  is 

the source term (cm-3·s-1) including scattering and fission. 

 Same as the homogeneous VNM, the entire problem 

domain is decomposed into subdomains vV  (nodes) and 

the functional can be written as a superposition of nodal 

contributions: 
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 However, to consider the nodal heterogeneity in this 

method, each node is further divided into a set of 

homogeneous sub-regions named sub-elements. That’s 

the main difference between current VNM and this 

method. The nodal functional is then written as a 

superposition of sub-element functional: 
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where the element functional is written as: 
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The surface term in Eq. (4) only appears in those sub-

elements adjacent to nodal interfaces because continuous 

trial functions are used within each node. 

 We expand the flux and source within the sub-

element and net current along the sub-element’s surfaces 

as: 
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Different from polynomial expansion in the current 

homogeneous VNM,  f r  and  h r  are the finite 

element trial functions defined in the volume and on the 

surfaces.  , s  and j  are the unknown coefficients. M 

and N respectively represent the number of nodes within 

the sub-element and on its surface. For the cross sections 

in each element are homogeneous, the relationship 

between flux and source moments is written as: 
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Substituting Eq. (6) into the element functional in Eq. (4) 

yields the reduced functional: 
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 To obtain the nodal functional, we should use the 

Boolean transformation matrix e  to map the element 

trial function coefficients to the nodal expansion 

coefficients: 

  
e e    (11) 

Substituting Eq. (11) into Eq. (7), and then substituting 

Eq. (7) into Eq. (2) leads to the nodal functional: 
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 As we obtain the nodal functional, the following 

derivation is same as that in homogeneous VNM. Taking 

the variation of the response matrix formulation, Eq. (12) 

with respect to   and setting the variation to zero yields: 

   -1= φ A s Mj  (16) 

The variation with respect to j  yields the condition that 

  T=  M   (17) 

be continuous across each nodal interface. Define the 

partial currents as: 
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substituting Eq. (18) into Eq. (16) and Eq. (17) we can 

obtain the response matrix equation: 
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Eq. (19) and Eq. (20) are used to update the moments of 

partial current and scalar flux. The moments of source 

are updated by Eq. (6). 

 

3. Results 

 

A code named Violet-Het3D has been developed to treat 

3D problems in Cartesian geometry with heterogeneous 

nodes based on the theory aforementioned. To 

demonstrate the accuracy of the Violet-Het3D, a PWR 

pin-by-pin problem was formulated to test the treatment 

of heterogeneous nodes in the code.  

 The radial core configuration of the problem is 

shown in Fig. 1. Each pin is 1.26 cm in length and width, 

and the moderator region is 21.46 cm. In axial direction, 

the fuel region is 60 cm in height and there is a 

moderator region (9 cm thick) both at the top and the 

bottom of the core. The cross sections in each pin are 

homogenized. Ideally the neutron-transport equation 

should be solved in this problem. However in order to 

evaluate Violet-Het3D’s ability of treating spatial 

heterogeneity, the neutron-diffusion equation was solved 

for demonstration purpose. The reference calculation 

takes each individual pin as a node in radial, while the 

Violet-Het3D treats an entire assembly as a single node 

with heterogeneous structure inside. Both calculations 

take 3 cm as the height of each node, so the entire 

problem is divided into 26 layers in total. In addition, 

it’s a two-energy group problem.  

 The reference model treats each pin as a node 

(including reflector assembly), so the whole problem 
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consists of 67626 nodes. And the reference solution is 

obtained by the code named Violet-Hom3D which 

adopts the theory of homogeneous VNM. While the 

Violet-Het3D calculation only employs 234 nodes. As 

shown in Fig. 2, each assembly (including reflector 

assembly) in Violet-Het3D calculation is divided into 

tetrahedrons by the commercial program called 

Freefem[8] which is not needed in the reference 

calculation. Tetrahedron is chosen for its good 

geometrical adaptability. And it can be found in Fig. 2 

that each pin consists of 6 tetrahedrons which is enough 

to describe explicitly the heterogeneous assembly. 

Further refining the tetrahedrons will greatly decrease 

the computing efficiency and obtain little improvement 

for the result. The results of keff are shown in table I and 

the power distribution is shown in Fig. 3. Table II shows 

the difference of the power distribution compared with 

the reference and Violet-Het3D obtains accurate results 

obviously. 
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Fig. 1. Radial core and assembly configuration 
 

 
Fig. 2. Sub-elements configuration in each layer of the 

assembly 

Table I. keff Comparison for the pin-by-pin problem 

 Reference Violet-Het3D Error / pcm 

keff 1.00438 1.00350 -88 

 

Table II. Power Comparison of the pin-by-pin problem 

Case Reference Violet-Het3D Error/% 

Maxpower 2.8410 2.8430 0.07 

Minpower 0.0756 0.0748 -1.06 

MaxError - - 1.5 

 

 The average error of power distribution is below 1.0% 

and the regions closed to moderator usually have low 

power and relatively high error. The positions of the 

maximum power, minimum power and maximum error 

are shown in Fig. 4.  

 

 
Fig. 3. Power distribution of the pin-by-pin problem 
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Fig. 4. Positions of the maximum power, minimum 

power and maximum error 

 

4. Conclusions 

 

This paper derives a finite sub-element method based on 

VNM with diffusion approximation in three-dimension 

Cartesian geometry. The Violet-Het3D has been 

developed and a pin-by-pin problem was calculated. The 

numerical results show that high accuracy can be 

obtained with the treatment for heterogeneity. The 

maximum relative error of the 3D pin power distribution 

is about 1.5% at the pin adjacent to the moderator region 
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at the bottom of the core. However, this method 

currently costs more time than what we expected for 

computing the pin-by-pin problem. The corresponding 

analysis and techniques to overcome this problem is on 

the way. Additionally, Violet-Het3D will be expanded to 

the neutron-transport equation in the future. 
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