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1. Introduction 

 

Core power distribution monitoring in operating power 

reactors is very important in core surveillance, the 3-D 

power distribution is one of the basic operation 

parameters which can determine many other important 

parameters used to evaluate the operation condition of 

reactor and the safe margin. Many kinds of on-line 

monitoring systems, such as BEACON [1] and SCOMS 

[2], have been developed to estimate in-core power 

distributions using fixed in-core detectors. In order to get 

the reliability of the estimated power distribution, the 

uncertainty analysis procedure of the monitoring system 

is needed. 

The uncertainty analysis method [ 1 ] of BEACON 

system includes a statistical simulation of various core 

state conditions, power distributions and detector 

behavior based on the measurement variability. A 

number of ‘true’ and ‘predicted’ core model pairs are 

selected to provide the uncertainty analysis with a 

bounding set of differences that could be encountered 

between the BEACON core monitor model and plant 

conditions under normal and off-normal conditions. The 

uncertainty analysis method used in SCOMS system [2] 

get the overall uncertainty from the uncertainties of the 

input parameters. Individual uncertainties of input 

variables are randomly sampled within the range and 

then added to the original value. 

In this study, a new uncertainty analysis method for core 

power distribution monitoring system SMROMS (Small 

Modular Reactor On-line Monitoring System) was 

discussed. SMROMS uses in-core self powered neutron 

detectors (SPNDs) to monitor the power distribution 

continuously. This method is different from two methods 

mentioned above, because the calculation uncertainty 

and measurement uncertainty are considered separately. 

A rod controlled small modular reactor developed by 

Nuclear Power Institute of China, i.e. ACP100-K, was 

selected as a study case. The 3DCC [3] (3D Coupling 

Coefficients) power distribution reconstruction method 

was implemented in SMROMS. 

 

2. Theory 

 

The purpose of this paper is to discuss the uncertainty 

analysis method of the SMROMS. The 3DCC (3D 

Coupling Coefficients) power distribution reconstruction 

method was implemented in SMROMS. Firstly, the 

3DCC method used to reconstruct the power distribution 

was introduced briefly. Secondly, the overall uncertainty 

analysis procedure was elaborated. 

 

2.1 3DCC Method 

 

The detector results at certain locations reflect the actual 

reactor flux or power can be applied to improve the 

results of the only diffusion calculations. In-core 

detector signals are converted into the power of a 

detector node power by using the signal-to-power 

conversion factor. In 3DCC method, each node power is 

determined from the power coupling coefficients. The 

3DCC is defined as the ratio of the power of a node (l, k) 

to the sum power of the neighboring nodes as Eq. (1): 
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where Cl,k = power coupling coefficient at node (l, k), Nl

= number of radial neighboring nodes (including the east, 

west, north and south nodes) to node (l, k), and Nk = 

number of axial neighboring nodes (including the top 

and bottom nodes) to node (l, k). The approximated 

power coupling coefficient can be determined using 3D 

neutronics calculation as Eq. (2): 
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Because the calculated 3DCCs can be provided by the 

neutronics calculation beforehand, the power of the 

undetected node can be solved by Eq. (3): 
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where the superscript “M” means the measured power, 

groups U( l ,k)  and I ( l ,k)  mean the undetected and 

detected neighboring node groups of node (l, k), 

respectively. Eq. (3) is applied to all the nodes and can 

be expressed as the following matrix-vector form: 
U

AP S    (4) 

where A = coupling coefficient matrix, PU = vector of 

undetected node powers, and S = source vector from 

detected node powers. All the node powers throughout 

the whole core can be obtained by solving Eq. (3). 

 

2.2  Uncertainty Analysis Method 
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The uncertainty analysis method utilized in this paper 

regards the uncertainty of reconstructed parameter as a 

weighted average of calculation uncertainties and 

measurement uncertainties. It is assumed that calculation 

uncertainty and measurement uncertainty are 

independent of each other. In order to explain the 

procedure of the uncertainty analysis clearly, the 

following definitions are introduced: 
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where Pt = true power, Pm = measured power, Pc = 

calculated power, ε m  = measurement error, ε c  = 

calculation error, ε m c  = observed difference. The 

observed difference can be approximated by: 
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As calculation uncertainty and measurement uncertainty 

are assumed to be independent of each other, the 

following relationship exists when uncertainties have 

normal distributions: 
2 2 2

mc m c
       (9) 

where σmc  = variance of observed difference, σm = 

variance of measurement error, σ c  = variance of 

calculation error. 

   H e r e  a n  a s s u m p t i o n  i s  m a d e  t h a t  t he 

reconstructed power of whole core can be regarded as 

a weighted combination of measured power and 

calculated power as Eq. (10): 

r c m
P aP bP     (10) 

where Pr = reconstructed power, a, b = core-wide 

average weights to be determined by theoretical analysis. 

Eq. (10) can’t be applied directly because it is more 

likely a semi-qualitative equation. The following 

relationship exists according to Eq. (10): 
2 2 2 2 2
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where σr = variance of reconstruction error. If we can 

know the values of a, b, σm, σc, then the variance of 

reconstruction error, i.e. the uncertainty of reconstructed 

parameter, is obtained. 

σm can be estimated by analyzing the time series of in-

core neutron detector signals with an assumption that 

there is no error in signal-to-power conversion factor: 
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where N is the sampling number of the corresponding 

time series, 
i

m
I  is the detector measurement of ith time 

point, 
m

I is the average value of detector measurement.  

σmc can be estimated from the calculation power and 

measurement power considering all independent detector 

node, and then σc can be obtained from Eq. (9). 

a, b are two unknown weights, and both should be 

determined by theoretical analysis, since we don’t have 

direct access to the actual measured power. 

When there isn’t measurement error, a can be evaluated 

by the following equation: 
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where a represents the error reduction through 3DCC 

method. A number of ‘true’ and ‘calculated’ core 

condition cases have been simulated to estimate the 

distribution of a, and the estimation procedure has the 

following steps: 

The “baseline” core conditions are selected at different 

burnup points, and the corresponding power 

distributions are regarded as calculated power; 

The “perturbed” core conditions are generated by 

perturbing the core parameters, such as burnup, rod 

position and power level, of the “baseline” core 

condition.  In this study, Latin Hypercube Sampling 

(LHS) method [ 4 ] is utilized to generate different 

“perturbed” core conditions. The corresponding power 

distributions are regarded as true power, and the detector 

measurements can be generated from true power without 

noise; 

Using 3DCC method to get the reconstructed power 

from detector measurements and calculated power; 

Calculating σr and σc from true power, reconstructed 

power and calculated power, and then a can be obtained. 

Because we can set different “baseline” conditions and 

“perturbed” conditions, the distribution of a  can be 

obtained. 

b can be estimated by the following equation: 
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and the estimation procedure has the following steps: 

For a certain pair of “baseline” core condition and 

“perturbed” core condition, a can be obtained from 

its estimation procedure;  

The detector measurements can be generated from true 

power with noise perturbation according to the value of 

σm; 

Using 3DCC method to get the reconstructed power 

from detector measurements and calculated power; 

Calculating σr from true power and reconstructed power, 

and then b can be obtained. 

 

3. APPLICATION IN ACP100-K 

 

A rod controlled small modular reactor developed by 

Nuclear Power Institute of China, i.e. ACP100-K, was 

selected as a study case to describe the uncertainty 

analysis method introduced above. The core of ACP100-

K has 57 assemblies, and 9 of them are instrumented 

with SPNDs. SMART neutronics calculation code in 

SCIENCE code package is used to simulate power 
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distribution and detector signals.  

As mentioned before, a number of ‘true-calculated’ cases 

should be simulated to emulate uncertainty in the 

calculation part to obtain the knowledge of error 

reduction factor a. For ACP100-K study, the “baseline” 

core conditions are selected at 16 burnup points of the 

equilibrium cycle, and 100 “perturbed” core conditions 

are generated for each “baseline” core conditions. 

Generally, 4 core parameters should be perturbed: core 

burnup, core power level, rod positions and xenon 

distribution. But in this study, the perturbation of xenon 

distribution was ignored for two reasons: 

Xenon distribution is hard to be quantized and sampled; 

The reconstructed errors are very small for xenon 

distribution perturbation cases compared to calculated 

errors according to the analysis of the previous study [5], 

so as of these cases are very small. The statistical result 

will be conservative when the perturbation of xenon 

distribution has been ignored. 

LHS method is used to sample core burnup, power level 

and 4 different rod positions within a reasonable range 

established according to the “baseline” core parameters, 

and this method allows a much better coverage of the 

input parameter uncertainties than simple random 

sampling (SRS) because it densely stratifies across the 

range of each input probability distribution.  

In this study, core burnup, power level and 4 different 

rod positions are assumed to follow the uniform 

distribution. The sample ranges of each variable 

perturbation are: Perturbation of burnup is in the range 

of [-40EPPD,40EPPD]; Perturbation of power level is 

in the range of [-40%FP,40%FP]; Perturbation of rod 

bank position is in the range of [-5steps, 5steps]. 

These perturbations are considered to be conservative 

and bounding for the uncertainty analysis. Two  

different sets of random numbers are generated by LHS 

method which has been implemented in MATLAB code 

package to show the distribution of a separately. Fig.1.a 

shows the distribution of a using random set No.1, and 

Fig.1.b shows the distribution of a using random set 

No.2. We can see that the distributions of two sets are 

almost the same, and we can get the conclusion that the 

distribution of a isn’t related to the implementation of 

LHS. 
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Fig.1.a.Distribution of a of random set No.1 
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Fig.1.b. Distribution of a of random set No.2 

 

The scatter diagrams that show the relationships between 

calculation root-mean-square (RMS) errors and as are 

plotted in Fig.2. 
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Fig.2.a.

 Scatter diagram of random set No.1
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Fig.2.b. Scatter diagram of random set No.2 

 

From Fig.2, we can get the same conclusion as shown in 

Fig.1 that the distribution of error reduction factor a isn’t 

related to the implementation of LHS. And we can find 

that there exists a bounding curve that bounds almost all 

scatter points as shown in Fig.3. 
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Fig.3. Bounding curve of error reduction factor a 

 

As a preliminary study, the bounding curve in this paper 

can be expressed as the following function form 

according to the distribution of scatter points: 

cal

cal

cal
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0.78* exp( 17 * (RMS 0.025)) 0.22
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  (15)    

 

From Fig.3, we can know that the importance of power 

reconstruction becomes big when the RMS calculation 

error becomes big. 

In order to show the influence of measurement error on 

the reconstruction error, the estimation procedure of b 

was implemented and 5 “baseline” core conditions of 

different burnup points of the equilibrium cycle of 

ACP100-K were used where “perturbed” core conditions 

are assumed to be as same as “baseline” core conditions. 

By assuming the normal distribution of measurement 

uncertainties about the “baseline” detector measurement, 

the detector signals were sampled 100 times for each 

“baseline” core condition. Fig.4 shows the relationship 

between measurement uncertainties and reconstruction 

uncertainties of 5 “baseline” core conditions. 
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Fig.4. Relationship between measurement variance and 

reconstruction variance 

 

From Fig.4, we can see that the reconstruction 

uncertainty does have a linear relationship with 

measurement uncertainty. The bounding curve has a 

slope of about 0.4 for these 5 cases. In order to obtain a 

conservative estimation of the reconstruction uncertainty, 

b is set as 1 to ensure the sum of a and b is always 

bigger than 1. 

For the real power distribution monitoring of ACP100-K, 

σm can be estimated by analyzing the time series of in-

core neutron detector signals, and σc can be estimated 

by σmc and σm. RMS calculation error is supposed to 

have the same value of σc, and a can be determined from 

σc using the function of bounding curve. As mentioned 

before, b is set as 0.78. Then the reconstruction 

uncertainty of 3D power distribution can be determined 

by Eq. (11). 

 

4. Conclusions 

 

This paper presents the methodology of uncertainty 

analysis used in SMROMS. The ACP100-K small 

modular reactor is taken as an example to illustrate this 

method. The following conclusions are drawn from the 

study: 

The uncertainties of reconstructed core power 

parameters, such as 3D power distribution and power 

peaking factor, are analyzed to be a weighted average of 

calculation uncertainties and measurement uncertainties 

of in-core neutron detectors. 

The weights of calculation uncertainties and 

measurement uncertainties can be determined through 

theoretical simulation analysis. 
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