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1. Introduction 

 

With the continued need for fast reactor and high 

temperature reactor analysis, there has been steady 

interest in hexagonal geometry nodal codes. The Analytic 

Function Expansion Nodal method (AFEN)[1] and the 

Triangle-based Polynomial Expansion method (TPEN)[2] 

are one of the nodal methods which do not involve 

transverse integration and directly find the two-

dimensional(2D) intra-nodal flux distributions. The 

AFEN method which yields quite accurate solutions, 

however, is not efficient in multi-group problems which 

are encountered in fast reactor analyses, whereas the 

TPEN method is less accurate for large node problems 

encountered in high temperature reactor analyses. On the 

other hand, the source expansion nodal method 

(SENM)[3] was developed as a semi-analytic nodal 

method that renders sufficient accuracy and ease of multi-

group applications. But it was limited to Cartesian 

geometry and employed transverse integration. The 

SENM type 2D expansion was tried for pin power 

reconstruction in rectangular fuels.[4] In the work here, 

the SENM with 2D source expansion is extended to 

hexagonal geometry applications. In the following, the 

SENMH, the hexagon version of SENM, is derived and 

examined for a set of simple 2D and 3D core problems 

that involve heavily rodded configurations. 

 

2. Semi-analytic solution with 2D source expansion 

 

In the source expansion nodal method, the analytic 

solution is obtained for the 2D neutron diffusion equation 

after moving all the source terms to the right hand side 

(RHS) and then approximating the source distribution by 

a polynomial. The analytic solution in this case consists 

of the exponential homogeneous solution and the 

polynomial particular solution. Thus the resulting source 

has the exponential terms as well as the polynomial terms. 

The exponential function is expanded into a polynomial 

in the next iteration step and this expansion of the source 

distribution is the main idea of the SENM. This source 

expansion is possible by the group decoupling scheme 

which treats the source distribution as known from the 

previous iterative solution. The analytic solution can be 

easily obtained for each group with the decoupling 

scheme. Because of the polynomial expansion with a 

finite number of terms, however, the SENM solution can 

be less accurate than the fully analytic solution. The 

accuracy of the semi-analytic solution would increase as 

the number of terms in the source polynomial increases. 

 By the way, the homogeneous solution of the 2D 

neutron diffusion equation is the solution of the 

Helmholtz equation which can be expressed in terms of 

infinite number of combination of x and y directional 

buckling values. With a finite number of boundary 

conditions, however, specific angles need to be 

determined. Cho and Noh[1] chose 12 angles which are 

30 , 60 , 90 , and the other angles with 30 apart. The 

same homogeneous solution form will be used in the 

following derivation of the 2D SENM solution for 

hexagons. 

 

2.1 Two-dimensional SENM for Hexagons 

 

After integrating the 3D neutron diffusion equation 

axially over a plane of thickness, hz, the following 2D 

balance equation is obtained for each group with the 

source terms moved to the right hand side: 
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where the axial transverse leakage is defined as 

      , , ,r l
gz gz gz zL J J h       in term of the 

currents at the top and bottom surfaces of the plane; and 

k  is the multiplication factor. The entire right hand side 

(RHS) term can be iteratively updated and approximated 

by a polynomial of two spatial coordinate variables. With 

such a polynomial approximation, the solution of Eq. (1) 

would be obtained in a straightforward manner. 

 Since it is advantageous to use the Legendre 

polynomial for the polynomial approximation owing to its 

orthogonal property, we normalize the independent 

variable such that it varies from -1.0 to 1.0 in the node. 

This leads to the following equation with the group index 

g omitted: 
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where h is the hexagon pitch; 2x h  , 2y h  ; and 

( , )Q    represents the distribution of the entire sources. 

As the polynomial approximation to the source distri-

bution, we use a quartic polynomial given in terms of the 

products of Legendre polynomials: 
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where ( )iP   is the thi  order Legendre polynomial. 

Note that this 15 term polynomial contains fourth order 

cross-terms such as 1 3( ) ( )P P   and 2 2( )P ( )P    repress-

enting a maximum quartic variation in each direction. In 
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the following, it will be assumed that the source term 

coefficients are known and so are the 12 boundary 

conditions for each group flux. 

 The particular solution of Eq. (2) can be easily 

obtained by assuming the same polynomial form as the 

source, Eq. (3). Specifically, the coefficients, ijc , of the 

polynomial particular solution, ( , )p   , can be 

determined by the method of undetermined coefficient. 

The first two of them are obtained as: 
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 On the other hand, the homogeneous equation of Eq. 

(2) can be rewritten as follows by dividing by 24D h : 
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where the dimensionless buckling is defined as: 
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with L being the diffusion length. Eq. (5) can be solved 

by separation of variables after splitting the total buckling 

as follows: 

  2 2 2
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where , cost tB B  and , sint tB B  . Among infinitely 

many combinations for the splitting, we choose only 

twelve pairs corresponding to the following angles: 
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which would require only twelve boundary conditions as 

was done by Böer and Finnemann[5]. Fig. 1. shows how 

the boundary condition is applied in the hexagonal node. 

 

 
 

Fig. 1. Boundary conditions for hexagonal geometry. 

 

This leads to the following form of the homogeneous 

equation: 

    
11

cos sin

0

ˆ, t k kBH
k

k

a e
   

  




   (9) 

which can be rewritten in terms of sinh and cosh as: 
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 In deriving the twelve homogeneous solution coe-

fficients, it is easy to convert the boundary condition to be 

applied only to the homogeneous solution by subtracting 

the particular solution part from the actual boundary 

condition. This is because the particular solution is always 

determined uniquely once the source polynomial is 

specified. The applied form of 6 boundary conditions to 

the homogeneous and particular solution is following as 

summation form. Eq. (11) represents only the 3 boundary 

conditions northern part of hexagonal geometry: 

     

3 1 3 1
, ,

2 2 2 2

1,0 1 0 ,

3 1 3 1
, ,

2 2 2 2

4 4

,

0 0

4 4

,

0 0

4 4

,

0 0

c P P

c P P

c P P

H P
NE i j i jNE NE

i j

H P
N i j i jN N

i j

H P
NW i j i jNW NW

i j

   

   

   

     
                

   

     
                  

 

 

 







  (11) 

 

For instance, the homogenous part of the flux at the north 

corner ( 0, 1)   is obtained as: 
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while the surface average current at the surface is given 

as an integral form like below. Eq. (14) represents only 

the 3 eastern part of surface average current boundary 

condition as: 
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The homogeneous part of the corner fluxes and the 

surface average currents are obtained as above. 

 Using these boundary conditions, the coefficients of 

homogeneous solutions are determined. The coefficients 
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given in Eqs. (4) and (10) for the particular and 

homogeneous solutions define the final solution: 
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2.2 Source Expansion 

 

In the above derivation, it was assumed that the source 

distribution is known and it is described by a quartic 

polynomial of two unknowns. With the new 2D solution 

flux solution available, the primary source distribution 

which consists of the fission and scattering sources should 

be updated for the use in the next step of the iterative 

solution sequence. Since the 2D flux distribution for each 

group contains the exponential function components as 

well as the polynomial function components whereas the 

source is to be approximated by only a polynomial 

function, it is necessary to obtain first the 2D quartic 

polynomial approximation of the flux distribution for 

each group. Then the source term coefficients can be 

obtained by multiplying the flux coefficients by the 

proper cross-section and then by summing over the 

groups. 

 The method of approximation is the least square 

fitting which corresponds to the orthogonal expansion of 

an analytic function in terms of the Legendre function. 

The expansion coefficients can be obtained as ,i jp : 
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Using the coefficients obtained by Eq. (15), the flux and 

source term including fission and scattering sources are  

determined as 
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2.3 Determination of Corner Flux 

 

In order to determine the twelve coefficients of the 

homogeneous solution, the six values of the corner fluxes 

should be specified. In the previous work [4] for 

rectangles, so called the corner point balance (CPB) 

condition was used that requires the sum of the four 

values of the differences in the net current obtained 

around a corner point to be zero. 

 Consider now a corner surrounded by 3 nodes as 

shown in Fig. 2 for hexagons. From the 2D flux solution 

of each node, 3 directional net current at the corner 

become available. Firstly the partial currents are defined 

as: 

 , , , ,

1 1

4 2
c k c k c k c kJ e J     (18) 

where k is the index of corner points. ,1cJ  is the corner 

position at the upper right and counter clock-wisely the 

corner points are numbered. For the 3 nodes, there are 3 

sets of directional currents. And using the definition of 

partial currents, the CPB can be written as [6]: 
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In principle, the 3 directional currents must be the same. 

But since no continuity condition is imposed, there can be 

difference in the net currents. Using those net currents 

difference, the new corner flux can be obtained by taking 

the average of them as Eq. (20): 
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Fig. 2. Corner point balance model. 

 

3. Assessment 

 

A series of the benchmark problems with hexagonal nodes 

have been solved with the TPEN module of the RENUS 

code [2]. In order to verify the SENMH method, the same 

benchmark problems are used. One of the benchmark 

problems is for a small hexagonal core whose assembly 

pitch is about 7 cm. In addition, various control rod 

inserted problems are solved to examine the solution error 

with respect to the extent of control rod insertion. For the 

comparison, the results of the McCARD[7] multi-group 

Monte Carlo calculations are used as the reference. 

 At first, a set of minicore problems consisting of single 

assembly composition was solved to compare with the 

result of TPEN. Secondly the control rod inserted 

problems solved with 4 types of control rod insertion 

configurations. 

 

3.1 Mini Core Problems 

 

The control rod inserted problems for the 2D core shown 

in Fig. 3 involves very steep flux gradients. There are 4 

conditions of control rod insertion. 

 
Fig. 3. Mini core configuration and control rod positions. 

① ④ 

② ③ 

⑥ ⑤ 
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In Table I, the first column shows the control rod inser-ted 

position.  It is clearly noted in this table that the error 

between reference data and other data is gradually 

increased for the TPEN solver. In the SENMH case, 

however, the increase in error is much less than TPEN. 

 

Table I. Results for Control Rod Inserted Problem 

Position McCARD SENMH(  ,pcm) TPEN(  ,pcm) 

ARO 1.52143 1.52110(14) 1.52111(14) 

1 1.37597 1.37532(34) 1.37756(84) 

1,3,5 1.16218 1.16132(63) 1.16587(272) 

ARI 0.98247 0.98152(99) 0.98786(555) 

 

3.2 Large Core Problems 

 

The large 3D core problems shown in Fig. 4 also involves 

control rod insertion as well as unrodded configuration. 

 
Fig. 4. Model core power distribution and removed 

control rod position (circle). 

 

The results for the 3-D core problem given in Table II 

show the same tendency for the control rod inserted 

problem as in Table I. The error of TPEN that amounts 

400 pcm is too large for this asymmetrically rodded 

problem. 

 

Table II. Results for 3D Core Problem 

Position McCARD SENMH(  ,pcm) TPEN(  ,pcm) 

ARO 1.02996 1.03028(30) 1.03026(28) 

CR Inserted 0.99452 0.99562 (111) 0.99871(422) 

 

4. Conclusion 

 

An alternative method for the hexagonal geometry nodal 

solution has been established. Using the concept of source 

expansion in a hexagon, the SENMH method was derived 

such that the homogeneous solution coefficients are 

determined by 6 surface averaged currents and 6 corner 

fluxes while the particular solution coefficients are 

determined by a 15 term quartic polynomial coefficients 

for the source term. The corner point fluxes are 

determined by imposing the corner point balance 

condition. With the two solutions, the updated source is 

constructed using the Legendre expansion concept. This 

procedure is iteratively performed until convergence is 

reached. 

 The accuracy of SENMH was verified for a set of 

simple minicore and 3D problems having different control 

rod insertion configurations. The superior accuracy of 

SENMH was observed for the control rod inserted 

problems which involve steep flux gradients. The result 

showed much better accuracy than the TPEN method in 

that the reactivity error can be decreased by more than 400 

pcm for the very heavily rodded case. It was thus 

concluded that SENMH can replace TPEN with the merit 

of superior accuracy while retaining the advantage of 

multi-group applications. 
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