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1. Introduction 
 
The subgroup method is widely used in nuclear reactor 
neutronic codes such as DeCART[1] and MPACT[2] for 
its geometrical flexibility and higher accuracy compared 
with the conventional equivalence theory. There are 
mainly two steps in the subgroup method: (1) The 
probability tables are generated from the resonance 
integral (RI) tables. (2) The subgroup fixed source 
problems are solved by mature multi-group transport 
solvers such as method of characteristics (MOC). The RI 
tables are typically obtained by solving slowing down 
problems over a range of background cross sections 
using hyper-fine energy group method or Monte Carlo 
(MC) method. This introduces two problems into the 
subgroup method: ignorance of resonance elastic 
scattering effect and resonance interference effect. 
 In the hyper-fine energy group method, the 
asymptotic scattering kernel is applied to obtain the 
scattering source, which ignores the up-scattering of 
neutron in the epithermal energy range. In the MC 
method, the elastic scattering cross sections are assumed 
to be constant at zero temperatures in the free gas model, 
which is invalid for heavy nuclides that have resonance 
peaks. As a consequence, both the eigenvalue and the 
fuel temperature coefficient (FTC) are overestimated, 
which is the so-called resonance elastic scattering 
effect[3,4]. In this paper, to introduce the Doppler 
broadened scattering kernel into the multi-group 
deterministic method, the MC code OpenMC[5] modified 
via Doppler broadening rejection correction (DBRC)[6], 
which was proved to be able to consider both the elastic 
resonance and thermal agitation of target, is used to 
generate RI tables. 
 To generate the RI tables, the neutron slowing down 
equation was solved for infinite homogeneous problems 
mixed by a resonance nuclide and a background nuclide. 
The interference of the resonance peaks between 
different nuclides is ignored in the RI tables, which leads 
to the resonance interference effect. Conventionally, the 
background iteration scheme[7] is used to correct the 
effect. In this scheme, when performing resonance 
calculation of one resonance nuclide, all of other 
resonance nuclides are considered to be background 
nuclides with constant cross sections. Iteration is carried 
out to guarantee the convergence of background cross 
sections and self-shielding cross section. However, this 
scheme consumes much computation time and suffers 
from low accuracy. The conditional probability method 
proposed by Takeda[8] and the mutual resonance 

shielding model by Hébert[9] improve the accuracy of 
subgroup method to some extent. But these methods are 
still not applicable to problems of multiple resonance 
nuclides. Another approach that promising to address the 
resonance interference effect is the resonance 
interference factor (RIF) scheme[10]. RIFs can be 
tabulated or calculated on-the-fly[11,12]. The tabulated 
approach is time-saving but not applicable to problems 
with more than two resonance nuclides, while the on-
the-fly approach consumes much more computation time 
due to solution of hyper-fine energy group or continuous 
energy slowing down equations on-the-fly. Therefore, 
this paper improves the conventional RIF scheme and 
proposes a new scheme named fast RIF to treat the 
resonance interference effect. 
 

2. Theory 
 
2.1 Subgroup method 
 
The subgroups are defined according to the magnitude of 
the cross sections. The energy of a subgroup is 
 ( ){ }, , , 1|g i g i g iE E Eσ σ σ +∆ ∈ < ≤  (1) 
where 
 g=group index and 
 i=subgroup index. 
 For each subgroup, the subgroup cross sections and 
the subgroup probabilities, which constitute the 
probability tables, are defined as 
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where 
 x=the type of the cross sections. 
 Integrating the continuous energy Boltzmann 
equation on a subgroup yields the subgroup fixed source 
problem (SFSP) 
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where 
 ,g iφ =the subgroup flux, 
 , ,s g iQ =the subgroup scattering source and 
 , .f g iQ =the subgroup fission source. 
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 Eq.(4) is solved by multi-group transport solver 
MMOC[13]. After obtaining the subgroup flux, the 
effective self-shielding cross sections can be obtained 
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2.2 Resonance elastic scattering correction 
 
2.2.1 The asymptotic scattering kernel 
 
Neutron slowing down equation of a homogeneous 
system can be written as 
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where 
 k=nuclide index and 
 kf =elastic scattering kernel. 
 In cross sections generation codes such as NJOY[14], 
the target is assumed to be at rest and the elastic 
scattering kernel can be written as 
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where 
 ( ) ( )2 21 / 1k k kA Aα = − + and 
 kA =ratio of the mass of the target to a neutron. 
Eq.(7) is the asymptotic scattering kernel. 
 
2.2.2 The conventional free gas model 
 
The MC method usually employs the free gas model to 
consider the thermal agitation of the target at elastic 
collision[15]. Once the velocity of the target is sampled, 
the velocity of the out-coming neutron can be 
determined. The probability density function of the 
target velocity is 
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where 
 V=the speed of the target, 
 µ =the cosine of the azimuth angle, 
 nv =the speed of the neutron, 
 rv =the relative speed, 
 T =temperature, 
 ( )P V =Maxwell-Boltzmann distribution, 
 ( ),0s rvσ =elastic scattering cross section at relative 
speed at zero temperature and 
 ( )eff ,

s nv Tσ =the effective elastic scattering cross 
section. 
 Assuming that ( ),0s rvσ  doesn’t fluctuate with 
energy, Eq.(8) can be written as 
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where 
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 nM =mass of a neutron and 
 k=Boltzmann constant. 
 
2.2.3 The Doppler broadening rejection correction 
 
In the DBRC method, the modified probability density 
function can be written as 
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where 
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 ( )max ,0s vxσ =the maximum value of the elastic 
scattering cross sections within a range of the 
dimensionless speed of vx . 
 
2.3 Resonance interference effect correction 
 
2.3.1 Background iteration scheme 
 
The computation flow of the background iteration 
scheme is as follows 
 Take resonance nuclide k as the present resonant 

isotope with all the others being assumed to be 
without resonance peaks. Calculate the macroscopic 
subgroup cross sections of the medium as follows 

 , , , , , ' , ',
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 For nuclides without intrinsic resonance peaks, the 
microscopic cross sections , ',x k gσ  are directly read 
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from the multi-group nuclear data library. For 
resonant nuclides assumed to be without resonance 
peaks, the microscopic cross sections are updated 
iteratively by starting with a guess at the beginning. 
Perform subgroup resonance calculation for current 
nuclide. 

 Repeat the above two steps for each of the resonance 
nuclides. 

 Start another resonance nuclide sweep until a 
convergence of the self-shielding cross sections can 
be reached. 

 
2.3.2 Fast resonance interference factor scheme 
 
 The calculation flow of fast RIF is as follows 
 For each energy group, the dominant resonance 

nuclide is chosen according to the magnitude of 
max min

, , , , ,RI / RIk g k t k g t k gRS N=  where max
, ,RIt k g  and min

, ,RIt k g  
are respectively the maximum and minimum total RI 
of group g in the RI table of isotope k. The quotient 
of these two represents the severity of the resonance 
in the microscopic scale, while the ,k gRS  represents 
the severity in the macroscopic scale. 

 Perform subgroup resonance calculation for the 
dominant resonant nuclide, with all the other 
resonant nuclides are considered as background 
nuclides. 

 The heterogeneous system is converted to an 
equivalent homogeneous system according to self-
shielding cross section conservation of the dominant 
resonant nuclide. The equivalent macroscopic 
dilution cross section is given by 
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g g p k k
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 where 0,gσ  is the equivalent microscopic dilution 
cross section. The subscript “dom” stands for the 
dominant resonant nuclide. 

 The slowing down problem (SDP) of the constructed 
homogeneous system is solved with hyper-fine 
energy group method and the effective self-shielding 
cross sections of all the resonant nuclides are 
obtained. 

 
3. Numerical results 

 
The ACE format library used by OpenMC and multi-
group library are generated by NJOY based on ENDF/B-
Ⅶ.0, while the RI tables are generated by OpenMC. The 
Corrections are implemented on a subgroup method 
code SUGAR[16]. 
 
3.1 Verification of the Doppler broadened elastic 
scattering kernel 
 
The Mosteller Doppler defect benchmark[17] is analyzed 
with both SUGAR and the modified OpenMC. The 
difference of eigenvalues for the UO2 pin cell problems 
at HZP and HFP between the conventional scattering 

kernel and the Doppler broadened scattering kernel are 
given in Fig. 1 and Fig. 2. The Doppler broadened 
scattering kernel is implemented into MVP[18] with 
weight correction method (WCM), MCNP6[19] with 
DBRC and TRIPOLI[20] with both. It can be drawn that 
results provided by SUGAR are consistent with the other. 
For the UO2 pin cell, the asymptotic scattering kernel 
overestimates the eigenvalues by 30 pcm to 140 pcm at 
HZP and 80 pcm to 230 pcm at HFP. 

 
 

Fig. 1.Impact of resonance elastic scattering on k∞  for 
UO2 pin cell problems at HZP of Mosteller benchmark 
 

 
 
Fig. 2.Impact of resonance elastic scattering on k∞  for 
UO2 pin cell problems at HFP of Mosteller benchmark 
 
3.2 Comparison of different resonance interference 
correction schemes 
 
The Mosteller MOX benchmark problems at HZP are 
analyzed by different resonance interference correction 
schemes. Scheme 1 applies the background iteration 
scheme, while scheme 2 applies the fast RIF scheme. 
Both schemes use the subgroup probability tables 
considering resonance elastic scattering effect. 
 Table Ⅰ shows the error of k∞  of different schemes. 
The reference k∞  is calculated by OpenMC with DBRC 
method. It can be found that scheme 2 provide higher 
precision than scheme 1. 
 Table Ⅱ compares the number of SFSPs and SDPs to 
be solved by these two schemes and the time of the 
resonance calculation. The speed up of scheme 2 to 
scheme 1 is ~4.56. 
 
Table Ⅰ. Comparison of k∞ errors between background 
iteration scheme and fast RIF scheme 

PuO2 content / % Error of k∞ /% 
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Scheme 1 Scheme 2 

1 -0.17 -0.17 
2 -0.20 -0.17 
4 -0.23 -0.18 
6 -0.26 -0.19 
8 -0.28 -0.19 

 
Table Ⅱ. Comparison of time for resonance calculation 
between background iteration scheme and fast RIF 
scheme 

Scheme SFSP/n SDP/n 

Time for 

resonance 

calculation/s 

Scheme 1 564 0 108.03 

Scheme 2 47 3 23.69 

 
4. Conclusions 

 
The subgroup method is improved in two aspects. Firstly, 
the resonance elastic scattering effect is considered. The 
Mosteller benchmark problems are analyzed with the 
modified OpenMC code and SUGAR code. The results 
shows that the Doppler broadened scattering kernel 
decreases k∞  30~140 pcm at HZP and 80~230 pcm in 
HFP for LWR pin cell problems. 
 Secondly, the fast RIF scheme is proposed to treat the 
resonance interference effect. It obtains higher precision 
than the background iteration scheme. Its speed up to the 
background iteration scheme is ~4.56 for MOX pin cell 
problems. 
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