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1. Introduction 
 
Nuclear code system is highly dependent on the 
capability of the lattice code which provides the 
homogenized group constants and assembly 
discontinuity factor. The conventional code system 
which is originally developed before the year 2000 with 
the insufficient computational resources, is based on 
two-dimensional lattice code using the ideal boundary 
condition. Recently, with the growth of the computing 
power, Sugimura proposed a hybrid core calculation 
system that uses a more realistic interface effect in the 
radial direction using the 2-D whole core transport 
capability of CASMO-4 [1]. Also, Cho proposed an 
innovative three dimensional nuclear analysis system, 
DeCART/CHORUS/MASTER using the 3-D whole core 
transport capability of the DeCART [2,3]. In that system, 
the assembly-wise equivalent group constants are 
generated and functionalized as the conventional code 
system through the whole core branch calculation. The 
merits of the this code system is in that it can remove the 
design uncertainty caused by the homogenization and 
unrealistic boundary condition and finally reduce the 
uncertainty level to the DeCART whole core transport 
calculation. 

In this paper, the assembly-wise equivalent group 
constant generation capability of the DeCART code is 
extended to the hexagonal core. This capability is 
realized using the TPEN (Triangle-Based Polynomial 
Expansion Nodal) method [4] which is the basic nodal 
method of PARCS [5] and MASTER [6] codes for 
hexagonal core analysis. In chapter 2, the methodology 
to generate the equivalent group constants are explained. 
In Chapter 3, the capability is examined for the 
hexagonal 2-D and 3-D test problems. 
 

2. Methodology 
 
The equivalent group constants consist of the 
homogenized few group constants (HGC) and the flux 
discontinuity factors (DFs) which is defined as the ratio 
of the heterogeneous surface flux to the homogeneous 
flux. The HGC can easily be generated by using the 
heterogeneous flux and cross section through the 
traditional procedure. To generate the DF, however, the 
homogeneous flux, the flux shape in the homogenized 
node, is required. In DeCART, the SENM for the 
rectangular geometry [3] and the TPEN method for the 
hexagonal geometry are implemented to generate the 
DFs. For each homogenized node, homogenized cross-
sections, node average flux, and the surface average net 
currents are given as constraints with the multiplication 

factor as shown in Fig. 1 and the intra-nodal 
homogeneous flux distribution can be determined with 
these constraints.  
 

      
Fig. 1. Given Conditions in Radial and Axial Directions. 
 

The surface flux DF (SDF) can be determined as the 
ratio of the surface average heterogeneous flux to the 
surface average homogeneous flux. Unlike the 
transverse-integrated nodal methods for rectangular 
geometry including the SENM, most of the nodal 
methods for hexagonal geometry including TPEN use 
the corner point flux as a basic unknown and they 
require the corner flux DF (CDF) in addition to the SDF. 
However, unlike the SDF, the CDF can be defined 
arbitrary for example 1.0 or the heterogeneous to 
homogeneous corner flux. How to define the CDF affect 
the flux shape along the surface, but not affect the 
average net current. Undoubtedly, the CDF definition 
should be consistent with the nodal code. In this paper, 
the CDF is approximated by the average of the 
neighboring SDFs as the MASTER code. And the 
heterogeneous corner fluxes are determined by solving 
the corner point balance (CPB) equation with the CDFs 
approximated.  

In TPEN method, the two radial and the axial 
equations are coupled through the transverse leakages, 
and MASTER solves the coupled equation using 
analytic solution. However, when applying the given 
conditions of Fig. 1, the two equation can be decoupled 
because the transverse leakages are given. By using the 7 
transverse leakages shown as Fig. 2, the transverse 
leakage shape in the center fuel assembly is 
approximated as following: 

  (1) 

where 

, 
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The 7 coefficients can be expressed in terms of the 7 
transverse leakages in Fig. 2. The transverse leakages in 
6 triangles in the center assembly can be calculated by 
integrating Eq. (1) for each triangular node. 
 

 
Fig. 2. Neighboring Axial Transverse Leakages for 
Source Approximation in Center Assembly. 
 

In the MASTER code, the CDF is approximated by 
using the SDFs of the neighboring surfaces as: 

   (2) 

The above CDF approximation is suggested to consider 
the simplified equivalence theory (SET). In SET, the 
SDF is generated by the single assembly model using the 
ideal boundary condition, and it can be used to the nodal 
method by explicit treatment or implicit treatment. In the 
implicit treatment, the homogenized group constants 
divided by the SDF are used in the nodal calculation. 
When applying the explicit treatment, the use of the 
above CDF approximation guarantee the same solution 
with the implicit treatment. 

DeCART performs the P3 transport calculation for the 
axial direction [3], and generates the 3rd angular flux 
moment additionally with the 1st moment. From the 
angular flux moments, the surface flux in the axial 
direction is calculated as: 

    (3) 

To generate the equivalent group constants for 
hexagonal TPEN method, the following procedure is 
implemented to the DeCART code. First the SDFs for 
the radial direction are obtained by the following 
procedure. 

(1) Determine the axial leakages for 6 triangular 
nodes for all assemblies by using Eq. (1). 

(2) Assume the homogeneous surface and corner 
fluxes by the heterogeneous solutions, and the 
triangular fluxes by the assembly average flux. 

(3) Determine the CDF by the SDFs of the 
neighboring surfaces as Eq. (2). 

(4) Solve the CPB equation and update the 
heterogeneous corner flux. Hear ‘heterogeneous 
corner flux’ means just the solution of CPB 
equation using the CDF. 

(5) Solve the one-node TPEN equation for the radial 
direction using the given conditions of Fig. 1 and 

the homogeneous corner fluxes determined by the 
heterogeneous flux in step (4) and the CDF in 
step (3). In this step, the surface fluxes and the 
triangle averaged flux and moments are updated. 

(6) Check the convergence of the surface flux. If not 
converged, go to step (3). 

Next, the SDFs for the axial direction are obtained by 
the following procedure. 

(1) Determine the radial leakages for the axial NEM 
solution. 

(2) Assume the homogeneous surface fluxes by the 
heterogeneous solutions. 

(3) Solve the one-node NEM equation for the axial 
direction using the given conditions of Fig. 1 and 
update the surface fluxes and the axial flux 
moments. 

(4) Check the convergence of the surface flux. If not 
converged, go to step (3). 

 
MASTER obtains the TPEN solution based on one-

node kernel which uses the homogeneous incoming 
partial currents at the assembly boundaries as the given 
condition. Also MASTER stores the heterogeneous 
outgoing partial currents at the assembly boundaries. 
Therefore, MASTER generates the homogeneous partial 
currents using the heterogeneous ones before calling the 
one-node TPEN kernel, and the heterogeneous partial 
currents using the homogeneous solutions after TPEN 
kernel calculation.  

The two surface conditions of the surface flux 
discontinuity and the net current continuity conditions 
can be expressed as: 

  (4) 

   (5) 

The homogeneous incoming partial current expressed by 
the heterogeneous ones can be obtained by eliminating 
the homogeneous outgoing partial current in the above 
equations as: 

   (6) 

The heterogeneous outgoing partial current can be 
obtained from Eq. (4) as: 

   (7) 

 
3. Numerical Results 

 
The implemented equivalence TPEN method is 
examined for the 2-D and 3-D hexagonal problems as 
shown in Fig. 3. The 19, 37 and 61 assembly problems 
consists of 7 fuel and 12 reflector assemblies, and 19 
fuel and 18 reflector assemblies, and 37 fuel and 24 
reflector assemblies, respectively. In the 3-D problem, 
there are 3 fuel planes with the size of 14.28 cm and 1 
reflector plane with 21.42 cm. The reflecting boundary 
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condition is applied at the bottom surface, and the 
vacuum condition at the radial and the top surfaces. The 
assembly configuration and the cross sections from the 
C5G7 hexagonal variation problem [2] are used in 
DeCART reference calculation. 
 

  
(a) 19 assembly problem 

 

 
(b) 37 Assembly Problem 

 

 
(c) 61 Assembly Problem 

 
 

Fig. 3 Test Problems  
 

Fig. 4 shows the axially integrated assembly power 
distribution and errors. MASTER showed essentially the 
reproducibility of the DeCART. Table I summarizes the 
errors of the MASTER nodal calculations. MASTER 
showed some trivial errors mainly due to the treatment 
of the discontinuity factors and the boundary conditions. 
The unrealistic discontinuity factors such as negative or 
very low or high vales at the boundary surfaces are 
neglected in the MASTER code to exclude for the 
convergence stability. Also, while the DeCART code 
uses the reentering neutron model at the non-flat 
boundary surface, the MASTER code uses the no 

reentering model. Considering those error sources, the 
results from the two codes are practically identical. 
These results mean that the equivalence theory to the 
whole core transport calculation for the TPEN method 
explained in Chapter 2 is well implemented to the 
DeCART code and works soundly. 
 

 
(a) 19 assembly problem 

 

 
(b) 37 Assembly Problem 

 

 
(c) 61 Assembly Problem 

 
Fig. 4. Axially Integrated Power Distribution and Errors 

for 3-D Test Problems 
 

Table I. MASTER Errors 
Problems1) kε (pcm)2) n

p max,ε (%)3) 

2-D 
19 Assembly 4 0.05 
37 Assembly 1 0.03 
61 Assembly 0 0.02 

3-D 
19 Assembly 6 0.19 
37 Assembly 4 0.15 
61 Assembly 4 0.18- 

1) Eigenvalues are 1.01758, 1.11534 and 1.15092 for the 
2-D 19, 37 and 61 assembly problems, and 0.98392, 
1.07645 and 1.11000 for the 3-D 19, 37 and 61 assembly 
problems. 
2) ( )DeCARTMASTERk kk −×= 510ε  
3) Maximum Relative Node Power Error 
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4. Conclusions 
 

This paper proposed an equivalent group constant 
generation methodology using the whole core transport 
calculation for the hexagonal TPEN method. The 
proposed methodology is implemented to the DeCART 
code and examined for the 3 2-D and 3-D test problems. 
The test calculation showed that the MASTER code can 
reproduce essentially the same result of the DeCART 
code. From these results, it was concluded that the 
equivalence theory was well implemented to the 
DeCART code and worked soundly. In the future, this 
capability is more examined for the realistic hexagonal 
problems through the DeCART/CHORUS/MASTER 
system. Also, this code system will be applied to an 
equivalent calculation for the pin power distribution. 
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