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1. Introduction 

 

The SPn equations were initially proposed by Gelbard 

without adequate mathematical derivation or justification 

[1]. The 1D Pn equations are generalized to 3D SPn 

equations by directly replacing its 1D gradient operator 

with 3D gradient operator. Later on more sophisticated 

mathematical formulations using either the asymptotic 

approximation or the variational method were introduced 

for better mathematical justification, in particular for the 

SP3 case [2, 3]. Although the SP3 equations can be 

derived in these formulations, they do not provide a way 

to explicitly reconstruct the angular flux representation 

from the SP3 solution. One does not have a “physical 

picture” for the angular flux for the SPn solution. It is 

therefore not possible to compare the angular 

distribution of the correct transport solution to the 

approximate SPn solution, nor to extract from a reference 

transport solution the corresponding SPn solution. This 

makes it difficult to understand and visualize the 

physical meaning of the SPn approximation. Moreover 

this causes a problem in practical engineering 

applications of SPn, as one cannot introduce correction 

factors, such as the popular discontinuity factors, to 

compensate for the approximations in the SPn solution. It 

has been demonstrated that SP3 calculation per se 

without using any correction factor cannot compete in 

accuracy with the conventional diffusion calculation 

using discontinuity factors [4]. 

 To resolve the above cited problem Chao and 

Yamamoto [5] adopted the physical interpretation of the 

SPn model as the neutron transport being “locally 1D” at 

any point in space [2]. They pointed out that this 

necessarily implies the angular flux distribution being 

always cylindrically symmetric with respect to the net 

current whose direction may change continuously thru 

space. In this picture the angular flux is an expansion in 

Legendre polynomials of the cosine of the polar angle 

with respect to the net current direction. Chao and 

Yamamoto showed how the SPn equations can be 

derived by plugging this angular flux function into the 

transport equation and assuming certain specific 

approximations. This explicit angular flux representation 

was then used to calculate the SP3 discontinuity factors 

to show that the SP3 superiority over diffusion can be 

restored when discontinuity factors are applied to SP3 

calculation as well [4, 6]. 

 However the assumption of local 1D planar behavior 

of the angular flux is not consistent with the fact that in 

SPn equations at any spatial point there may exist many 

vector directions given by the gradients of the flux 

moment functions, ∇𝜙𝑛(𝑟) , which can all be different 

from the direction of the net current J. As a result, Chao 

and Yamamoto had to make additional ad hoc 

assumptions to derive the SPn equations and for the 

generation of the correct expression of the net current in 

terms of the gradients of the 0
th

 and 2
nd

 order flux 

moments∇𝜙0(𝑟) and ∇𝜙2(𝑟). In this paper we propose 

that a self-consistent physical model for SPn is a 

combination of multiple locally planar functions along 

different directions instead of along the net current 

direction alone. Each order of the flux moments 

contributes to one of the superposed locally 1D functions. 

The angular distribution of the n
th

 order flux moment is 

the n
th

 order Legendre polynomial of the cosine of the 

polar angle with respect to the direction of the spatial 

gradient, ∇𝜙𝑛(𝑟), of the n
th

 order flux moment. With this 

physical model one can rigorously derive the equations 

for the current and the boundary conditions. The SPn 

equations can also be derived with the additional 

assumption of the total cross-section being locally nearly 

flat, which is practically always valid when the spatial 

variation is discretized in numerical calculations. 

However the boundary conditions turn out to be different 

from the conventional ones, containing some non-linear 

factors involving the cosine of the angle between the 

boundary surface normal vector and the spatial gradient 

vectors of the flux moments. The internal interface 

boundary conditions are not affected by the non-linear 

factors as they cancel out on the interface. But the 

external boundary condition does get affected by the 

non-linear factors. The effect of non-linear factors is of 

higher order, which disappears if the spatial gradients are 

parallel to the surface normal vector. So if the non-linear 

factors are neglected, the external boundary condition 

also reduces to the conventional one. The non-linear 

external boundary condition can nevertheless be 

iteratively updated to estimate the correction effect.  

  

2. The theory and the equation derivation 

 

2.1 The physical model for angular flux representation 

 

For simplicity we will consider the case of mono-

energetic isotropic scattering, with the neutron transport 

equation given in terms of the even and odd parity 

angular fluxes as, 
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In the Pn method the angular flux is expanded in 

orthogonal spherical harmonics. The n
th

 order moment 
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term in the expansion contains (2n+1) components, each 

of which is a product of an angular part Yn,m() and a 

spatial part n,m(r) with m between –n and n. The 

fundamental problem in SPn is that instead of (2n+1) 

components it has only one component, n(r), for the n
th

 

moment. The question is then how to replace the (2n+1) 

components with a single “effective” one and how the 

corresponding angular distribution looks like for the n
th

 

flux moment. Noting that the only information provided 

by the solution of SPn equations for the n
th

 flux moment 

are n(r) and∇𝜙𝑛(𝑟), one can argue that in absence of 

other information a self-consistent physical picture for 

the angular distribution of the n
th

 flux moment is 

cylindrically symmetric with respect to∇𝜙𝑛(𝑟), which is 

the only direction vector available for the n
th

 flux 

moment. Therefore we propose the following explicit 

angular flux representation for the SPn theory, where n 

is defined as the unit vector along the direction of the 

gradient ∇𝜙𝑛(𝑟), 
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Eq. (4) is obtained by plugging Eq. (3) into Eq. (2).  

 It must be emphasized that there is a catch here. 

Although the magnitude of the unit vector n does not 

change, its direction does vary in space. Therefore when 

deriving Eq. (4), the spatial gradient operator in Eq. (2) 

ought to apply to the argument of the Legendre 

polynomials as well, which has been ignored. The 

implied assumption is that the rate of the directional 

change of the gradient is much smaller than the rate of 

the change of the magnitude itself. This defines what it 

means that the function in question has a 1D behavior 

locally. From here on we will regard the unit vector n 

as a locally constant vector by ignoring its spatial 

gradient. With this assumption alone, the equations for 

the net current and the boundary conditions will be 

rigorously derived respectively in Sec. 2.2 and Sec. 2.4. 

The SPn equations will be derived in Sec. 2.3 with the 

additional assumption of the total cross-section being 

locally nearly flat.  

  

2.2 The net current equation 

 

To derive the equation for the net current, we multiply 

the odd parity angular flux of Eq. (4) with the solid angle 

vector  to integrate over the whole angular space, 
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    (5)                    

The even parity angular flux will not contribute because 

of its symmetry in . Each integral in Eq. (5) can be 

evaluated independently, where we choose k as the z-

axis. After integrating over the azimuthal angle, Eq. (5) 

becomes, 
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The integral can be easily calculated using the Legendre 

polynomial recursion relation and orthogonality relation. 

The result is, 
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The above result is identical to the familiar one in the 

conventional SP3 equation. Here it holds generically for 

SPn regardless of the order n to choose. The higher order 

moments in Eq. (6) drop out after integration.  

  

2.3 The SPn equations 

 

To derive the equations for n(r), we plug Eq. (3) and Eq. 

(4) into Eq. (1) and multiply both sides of the equation 

with 𝑃𝑛(Ω ⋅ Ω𝑛) to integrate it over the angular space, 

0

})(]
1

)[()({
4

12

n

kt

t

kknn

evenk

Q

drPP
k














 


  (8) 

Note that the two Legendre polynomials in the integrand 

have different arguments. Nevertheless the following 

orthogonality relation still holds, which can be readily 

proved by using the Addition Theorem for Legendre 

polynomial [7],  
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Making use of Eq. (9) we get from Eq. (8), 
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Recalling that k is a locally constant vector, we can 

rewrite the vector product in the integrand of Eq. (10) as, 
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It can be proved via vector algebra that the part in Eq. 

(11) involving the gradient operator can be written as,  
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We will first assume that the second term in Eq. (12) can 

be neglected with its justification to be discussed later,  
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Plugging Eq. (13) and Eq. (11) into Eq. (10) gives, 

0

2

)(

})](
1

][))(()([
4

12
{

nnt

k

t

kkknn

evenk

Qr

rdPP
k














 


       

         (14) 

The integral in Eq. (14) can be easily calculated by using 

the recursion relation, and the orthogonal relation of Eq. 

(9). The result is exactly the SPn equations, 
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The first term in Eq. (12) is a vector in the direction of 

the gradient of the flux moment, while the second term 

there is a vector transverse to the direction of the 

gradient of the flux moment. To be consistent with the 
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physical picture of our proposed model, we would 

expect the transverse vector term to be small. Had the 

second term in Eq. (12) been kept, Eq. (15) would have 

additional terms involving the following magnitude 

scalar of the vector cross product,  
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This magnitude scalar vanishes in two limits: either the 

gradient of the cross-section being parallel to the 

gradient of the flux moment or the cross-section being 

locally almost flat such that its gradient being very small. 

The former limit would require the gradients of all the 

flux moments being simultaneously parallel to the 

gradient of the cross-section. This is the very strong 

traditional assumption that the problem is locally a 

planar problem with only one unique gradient direction, 

such as a truly 1D problem. The latter limit is less 

stringent and requires only a mild gradient of the cross-

section compared to the flux gradient. This requirement 

is reasonable. In fact this approximation is always made 

in practice when spatial discretization is used with flat 

cross-section in discretized meshes. 

  

2.4 Boundary conditions 

 

The boundary conditions are provided by the relation 

between the incoming and outgoing partial currents. 

Thus we need to calculate the partial currents in the 

context of SPn formulation. We will first calculate the 

generic n
th

 order moment of the partial currents and then 

use it to derive the boundary condition equations. 

 

2.4.1 The n
th

 order moment of partial currents 

 

The angular partial current going out or in through a 

surface with the normal vector 𝑛̂ is defined as, 
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To calculate the n
th

 order moment of the partial currents 

we multiply Eq. (17) with the n
th

 even order Legendre 

polynomial of the cosine of the polar angle with respect 

to the normal vector 𝑛̂, and then integrate it over the 

angular space. Introducing Jn for the n
th

 order net current 

projection in the normal direction, and n the n
th

 order 

projection of half of the sum of incoming and outgoing 

partial currents, Eq. (17) can be written as, 
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 To calculate Jn we plug Eq. (4) into Eq. (19), and use 

the recursion relation and Eq.(9). The result is, 
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The above equation can be rewritten in a physically 

more appealing form, 
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In Eq. (22) the Legendre polynomial terms all appear as 

the ratio of an odd order polynomial divided by its 

argument, which is a symmetric function. And the ratio 

approaches unity as its argument approaches unity, 

which happens when the gradient vector is parallel to the 

surface normal direction vector.  

 To calculate n we plug Eq. (3) into Eq. (20). Taking 

the surface normal vector 𝑛̂ as the z-axis, we get,  
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Using the Addition Theorem for Legendre polynomial 

[7], one can prove the following relation, 
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Plugging Eq. (24) into Eq. (23) and using the recursion 

relation we then get the following result, 
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Note that in Eq. (26) although we have products of an 

even order Legendre polynomial with an odd order 

Legendre polynomial, the orthogonal relation for 

Legendre polynomials does not apply because the 

integration limit covers only half of its argument space. 

Also note that the even order Legendre polynomial in Eq. 

(25) approaches unity as its argument approaches unity, 

which happens when k is parallel to 𝑛̂. 

 Combining Eq. (18), Eq. (22) and Eq. (25), we have 

the results for all the moments of the partial currents. It 

must be emphasized that the moments of the partial 

currents contain coefficients that depend on the inner 

product  𝑛̂ ⋅ Ω𝑘 . This will result in non-linearity in the 

boundary conditions because the direction vector k is 

unknown until the SPn equations are solved. 

 For the special case of SP3, setting n=0 or 2 in the 

above generic results gives, 
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If the non-linear effect is ignored by assuming 𝑛̂ parallel 

to 2, Eq. (27) and Eq. (28) then reduce to the familiar 

conventional SP3 result. 

  

2.4.2 The internal interface boundary condition 

 

On an internal interface, the moments of partial currents 

are required to be continuous. This can be satisfied with 

the following conditions, 
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Eq. (31) is required to make the non-linear coefficients 

continuous on the interface. However the current 

continuity in Eq. (30) implies the continuity of the 

direction of the gradient vector, although the magnitude 

of the gradient may not be continuous. Hence Eq. (31) is 

automatically satisfied and the non-linear factors cancel 

out on the two sides of the interface. Therefore we 

conclude that the generic interface boundary conditions 

for SPn, regardless of the order n, are the same as the 

conventional familiar ones, i.e. the continuity of flux 

moment and current moment. 

 

2.4.3 The external boundary condition 

 

The external boundary condition can be expressed in 

terms of the reflection albedo defined as the ratio of the 

incoming to the outgoing angular flux, 

   
  nn JJ 
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Eq. (32) provides a set of equations relating the gradients 

of flux moments to the flux moments on the external 

boundary. The coefficients in the equations contain the 

non-linear factor  𝑛̂ ⋅ Ω𝑘  in the argument of Legendre 

polynomials. If the gradient vector is parallel to the 

normal direction, then all the Legendre polynomial 

factors reduce to unity and the external boundary 

condition reduces to the conventional one. 

 As a specific example, from Eq. (27) and Eq. (28) we 

get the vacuum boundary condition for SP3 as follows.  
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It is noted that P2() decreases from 1 to -0.5 and 

P3()/ decreases from 1 to -1.5 as  varies from 1 to 0. 

 

3. Concluding remarks and a test problem 

 

The proposed SPn theory can provide the explicit angular 

flux reconstruction. The new theory results in all the 

same equations as the conventional SPn equations except 

for the ones of the external boundary conditions. In case 

of 𝑛̂ = Ω𝑘, the external boundary condition becomes the 

same as that in the conventional SPn theory. Generally 

the flux gradient on the external boundary surface is not 

perpendicular to the surface. In practice one can assume 

the conventional external boundary condition to start the 

SPn calculation. The external boundary condition can 

then be updated to iterate the calculation once more to 

estimate the correction effect. It would be interesting to 

see if the correction would be in the right direction. 

 The following simple problem is suggested to test the 

proposed SPn theory. Consider a 2D square domain of 

homogeneous composition with vacuum boundary 

condition. Let the neutron scattering be mono-energetic 

and isotropic. The reference solution can be numerically 

generated with a transport code. The problem can be 

easily solved in diffusion theory, and in the conventional 

SP3 theory as well. Now we consider how to solve it 

with the new SP3 equations. The only difference is in the 

use Eq. (33) and Eq. (34). The conventional SP3 theory 

will set 𝜇 = 𝑛̂ ⋅ Ω2 = 1. While for the new SP3 theory,  

will vary along the boundary of the square domain. By 

the symmetry of the problem, we know that the angle 

between 𝑛̂ and 2 continuously varies from 0-degree at 

the center of the boundary surface to 45-degree at the 

corner of the square. Thus  will vary from 1 to 
1

√2
. Thus 

at the corner the value of the non-linear factors are, 

 𝑃2 (
1

√2
) =

1

4
 ;   

𝑃3(
1

√2
)

1

√2

= −
1

4
                                                               

It should be a reasonable initial guess that the variation 

of  is approximately parabolic, symmetric about the 

center of the boundary surface. The solution of the new 

SP3 theory should be quite different from that of the 

conventional one around the corner of the square. The 

angular flux reconstructed from the new SP3 solution can 

be compared to the reference angular flux in the corner 

area. The vacuum boundary condition can be generalized 

to the generic albedo condition, where the above analysis 

of how  varies on the boundary surface still applies. 

The above calculation could be extended from the new 

SP3 theory to the new SPn theory for higher orders to see 

if there could be any further improvement. Also the 

suggested problem can include both cases of a fixed 

source problem and an eigenvalue problem. Interested 

readers are highly encouraged to work out this numerical 

test problem. 
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