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1. Introduction 
 
The power method is commonly used for reactor 
criticality calculations, with which only the fundamental 
mode can be obtained, and the convergence ratio is 
determined by the dominance ratio k1/k0. A modified 
power method was proposed recently [1-10], with which 
the first mode can be obtained and the convergence ratio 
can be k2/k0. The authors extended the modified power 
method to get even higher modes, and the convergence 
ratio can be even smaller [11-13]. The application of this 
modified power method to 2D problems will be reported 
in this paper, and some problems that are different from 
1D problems will be discussed. 
 

2. The Modified Power Method 
 
If starting with N initial sources, 1, Nψ ψ , each of 
which can be thought as the linear combination of the 
targeted eigenfunctions, 1, , ,Nφ φ  , after one power 
iteration the sources can be updated as: 
 ' ,  1, , ,i i ij j ij j j

j j
A A c c k i Nψ ψ φ φ= = = =∑ ∑   (1) 

where A is the power iteration operator. After several 
power iterations, only the first N eigenmodes remain and 
the other higher modes can be neglected. 
 The idea of the modified power method is that the 
linear combination of these N sources will provide better 
estimators of the targeted first N eigenmodes: 
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where ijx  is the linear combination coefficient, and 
'iψ  provides a better estimator for iφ . 

 In order to get the coefficients, N independent sub-
regions are defined. Instead of estimating the eigenvalue 
by integrating over the whole system, it can be estimated 
by integrating over these local sub-regions, and all the 
local eigenvalue estimators should be equal. That is, 
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where 
 ij iRj

W A drψ= ∫ , ij iRj
V drψ= ∫ , and 

 i = mode index, j = sub-region index. 
Eq. (3) can be rewritten as 
 ,WX = VXK   (4) 
and so 
 ( ) ( ) ,-1-1 -1W = VXKX = VX K VX V = FKF V = PV (5) 
where P  is the matrix correlated with the 
eigenfunction integrations before and after the power 
iteration, which is called the transfer matrix in this paper.  
 Once the integration terms W  and V  are 
obtained, the transfer matrix P  can be calculated as:  
 .-1P = WV   (6) 
The Eigen decomposition of P  will then provide the 
first N eigenvalues of the system which were contained 
in K , and the sets of eigenvectors F  which can be 
used to solve the linear combination coefficients by: 
 .-1X = V F   (7) 
 

3. 2D Numerical Tests 
 
3.1 Numerical test with finite difference method 
 
A 2D square fuel slab problem was tested with finite 
difference method (FDM) in this part to show the 
capability of the modified power method to obtain 
higher mode solutions and accelerated convergence. 
 The size of the 2D slab is 10cm by 10cm, with the 
fuel cross sections listed in Table I. The mesh size is 0.1 
cm for the calculations. For the modified power method, 
four eigenmodes were considered, and all the eigenmode 
fission sources were initialized as random numbers. The 
four sub-regions are divided by the centerlines of both 
directions. 
 The eigenvalue and eigenfunction results are shown 
in Table II and Fig. 1, respectively, in which the 
reference results are from the Eigen decomposition of 
the power matrix. Due to the symmetry of the problem, 
the 1st and 2nd modes have the same eigenvalue, and the 
eigenfunctions are not the same as the references, but the 
linear combinations of the references. The modified 
power method cannot distinguish the two modes. As 
shown in Fig. 2, the eigenvector errors of the two modes 
do not decrease, but fluctuate. For the 0th mode, the 
convergence is accelerated with the modified power 
method. 
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Table I. Fuel Cross Sections for FDM Test 

aΣ  (cm-1) fνΣ  (cm-1) D (cm) 
0.2 0.3 1/3 

 
Table II. Eigenvalue Results 

Eigenvalue Reference Modified Power Method 
k0 1.1287 1.1287 
k1 0.8232(0.73) 0.8232(0.73) 
k2 0.8232(0.73) 0.8232(0.73) 
k3 0.6478 (0.57) 0.6478 (0.57) 

 

 
(a) Modified power method results. 

 
(b) Reference results. 

Figure 1. The eigenfunction results. 
 

 
Figure 2. The convergence error of different modes. 

 
3.2 Numerical tests with MC 
 
The modified power method was implemented in the 
Monte Carlo code MCS that was developed at UNIST 
[14]. The continuous energy cross section data are from 
the ENDF/B-VII.0 nuclear cross section library [15]. In 
order to perform the linear algebra operations, the 
precompiled Fortran 95 interface libraries BLAS95 and 
LAPACK95 contained in the Intel Math Kernel Library 
are adopted [16]. 
 For the following 2D tests, four eigenmodes were 
considered. The four sub-regions were divided by the 
centerlines of both directions. 
 
3.2.1 2D fuel slab with all black boundary conditions 

 
The 2D fuel slab with black boundary conditions on four 
sides was modeled. The fuel composition is listed in 
Table III. In order to avoid the problem stated before 
with FDM, the size of the slab was set to be 40cm by 
50cm. In this case the first several eigenvalues are 
different, as shown in Table IV. The reference case is one 
quarter of the slab with two reflective boundaries and 
simulated with the original power method. All the 
simulations were done with 100 inactive cycles, 500 
active cycles, and 1,000,000 histories per cycle. 
 The initial and final converged eigenmode fission 
sources are shown in Fig. 4 and Fig. 5, respectively. The 
eigenmode solutions look reasonable, but the problem is 
that the Shannon Entropy values obtained with different 
methods are slightly different, as illustrated in Fig. 3. It 
cannot be concluded whether the modified power 
method is better or not, because the reference results 
obtained with the original power method may be not so 
reliable. 
 

Table III. Fuel Composition 
Nuclides Concentration (#/barn-cm) 
U-235 7.6864e-05 
U-238 6.8303e-04 
H-1 5.9347e-02 
N-14 2.1220e-03 
O-16 3.7258e-02 

 
Table IV. Eigenvalue Results 

Method Parameter Value 
Reference k0 1.01322±0.00002 
Original k0 1.01327±0.00003 

Modified 
Power 
Method 

k0 1.01324±0.00003 
k1 (k1/k0) 0.78192±0.00008 (0.772) 
k2 (k2/k0) 0.69365±0.00009 (0.685) 
k3 (k3/k0) 0.55511±0.00011 (0.548) 

 

 
Figure 3. Shannon Entropy of 2D slab with black 

boundaries. 
 

 
Figure 4. The initial fission sources. 

 

0th Eigenfunction

-4 -2 0 2 4

-4

-2

0

2

4

1st Eigenfunction

-4 -2 0 2 4

-4

-2

0

2

4

2nd Eigenfunction

-4 -2 0 2 4

-4

-2

0

2

4

3rd Eigenfunction

-4 -2 0 2 4

-4

-2

0

2

4

0th Eigenfunction

-4 -2 0 2 4

-4

-2

0

2

4

1st Eigenfunction

-4 -2 0 2 4

-4

-2

0

2

4

2nd Eigenfunction

-4 -2 0 2 4

-4

-2

0

2

4

3rd Eigenfunction

-4 -2 0 2 4

-4

-2

0

2

4

4th Eigenfunction

-4 -2 0 2 4

-4

-2

0

2

4

5th Eigenfunction

-4 -2 0 2 4

-4

-2

0

2

4

0 100 200 300 400 500
10-15

10-10

10-5

100

105

Iterations

E
ig

en
ve

ct
or

 E
rr

or

 

 

0th mode - modified
1st mode - modified
2nd mode - modified
3rd mode - modified
original



Proceedings of the Reactor Physics Asia 2015 (RPHA15) Conference 
Jeju, Korea, Sept. 16-18, 2015 

 

 
Figure 5. The converged fission sources. 

 
3.2.2 2D fuel slab with all reflective boundaries 
 
The 2D fuel slab problem with the same size and fuel 
composition as before was modeled, but with reflective 
boundaries on four sides. Theoretically, for this case the 
0th eigenfunction should be flat. All the simulations were 
done with 100 inactive cycles, 500 active cycles, and 
1,000,000 histories per cycle. 
 

Table V. Eigenvalue Results 
Method Parameter Value 
Original k0 1.29521±0.00001 

Modified 
Power 
Method 

k0 1.29524±0.00001 
k1 (k1/k0) 1.14429±0.00007 (0.883) 
k2 (k2/k0) 1.07284±0.00007 (0.828) 
k3 (k3/k0) 0.96311±0.00009 (0.744) 

 

 
Figure 6. The initial fission sources. 

 

 
Figure 7. The converged fission sources. 

 

 
Figure 8. Shannon Entropy of 2D slab with reflective 

boundaries. 
 
The simulated eigenpair results are shown in Table V 
and Fig. 7. The initial 0th mode fission source was set to 
be just in one quarter of the slab, as shown in Fig. 6. Fig. 
8 shows that the Shannon Entropy value of the modified 
power method is slightly lower than the theoretical value 
that is estimated with flat distribution, but much closer to 
it than the original power method. If 10 times of 
histories per cycle was adopted for the original power 
method, the Shannon Entropy value would be similar to 
the modified power method, as shown in Fig. 8. 

 
3.2.3 PWR Assembly problem 
 
This test is to show the performance of the modified 
power method for more practical problems. A 2D PWR 
assembly with 17 by 17 fuel rod lattice is modeled, with 
reflective boundaries on 4 sides. No guide thimbles for 
the control rods and the movable detectors are modeled. 
The main geometry and material parameters of the pin 
cell are listed in Table VI. All the simulations were done 
with 30 inactive cycles, 90 active cycles, and 100,000 
histories per cycle. 
 

Table VI. Pin Cell Parameters 
Parameter Value 
Radius of fuel pellet, cm 0.392180 
Inner radius of the cladding, cm 0.400050 
Outer radius of the cladding, cm 0.457200 
Fuel pin pitch, cm 1.259840 
Fuel type 1.6 enriched UO2 
Cladding type Zircaloy 4 
Coolant density, g/cm3 0.740582 
Boron concentration, ppm 976 
 

Table VII. Eigenvalue Results 
Method Parameter Value 
Reference k0 1.02982±0.00019 
Original k0 1.02973±0.00017 

Modified 
Power 
Method 

k0 1.02998±0.00017 
k1 (k1/k0) 0.40289±0.00107 (0.391) 
k2 (k2/k0) 0.40268±0.00107 (0.391) 
k3 (k3/k0) 0.21025±0.00201 (0.204) 

 

 
Figure 9. The initial fission sources. 

 

 
Figure 10. The converged fission sources. 

 
The simulated eigenvalues are shown in Table VII. The 
reference is from the simulation of one pin cell of the 
same type with original power method. The fundamental 
eigenvalues of different simulations are consistent. It is 
worthy noticing that the Dominance Ratio (k1/k0) of this 
assembly is about 0.4. 
 The initial and converged fission sources are shown 
in Fig. 9 and Fig. 10. Due to the symmetry of the 
assembly, the 1st and 2nd modes have the same 
eigenvalue, so they cannot be distinguished by the 
modified power method. The converged fission sources 
of the 1st and 2nd modes may be affected by the initial 
values, but it is not clear now. However, this will not 
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affect the other eigenmode results. 
 As shown in Fig. 11(1), the Shannon Entropy of the 
modified power method is higher than the original power 
method and closer to the theoretical value. The Root 
Mean Square Error (RMSE) of the fundamental mode is 
then compared, which can be calculated with: 

 ( )2

,
1

1 ,
meshN

n n ref
nmesh

RMSE
N

φ φ
=

= −∑   (6) 

where  
 , 1 289n refφ = . 
As shown in Fig. 11(2), the RMSE of the modified 
power method is lower, which means that the modified 
power method outperforms the original power method 
by producing a more accurate result. 
 

 
(1) Shannon Entropy.         (2) RMSE.    

Figure 11. Assembly calculation results. 
 

4. Conclusions 
 
The application of the modified power method to 2D 
problems is studied. It can be concluded that the 
modified power method can be applied to practical 
problems like PWR assembly calculations. The 
performance of the modified power method is better than 
the original power method, not only for the accelerated 
fission source convergence, but also for the better 
fundamental fission source distribution. The modified 
power method can’t distinguish the eigenmodes if they 
have the same eigenvalue, but this will not affect the 
other mode solutions. More work needs to be done to 
automate the initialization of fission sources and to 
investigate the effects of sub-region definitions. 
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