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1. Introduction 

 

Over the past 15 years the architectures of high-

performance computing (HPC) systems have become 

increasingly heterogeneous with individual computing 

cores subdivided into  nodes and even auxiliary co-

processing units such as graphics processing units 

(GPUs) or the Intel many integrated core (MIC) co-

processors. In fact, future computer platforms move 

toward a larger numbers of nodes and cores with lower 

memory available per node. 

Today, several production Monte Carlo (MC) 

codes[1][2] use some types of  hybrid parallelism 

strategy that makes use of shared-memory parallelism 

within a computing node and message-passing 

parallelism between nodes, which enables the codes to 

utilize  available computing resources as much as 

possible, both among and within computing nodes on a 

cluster.  

The so-called hybrid parallelization is also possible 

with Reactor Monte Carlo Code RMC by activating both 

parallel  algorithms together. On HPC which typically 

consists of several or  several-ten thousand nodes 

equipping 16-32 computing intra-cores per node, 

simulation of RMC can be carried out in the hybrid 

parallelization with the MPI inter-node parallelization 

and the OpenMP intra-node parallelization. 

 

2. Parallel Algorithms For Monte Carlo 

 

In this section we review the basic strategy for 

hybrid message-passing and shared-memory parallelism 

in MC particle transport codes and introduce standard 

terminology that will be used throughout the remainder 

of the paper. 

 

2.1 Message Passing Parallelism (MPI) 

 

During parallel calculations, multiple independent 

MC processes are launched  simultaneously across 

interconnected processors in a computing system. These 

processes communicate with each other during the MC 

simulation by exchanging messages, typically via the 

message-passing interface (MPI) standard. 

In message-passing parallelism, independent 

processes work together by exchanging sets of  data 

which are abstractly referred to as “messages”. This type 

of parallelism works especially well when a calculation 

can be subdivided into independent tasks and the 

intermediate results from these tasks can be combined to 

give the final solution. Parallel efficiency in message 

passing schemes is generally improved by maximizing 

the amount of time that processes can  work 

independently and minimizing the number and 

frequency of messages sent between processes. 

Particle-history parallelism with message-passing is 

a natural fit for MC neutral-particle transport because 

each particle history can be run independently from all 

other particle histories. As a result, particle transport 

routines such as cross section lookups, collision 

processing, ray tracing, and tally scoring can be isolated 

to individual processes, avoiding the need for 

interprocess communication by these routines.  

In general, communication between parallel MC 

processes is only required for problem initialization, 

input/output operations, and periodic synchronization of 

the processes. 

 

2.2 Shared Memory Parallelism (OpenMP) 

 

Message passing parallelism works extremely well 

for calculations that use less than the  “fair-share” 

process-memory allocation on a compute node, which is 

defined as the total memory for a node divided by the 

number of compute cores on the node. The fair-share 

memory  allocation defines the maximum model size 

that can be fully domain-replicated on all cores of the 

node without swapping. 

Model sizes for full-core 3D commercial nuclear 

reactor benchmark  calculations now routinely exceed 

the fair-share memory allocation on contemporary HPC 

clusters, ~4 – 8 GB of memory per core. To perform 

these large-memory calculations would require leaving 

some compute cores idle on each node in order to boost 

the available memory  per-processor, leading to 

inefficient utilization of HPC resources. 

Domain decomposition[3] and shared-memory 

parallelism[4] are both potential solutions to the 

memory limitations created by the use of full domain-

replication in parallel calculations, and both techniques 

have been employed successfully by production-level 

MC codes. 

However, in many situations shared-memory 

parallelism offers several benefits over domain 

decomposition. First, a shared memory parallelism 

approach using OpenMP directives is typically easier 

and less disruptive to backfit into existing code 

architecture. Secondly, current HPC trends continue to 
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point towards an increase in both the number of cores 

and total memory per compute node, but  an overall 

decrease in fair-share memory allocation per core. 

Finally, the OpenMP Architecture  Review Board 

continues to signal an intention to provide native support 

for accelerator and coprocessor devices as a part of the 

OpenMP 4.0 standard. Thus, implementation of shared-

memory parallelism using OpenMP offers the potential 

for simplified co-processor support in the future. 

 

2.3 Hybrid MPI/OpenMP Parallelism 

 

In RMC, two choices of parallel computing 

functions are available. One is the parallel computing 

using the message passing interface (MPI) protocol and 

the other is the parallel computing using the open multi-

processing (OpenMP) directives 

The MPI parallelization is a type of distributed-

memory style where the memory space for each core is 

maintained independently while the OpenMP 

parallelization is a type of shared-memory style where a 

part of memory space can be shared among cores within 

a single computer or a single node of supercomputers. 

 

3. Several Parallel Algorithms 

 

First the consistency between serial calculation 

mode and different parallel calculation modes must 

be guaranteed. 

Second the new parallel mode should have a high 

efficiency. The key to maximizing parallel efficiency in a 

MC code is to design the code to minimize the amount 

of inter-process communication during parallel 

simulations.  

 

3.1 Random Number Generation 

 

For pseudo-random number generation, most MC 

codes use a standard linear congruential  generator 

(LCG), often based on the algorithm and parameters 

available in Ref. [5].  

One random number stream is only depend on the 

random seed when the LCG’s parameters are determined. 

In MPI parallelelism communication between parallel 

MC processes are excuted to distribute random seeds to 

each process. In OpenMP parallelism the each for loop is 

excuted out of order. To maintain reproducibility for 

criticality problems for parallel calculations, the random 

seeds which calculated before the for loop are stored in 

the fission bank. 

Using the above two algorithms, the consistency 

between serial calculation mode and different parallel 

calculation modes is guaranteed. 

 

3.2 Fission Bank Reordering 

 

During a criticality calculation, neutrons created in 

fission are stored in the “fission bank” to be used as the 

starting source for the next iteration of the calculation. 

Using a single computational thread, the neutrons in the 

fission bank will be stored in a particular, well-defined 

order (i.e., successive fission sites from the first neutron, 

then the second, etc.). Using OpenMP threading and/or 

MPI message-passing  parallelism, the ordering of 

fission sites within the fission bank is indeterminate.  

To maintain reproducibility for criticality problems 

for parallel calculations, the fission-bank needs to be 

reordered at the end of each cycle into a unique ordering 

that is independent of the number of threads or MPI 

processes. 

 

4. Parallel Scaling and Performance 

 

To study the parallel scaling and efficiency of RMC, 

including the hybrid parallelism strategy and parallel 

algorithms described in the previous sections, 

Hoogenboom-Martin[6] (H-M) and BEAVRS 

benchmark [7] are selected. The reactor core 

arrangement are shown in figure 1. The two studies are 

performed on Intel Xeon CPU E5-2620 v2 @2.10GHz 

Windows 64bit platform. 

The H-M reactor critical benchmark was release

d by Hoogenboom et al. in 2011 with 60 nuclides i

n the fuel region. 

The BEAVRS Benchmark was released by MIT in 

2013 to provide data from an operating nuclear reactor 

to the public to allow for validation of methods 

developments. This benchmark is similar to the data 

provided in the VERA Progression Benchmark. 

 

 
Fig. 1. H-M benchmark and BEAVRS benchmark 

 

4.1 Shared Memory and Message Passing Parallelism 

Scaling 

 

Table I shows the consistency between serial ca

lculation and different parallel calculation modes. 

 

Table I. Results for the consistency between serial and 

different parallel calculation modes 

Benchmark 
Calculation 

Mode 
k-effective 

H-M 

Serial Mode 1.012962±0.001892 

MPI Mode 1.012962±0.001892 

OpenMP Mode 1.012962±0.001892 

Hybrid Mode 1.012962±0.001892 

BEAVRS 

Serial Mode 1.027068±0.002515 

MPI Mode 1.027068±0.002515 

OpenMP Mode 1.027068±0.002515 

Hybrid Mode 1.027068±0.002515 
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 In Table I the random number generation and fissi

on bank recording algorithms are verified effective. 

4.2 Shared Memory and Message Passing Parallelism 

Scaling 

 

   In different parallel modes, speedup and memory

 cost are cared most. Because of data race and loca

l acceleration, ideally it is expected the speedup in 

shared-memory parallelism is nearly same as MPI p

arallelism and the memory cost is cut down. 

 The speedup in H-M and BEAVRS benchmarks are 

displayed in figure 2 and figure 4. The memory cost are 

expressed in figure 3 and figure 5. 

 
Fig. 2. Speedup of H-M benchmark  

 
Fig. 3. Total memory cost of H-M benchmark 

 
Fig. 4. Speedup of BEAVRS benchmark 

 
Fig. 5. Total memory cost of BEAVRS benchmark 

 

From the figure 2-5, we can conclude that the 

shared-memory parallel implementation in RMC has 

a perfect performance in both speedup and memory 

cost. 

 

4.3 Hybrid OpenMP and MPI Parallelism Scaling 

 

    In order to verify the effectiveness of hybrid O

penMP and MPI parallelism scaling, BEAVRS bench

mark is selected. Figure 6 shows the speedup in hy

brid parallel mode and figure 7 display the memory

 cost in different processes\threads. 

 
Fig. 6. Speedup of BEAVRS benchmark in hybrid p

arallel 

 

 
Fig. 7. Total memory cost of BEAVRS benchmark i

n hybrid parallel 

 

Through the figure 6 and figure 7, we find tha
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t the parallelism efficiency are between 82% and 8

4%. The memory cost is cut down from ~1.4GB t

o ~200MB. The study’s target is reached in the pr

eliminary results. 

 

5. Conclusions 

 

Keeping up with the continuing trend for increases 

in the number of computing resources within modern 

HPC systems is a significant challenge for teams that 

develop and maintain high-performance MC radiation 

transport solvers. In order to address this  challenge, 

RMC has adopted a hybrid message-passing and shared-

memory approach to parallelism, which enables the 

code to utilize available computing resources, both 

among and within computing nodes on a cluster. Shared-

memory parallelism is especially valuable for large-

model simulations because it enables multiple compute 

cores within  a node to share common model 

information such as the geometry description, material 

and composition definitions, and cross section data, thus 

reducing the memory usage per processor. 

This paper provides details on two novel parallel 

algorithms for processes that play a fundamental role in 

MC radiation transport simulations: random number 

generation and fission bank recording. 

The parallel performance has been studied by using 

two complex and representative benchmarks, H-M and 

BEAVRS benchmark. The preliminary results show the 

nearly ideal speedup in hybrid parallelism and the huge 

memory savings. 

In future work, we shall focus on the massively 

parallel burnup calculation and the scalability up to 

millions of core. 
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