
Proceedings of the Reactor Physics Asia 2015 (RPHA15) Conference

Jeju, Korea, Sept. 16-18, 2015

Hybrid Shared Memroy/Message Passing Parallel Algorithm in Reactor Monte Carlo Code

RMC

Feng YANG *, Ganglin YU and Kan WANG

Department of Engineering Physics

Tsinghua University, Beijing, 100084, P.R. China

yangfeng14@mails.tsinghua.edu.cn

1. Introduction

Over the past 15 years the architectures of high-

performance computing (HPC) systems have become

increasingly heterogeneous with individual computing

cores subdivided into nodes and even auxiliary co-

processing units such as graphics processing units

(GPUs) or the Intel many integrated core (MIC) co-

processors. In fact, future computer platforms move

toward a larger numbers of nodes and cores with lower

memory available per node.

Today, several production Monte Carlo (MC)

codes[1][2] use some types of hybrid parallelism

strategy that makes use of shared-memory parallelism

within a computing node and message-passing

parallelism between nodes, which enables the codes to

utilize available computing resources as much as

possible, both among and within computing nodes on a

cluster.

The so-called hybrid parallelization is also possible

with Reactor Monte Carlo Code RMC by activating both

parallel algorithms together. On HPC which typically

consists of several or several-ten thousand nodes

equipping 16-32 computing intra-cores per node,

simulation of RMC can be carried out in the hybrid

parallelization with the MPI inter-node parallelization

and the OpenMP intra-node parallelization.

2. Parallel Algorithms For Monte Carlo

In this section we review the basic strategy for

hybrid message-passing and shared-memory parallelism

in MC particle transport codes and introduce standard

terminology that will be used throughout the remainder

of the paper.

2.1 Message Passing Parallelism (MPI)

During parallel calculations, multiple independent

MC processes are launched simultaneously across

interconnected processors in a computing system. These

processes communicate with each other during the MC

simulation by exchanging messages, typically via the

message-passing interface (MPI) standard.

In message-passing parallelism, independent

processes work together by exchanging sets of data

which are abstractly referred to as “messages”. This type

of parallelism works especially well when a calculation

can be subdivided into independent tasks and the

intermediate results from these tasks can be combined to

give the final solution. Parallel efficiency in message

passing schemes is generally improved by maximizing

the amount of time that processes can work

independently and minimizing the number and

frequency of messages sent between processes.

Particle-history parallelism with message-passing is

a natural fit for MC neutral-particle transport because

each particle history can be run independently from all

other particle histories. As a result, particle transport

routines such as cross section lookups, collision

processing, ray tracing, and tally scoring can be isolated

to individual processes, avoiding the need for

interprocess communication by these routines.

In general, communication between parallel MC

processes is only required for problem initialization,

input/output operations, and periodic synchronization of

the processes.

2.2 Shared Memory Parallelism (OpenMP)

Message passing parallelism works extremely well

for calculations that use less than the “fair-share”

process-memory allocation on a compute node, which is

defined as the total memory for a node divided by the

number of compute cores on the node. The fair-share

memory allocation defines the maximum model size

that can be fully domain-replicated on all cores of the

node without swapping.

Model sizes for full-core 3D commercial nuclear

reactor benchmark calculations now routinely exceed

the fair-share memory allocation on contemporary HPC

clusters, ~4 – 8 GB of memory per core. To perform

these large-memory calculations would require leaving

some compute cores idle on each node in order to boost

the available memory per-processor, leading to

inefficient utilization of HPC resources.

Domain decomposition[3] and shared-memory

parallelism[4] are both potential solutions to the

memory limitations created by the use of full domain-

replication in parallel calculations, and both techniques

have been employed successfully by production-level

MC codes.

However, in many situations shared-memory

parallelism offers several benefits over domain

decomposition. First, a shared memory parallelism

approach using OpenMP directives is typically easier

and less disruptive to backfit into existing code

architecture. Secondly, current HPC trends continue to

mailto:yangfeng14@mails.tsinghua.edu.cn

Proceedings of the Reactor Physics Asia 2015 (RPHA15) Conference

Jeju, Korea, Sept. 16-18, 2015

point towards an increase in both the number of cores

and total memory per compute node, but an overall

decrease in fair-share memory allocation per core.

Finally, the OpenMP Architecture Review Board

continues to signal an intention to provide native support

for accelerator and coprocessor devices as a part of the

OpenMP 4.0 standard. Thus, implementation of shared-

memory parallelism using OpenMP offers the potential

for simplified co-processor support in the future.

2.3 Hybrid MPI/OpenMP Parallelism

In RMC, two choices of parallel computing

functions are available. One is the parallel computing

using the message passing interface (MPI) protocol and

the other is the parallel computing using the open multi-

processing (OpenMP) directives

The MPI parallelization is a type of distributed-

memory style where the memory space for each core is

maintained independently while the OpenMP

parallelization is a type of shared-memory style where a

part of memory space can be shared among cores within

a single computer or a single node of supercomputers.

3. Several Parallel Algorithms

First the consistency between serial calculation

mode and different parallel calculation modes must

be guaranteed.

Second the new parallel mode should have a high

efficiency. The key to maximizing parallel efficiency in a

MC code is to design the code to minimize the amount

of inter-process communication during parallel

simulations.

3.1 Random Number Generation

For pseudo-random number generation, most MC

codes use a standard linear congruential generator

(LCG), often based on the algorithm and parameters

available in Ref. [5].

One random number stream is only depend on the

random seed when the LCG’s parameters are determined.

In MPI parallelelism communication between parallel

MC processes are excuted to distribute random seeds to

each process. In OpenMP parallelism the each for loop is

excuted out of order. To maintain reproducibility for

criticality problems for parallel calculations, the random

seeds which calculated before the for loop are stored in

the fission bank.

Using the above two algorithms, the consistency

between serial calculation mode and different parallel

calculation modes is guaranteed.

3.2 Fission Bank Reordering

During a criticality calculation, neutrons created in

fission are stored in the “fission bank” to be used as the

starting source for the next iteration of the calculation.

Using a single computational thread, the neutrons in the

fission bank will be stored in a particular, well-defined

order (i.e., successive fission sites from the first neutron,

then the second, etc.). Using OpenMP threading and/or

MPI message-passing parallelism, the ordering of

fission sites within the fission bank is indeterminate.

To maintain reproducibility for criticality problems

for parallel calculations, the fission-bank needs to be

reordered at the end of each cycle into a unique ordering

that is independent of the number of threads or MPI

processes.

4. Parallel Scaling and Performance

To study the parallel scaling and efficiency of RMC,

including the hybrid parallelism strategy and parallel

algorithms described in the previous sections,

Hoogenboom-Martin[6] (H-M) and BEAVRS

benchmark [7] are selected. The reactor core

arrangement are shown in figure 1. The two studies are

performed on Intel Xeon CPU E5-2620 v2 @2.10GHz

Windows 64bit platform.

The H-M reactor critical benchmark was release

d by Hoogenboom et al. in 2011 with 60 nuclides i

n the fuel region.

The BEAVRS Benchmark was released by MIT in

2013 to provide data from an operating nuclear reactor

to the public to allow for validation of methods

developments. This benchmark is similar to the data

provided in the VERA Progression Benchmark.

Fig. 1. H-M benchmark and BEAVRS benchmark

4.1 Shared Memory and Message Passing Parallelism

Scaling

Table I shows the consistency between serial ca

lculation and different parallel calculation modes.

Table I. Results for the consistency between serial and

different parallel calculation modes

Benchmark
Calculation

Mode
k-effective

H-M

Serial Mode 1.012962±0.001892

MPI Mode 1.012962±0.001892

OpenMP Mode 1.012962±0.001892

Hybrid Mode 1.012962±0.001892

BEAVRS

Serial Mode 1.027068±0.002515

MPI Mode 1.027068±0.002515

OpenMP Mode 1.027068±0.002515

Hybrid Mode 1.027068±0.002515

Proceedings of the Reactor Physics Asia 2015 (RPHA15) Conference

Jeju, Korea, Sept. 16-18, 2015

 In Table I the random number generation and fissi

on bank recording algorithms are verified effective.

4.2 Shared Memory and Message Passing Parallelism

Scaling

 In different parallel modes, speedup and memory

 cost are cared most. Because of data race and loca

l acceleration, ideally it is expected the speedup in

shared-memory parallelism is nearly same as MPI p

arallelism and the memory cost is cut down.

 The speedup in H-M and BEAVRS benchmarks are

displayed in figure 2 and figure 4. The memory cost are

expressed in figure 3 and figure 5.

Fig. 2. Speedup of H-M benchmark

Fig. 3. Total memory cost of H-M benchmark

Fig. 4. Speedup of BEAVRS benchmark

Fig. 5. Total memory cost of BEAVRS benchmark

From the figure 2-5, we can conclude that the

shared-memory parallel implementation in RMC has

a perfect performance in both speedup and memory

cost.

4.3 Hybrid OpenMP and MPI Parallelism Scaling

 In order to verify the effectiveness of hybrid O

penMP and MPI parallelism scaling, BEAVRS bench

mark is selected. Figure 6 shows the speedup in hy

brid parallel mode and figure 7 display the memory

 cost in different processes\threads.

Fig. 6. Speedup of BEAVRS benchmark in hybrid p

arallel

Fig. 7. Total memory cost of BEAVRS benchmark i

n hybrid parallel

Through the figure 6 and figure 7, we find tha

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

s
p

e
e

d
u

p

cpu num

 mpi

 openmp

0 1 2 3 4 5 6 7 8 9

0

200

400

600

800

1000

1200

1400

1600

m
e

m
o

ry
 (

M
B

)

cpu num

 mpi

 openmp

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

s
p

e
e

d
u

p

cpu num

 mpi

 openmp

0 1 2 3 4 5 6 7 8 9

0

200

400

600

800

1000

1200

1400

m
e

m
o

ry
 (

M
B

)

cpu num

 mpi

 openmp

1-8 2-4 4-2 8-1

4.0

4.5

5.0

5.5

6.0

6.5

7.0

s
p

e
e

d
u

p

MPI process - OpenMP threads

 speedup

1-8 2-4 4-2 8-1

0

200

400

600

800

1000

1200

1400

m
e

m
o

ry
 (

M
B

)

MPI Process - OpenMP threads

 memory

Proceedings of the Reactor Physics Asia 2015 (RPHA15) Conference

Jeju, Korea, Sept. 16-18, 2015

t the parallelism efficiency are between 82% and 8

4%. The memory cost is cut down from ~1.4GB t

o ~200MB. The study’s target is reached in the pr

eliminary results.

5. Conclusions

Keeping up with the continuing trend for increases

in the number of computing resources within modern

HPC systems is a significant challenge for teams that

develop and maintain high-performance MC radiation

transport solvers. In order to address this challenge,

RMC has adopted a hybrid message-passing and shared-

memory approach to parallelism, which enables the

code to utilize available computing resources, both

among and within computing nodes on a cluster. Shared-

memory parallelism is especially valuable for large-

model simulations because it enables multiple compute

cores within a node to share common model

information such as the geometry description, material

and composition definitions, and cross section data, thus

reducing the memory usage per processor.

This paper provides details on two novel parallel

algorithms for processes that play a fundamental role in

MC radiation transport simulations: random number

generation and fission bank recording.

The parallel performance has been studied by using

two complex and representative benchmarks, H-M and

BEAVRS benchmark. The preliminary results show the

nearly ideal speedup in hybrid parallelism and the huge

memory savings.

In future work, we shall focus on the massively

parallel burnup calculation and the scalability up to

millions of core.

References

1. Griesheimer D P, Gill D F, Nease B R, et al. MC21 v.

6.0–A continuous-energy Monte Carlo particle

transport code with integrated reactor feedback

capabilities[J]. Annals of Nuclear Energy, 2014.

2. Francois-Xavier Hugot, et al. HIGH

PERFORMANCE MONTE CARLO COMPUTING

WITH TRIPOLI® : PRESENT AND FUTURE.

ANS MC2015 — Joint International Conference on

Mathematics and Computation (M&C),

Supercomputing in Nuclear Applications (SNA) and

the Monte Carlo (MC) Method, Nashville,

Tennessee · April 19–23, 2015.

3. Romano P K. Parallel algorithms for Monte Carlo

particle transport simulation on exascale computing

architectures[D]. Massachusetts Institute of

Technology, 2013.

4. Siegel A R, Smith K, Romano P K, et al. Multi-core

performance studies of a Monte Carlo neutron

transport code[J]. International Journal of High

Performance Computing Applications, 2014, 28(1):

87-96.

5. L’ecuyer P. Tables of linear congruential generators

of different sizes and good lattice structure.

Mathematics of Computation of the American

Mathematical Society, 1999, 68(225): 249-260.

6. Hoogenboom J E, Martin W R. A proposal for a

benchmark to monitor the performance of detailed

Monte Carlo calculation of power densities in a full

size reactor core. Ann Arbor, 2009, 1001: 48109-

2104.

7. Horelik, N., et al. "Benchmark for Evaluation and

Validation of Reactor Simulations (BEAVRS), v1.

0.1." Proc. Int. Conf. Mathematics and

Computational Methods Applied to Nuc. Sci. & Eng.

2013.

