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1. Introduction 

 

Recently, capabilities to compute eigenvalue sensitivity 

coefficients to nuclear data have been developed by 

several continuous-energy Monte Carlo codes, e. g., the 

Reactor Monte Carlo code RMC [1] developed by 

Tsinghua University, China. These capabilities should be 

extended to analyze a generalized set of response, such 

as power distributions and multi-group cross-sections. 

Therefore, several methods have been put forward to 

achieve this objective. These methods can be divided 

into three kinds. The first kind are direct perturbation 

based methods [2], which are time-consuming since 

multiple direct perturbation calculations are required to 

perform. The second kind are methods based on 

generalized perturbation theory (GPT), including the 

GEAR-MC method [3] implemented in continuous-

energy TSUNAMI-3D and the collision history-based 

approach implemented in SERPENT [4]. The third kind 

are specific approaches, such as the differential operator 

sampling method [5]. However, the differential operator 

sampling method may be not accurate enough [3] since it 

ignores the impact of perturbations and cross-section 

uncertainties on the fission source.  

 

2. Methodology 

 

2.1 Definition of Generalized Response Sensitivity 

Coefficients 

 

The sensitivity coefficient of some generalized response,

R , to some nuclear data ( , )x r E , is defined as    
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where  

 r  = position and 

 E = energy.  

The generalized response function may have different 

types of expressions, for example, bilinear ratios 

involving adjoint flux. In this work, only linear ratios are 

investigated, which can be expressed as   
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where  

  = inner product over phase space, 

  = flux and   

  = cross-section.  

The perturbation of generalized response, R , caused by 

a small perturbation of cross-section,  x , can be 

expressed as 
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Substituting Eq. 3 into Eq. 1, the generalized response 

sensitivity coefficients can be expressed as  
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The first term in Eq. 3 is called the direct effect term, 

which describes the impact of the perturbation of cross-

section on the generalized response and can be computed 

by  
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The tally of the direct effect term in Monte Carlo 

simulations is straightforward and relative easy-

implemented. 

The second term in Eq. 3 is known as the indirect effect 

term, which describes the impact of the perturbations of 

cross-section on the flux and can be expressed as  
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Its tally is more complicated than the direct effect term 

and should use the generalized perturbation theory. 

 

2.2 Introduction of Generalized Perturbation Theory 

 

The Boltzmann equation can be expressed in the form of  

1
( ) 0  A M

k
 (7) 

where  

 A  = neutron loss operator, 

 M  = fission neutron production operator and 

 k = effective multiplication factor.  

And the adjoint equation of the Boltzmann equation is  

* * *1
( ) =0 A M

k
 (8) 
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where 

 *  = adjoint flux, 

 *A  = adjoint neutron loss operator and  

 *M  = adjoint fission neutron production operator. 

With the adjoint equation, one can obtain perturbations 

in the effective multiplication factor,  k , in the form of   
*
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Eq. 9 is the foundation to obtain sensitivity coefficients 

of effective multiplication factor,
, ( , )k x r ES  
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In order to compute the indirect term of generalized 

response sensitivity coefficients, now introducing into 

the generalized adjoint equation, in the form of  

* * * *1
( ) =S A M

k
 (11) 

where 

 *  = generalized adjoint flux and 

 
*S  = adjoint source for the generalized response. 

The definition of 
*S  is  
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Therefore, one can readily obtain  
*S 0   (13) 

Now introducing perturbations in Eq. 7  and only 

reserving the first-order terms and then multiplying and 

taking the inner product over phase space, one can 

obtain 
* * *( ) ( )            kA M M k A k A  (14) 

Multiplying Eq. 11 by  and taking inner product 

over phase space, one can obtain 
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Combining Eqs. 13-15, one can obtain 
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Multiplying Eq. 7 by * , one can obtain 
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Substituting Eq. 9 and Eq. 17 into Eq. 16, one can obtain 
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As well known, the solution of the Eq. 11 is the sum of a 

particular solution, * p
, and a homogeneous solution, *  

* * *    p c  (19) 

where  

 c  = any constant. 

If c  is defined to be 
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, then one can obtain  
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Therefore, the indirect effect term can be expressed as 
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Comparing Eq. 21 with Eq. 10, it can be observed that 

the calculation of the indirect effect term is similar to the 

eigenvalue sensitivity coefficients while the tally scores 

of reaction rates are weighted by * rather than * .  

 

2.3 How to compute generalized adjoint function 

 

In this work, the GEAR-MC method [3], which has been 

implemented in SCALE, is used to compute the 

generalized adjoint function, * . The methodology of 

the GEAR-MC method is summarized here.  

Considering 
1

 I M
k

, one can obtain  
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S     I M
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As can be seen, each term in Eq. 22 is zero. Now 

considering a single neutron source leaving from a 

collision at phase space  s
, then this source can be 

expressed as  

( )   s sI I  (23) 

where 

 sI  = source strength. 

Substituting Eq. 23 into Eq. 22, one can obtain 
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According to Eq. 24, the adjoint function at phase space 

is the sum of two components. The first component is 

known as the intra-generational component, which 

describes how much importance of this source neutron 

produces in the current generation until its death and can 

be computed by 
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The computing of the intra-generational component 

requires to store reaction rates of each collision until the 

death of the source neutron. The second component is 

known as the inter-generational component, which 

describes how much importance of this source neutron 

generates in the future generations and can be computed 

by tallying the cumulative score of 
1

( )


 


s

R
r

R
 

generated by the progeny of this source neutron. 

 

3. Numerical Results 

 

By applying the GEAR-MC method [3], a capability to 

compute generalized sensitivity coefficients is 

preliminarily developed in RMC. And the TSUNAMI-

1D in the SCALE6.1 code package is used to verify this 

capability. It should be noted that TSUNAMI-1D is a 

one-dimensional sensitivity and uncertainty sequence 

based on a discrete ordinate transport code while the 

TSUNAMI-3D is a three-dimensional sequence based on 

a Monte Carlo transport code. However, the TSUNAMI-

3D in SCALE6.1 does not have the generalized analysis 

capability. Therefore, due to the limitation of the 

geometry supported by TSUNAMI-1D in the SCALE6.1, 

a relative simple problem is used to make verifications. 

The selected problem is a sphere with a radius of 38.50 

cm consisting of five isotopes, namely, 1H, 12C, 19F, 235U 

and 238U. And only the response function of one group 

cross-section, in the form of 
1 


, are investigated in 

this work.  

A total of 16 different types of one-group cross-section 

are defined and their sensitivity coefficients to different 

types of nuclear data are shown in Tab. 1, where the 

difference is defined as the RMC result divided by the 

corresponding TSUNAMI-1D result and minus one. As 

can be seen, all differences are less than 10%, indicating 

RMC agrees with TSUNAMI-1D generally. It should be 

noted that TSUNAMI-1D requires to perform 16 adjoint 

transport calculations in order to solve the solutions of 

Eq. 11 for each response function while RMC calculates 

all the generalized sensitivity coefficients weighted by 

the generalized adjoint function directly in the forward 

transport calculation.  

 

Fig. 1. Energy-Resolved Sensitivity Coefficients of 238U 

Inelastic Cross-Section to 238U Capture Cross-Section. 

 

Some energy-resolved generalized sensitivity 

coefficients to some nuclear data are presented in Figs. 

1-4. And the sensitivity profiles between RMC and 

TSUNAMI-1D agree roughly. 

 
Fig. 2. Energy-Resolved Sensitivity Coefficients of 238U 

Fission Cross-Section to 235U Inelastic Cross-Section. 

 
Fig. 3. Energy-Resolved Sensitivity Coefficients of 235U 

Inelastic Cross-Section to 1H Capture Cross-Section. 

 
Fig. 4. Energy-Resolved Sensitivity Coefficients of 235U 

Inelastic Cross-Section to 235U Inelastic Cross-Section. 

 

6. Conclusions 

 

In this work, a capability of computing generalized 

response sensitivity coefficients to nuclear data has been 

preliminarily developed in RMC. In general, results 

computed by RMC agree with TSUNAMI-1D in 

SCALE6.1.  
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Table I. Energy-Integrated Generalized Sensitivity Coefficients 

Response Function Nuclear Data Code 
Difference 

Isotope Reaction Isotope Reaction TSUNAMI-1D RMC 
1H elastic 1H elastic 1.30E+00 1.37E+00 5.65% 

1H capture 1H capture 9.15E-01 1.01E+00 9.90% 

12C total 12C elastic 1.01E+00 1.00E+00 -0.19% 
12C total 235U inelastic 2.43E-04 2.29E-04 -6.05% 
12C elastic 12C elastic 1.01E+00 1.01E+00 -0.19% 
12C elastic 235U inelastic 2.44E-04 2.29E-04 -6.44% 
12C inelastic 1H capture 2.14E-02 2.05E-02 -4.28% 
12C inelastic 235U capture 2.58E-02 2.44E-02 -5.31% 
12C capture 12C capture 1.00E+00 1.00E+00 0.05% 

19F total 
19F inelastic 1.07E-01 1.11E-01 3.90% 

19F total 19F elastic 8.84E-01 9.01E-01 1.83% 
19F elastic 235U inelastic 2.18E-04 2.28E-04 4.51% 
19F elastic 19F elastic 9.94E-01 1.00E+00 0.60% 
19F inelastic 238U capture 8.75E-02 8.80E-02 0.62% 
19F inelastic 1H capture 2.13E-02 2.05E-02 -4.18% 
19F inelastic 235U capture 2.56E-02 2.44E-02 -4.81% 
19F capture 19F capture 9.99E-01 1.00E+00 0.21% 

235U elastic 235U elastic 1.00E+00 1.00E+00 -0.01% 
235U inelastic 235U inelastic 9.99E-01 1.00E+00 0.12% 
235U inelastic 19F capture 6.54E-04 6.54E-04 0.06% 
235U inelastic 238U capture 8.85E-02 8.81E-02 -0.48% 
235U inelastic 12C capture 1.04E-04 1.02E-04 -2.30% 
235U inelastic 1H capture 2.14E-02 2.05E-02 -4.23% 
235U inelastic 235U capture 2.57E-02 2.44E-02 -4.96% 

238U total 
238U elastic 7.65E-01 7.74E-01 1.23% 

238U total 238U inelastic 9.20E-02 8.35E-02 -9.32% 
238U elastic 238U elastic 9.72E-01 9.89E-01 1.69% 
238U elastic 19F inelastic 1.49E-02 1.42E-02 -4.70% 
238U inelastic 238U capture 8.87E-02 8.81E-02 -0.63% 
238U inelastic 1H capture 2.14E-02 2.05E-02 -4.24% 
238U inelastic 235U capture 2.57E-02 2.44E-02 -4.97% 
238U fission 12C capture 1.03E-04 1.02E-04 -1.11% 
238U fission 19F capture 6.69E-04 6.54E-04 -2.15% 
238U fission 238U capture 9.08E-02 8.81E-02 -2.93% 
238U fission 1H capture 2.14E-02 2.05E-02 -4.31% 
238U fission 235U capture 2.57E-02 2.44E-02 -5.22% 

 


