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1. Introduction 

 

In reactor physics field, uncertainty quantification of 

nuclear design parameters induced by nuclear data is an 

important issue. The Sensitivity and uncertainty (S/U) 

methodology [1] in deterministic tools [2,3] has been 

utilized for the uncertainty quantification. For a multi-

group cross section based code, the S/U analysis can be 

conducted by an simple error propagation formula with 

the sensitivities of nuclear design parameters to multi-

group cross sections and the covariance of multi-group 

cross sections, multi-group covariance. Recently the 

Monte Carlo(MC) S/U analysis method [4,5] with the 

continuous-energy cross section libraries has been 

developed for uncertainty quantification of the effective 

multiplication factor k. However it still utilizes the 

multi-group covariance data. 

 Conventionally, the multi-group covariance data 

required for S/U analysis have been produced by nuclear 

data processing codes such as ERRORJ [6] or PUFF [7] 

from the covariance data in Evaluated Nuclear Data 

Files (ENDF). However in the existing nuclear data 

processing codes, an asymptotic flux spectrum has been 

applied to the multi-group covariance data generation as 

an assumption since the exact flux spectrum is unknown 

before the neutron transport calculation. So the self-

shielding effect cannot be reflected in the multi-group 

covariance generation. It can cause an inconsistency 

between the sensitivity profiles from reactor physic 

codes and the multi-group covariance data from nuclear 

data processing codes especially in resolved resonance 

energy region as pointed out previous research [8]. 

 In order to generate the self-shielded multi-group 

covariance data from a real flux spectrum, we present a 

method based on the multi-group covariance tally in the 

continuous-energy Monte Carlo (MC) transport 

calculations. By utilizing MC transport calculations, the 

continuous-energy neutron flux spectrum with the 

depressions around resonances can be applied to the 

multi-group covariance processing. In this paper the 

methodology for multi-group covariance tally in MC 

transport calculations is introduced. Then the numerical 

results are compared to those of conventional covariance 

processing code ERRORR in NJOY99 [9]. 

 

2. Multi-Group Covariance Tally 

 

In this section, the methodology for multi-group 

covariance tally in MC transport calculation is described. 

 

2.1 Mathematical derivation of multi-group covariance 

for the tally in MC transport calculation. 

 

2.1.1 Definition of multi-group covariance. 

 

First, let us define the multi-group cross section of 

reaction type r and energy group G of isotope i, 𝑥𝑟,𝐺
𝑖 , 

which conserves reaction rate as 
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where 

 ( )i

rx E = cross section at energy E, 

 ( )E = flux spectrum at energy E and 

 GE = lower energy bound of group G. 

 

Then the multi-group covariance, covariance of 𝑥𝑟,𝐺
𝑖  

and 𝑥𝑟′,𝐺′
𝑖′ , cov[𝑥𝑟,𝐺

𝑖 𝑥𝑟′,𝐺′
𝑖′ ]  can be expressed by the 

following equation as applied in ERRORR, 
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Note that Eq. (3) ignores the correlation between cross 

section and flux spectrum which can be called indirect 

effect. 

 As you can see in Eq. (3), multi-group covariance 

calculation requires a double integration with flux 

weighting. In MC simulation, it is difficult to deal with 

the double integration directly. Thus it is needed to 

convert the double integration in Eq. (3) into a single 

one. For this work, the description of point-energy 

covariance data given by ENDF will be followed 

 

2.1.2 Description of ENDF covariance data 

 

ENDF provides the point-energy covariance data as the 

forms of File 32 and File 33. The File 32 contains 

covariance of resonance parameter to represent  

covariance of cross section in short-range while File 33 

covers long-range one in discrete forms. Thus ENDF 

covariance data for point-energy cross sections can be 

expressed as follows. 
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where 

 MF32cov []= covariance calculated from File 32 and 

 MF33cov []= covariance calculated from File 33. 

 

For the covariance of point energy cross sections from 

File 32, covMF32[𝑥𝑟
𝑖 (𝐸), 𝑥𝑟′

𝑖′ (𝐸′)], it should be expressed in 

terms of the covariance of resonance parameters which 

are provided by File 32. By the error propagation 

formula, it can be expressed as 
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where  

 
i

m = m-th resonance parameter of isotope i. 

 cov[ , ]i i

m m



  =covariance of resonance parameters 

 

The sensitivity of the cross section to the resonance 

parameter in Eq. (5), 𝜕𝑥𝑟
𝑖 (𝐸)/𝜕Γ𝑚

𝑖 , can be calculated by 

a numerical differentiation as applied in ERRORJ 
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where 

 0.01i i

m m   is selected in this study. 

 

Before expressing the covariance from File 33, it should 

be noted that File 33 provides the group-wise relative 

covariance data although it is supposed to be treated as 

point energy covariance. The relative covariance given 

by File 33 is 
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r g r gx E x E


 
    (7) 

where 

 rcov[ , ] cov[ , ] / ( [ ] [ ])X Y X Y E X E Y  

 [ ]E = expectation operator and 

 1 1( , ] , ( , ]g g g gE E E E E E  
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Then, the point energy covariance from File 33 can be 

expressed as, 
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In order to separate the multi-group covariance by 

ENDF covariance data,  Eq.(4) is inserted into Eq.(3) as 

follows , 
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2.1.3 Derivation of multi-group covariance from File 32 

without double integration 

 

Insertion of Eq.(5) into Eq.(10) yields, 
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From the derivation in Eq.(12), the double integration in 

Eq.(10) is reduced to a single integration, 
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2.1.4 Derivation of multi-group covariance from File 33 

without double integration 

 

Insertion of Eq. (8) into Eq. (11) yields 
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Note that relative covariance of g and g' is constant 

within energy group interval. 

 

From the derivation in Eq.(14), the double integration in 

Eq.(11) is reduced to a single integration, 
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2.2 Algorithm for multi-group covariance tally 

 

In this proposed method, it is required to calculate the 

terms in Eq. (13) and Eq. (15) on MC simulation. In the 

conventional MC tally algorithm, integrated values of 

microscopic reaction rate and neutron flux within given 

energy range can be numerically evaluated by the track 

length estimator. Similarly, the terms in Eq.(13) and 

Eq.(15) can also be calculated as follows 
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where 

 k = track index, 

 j = history index, 

 wjk = neutron weight of k-th track of j-th history, 

 ljk = track length of k-th track of j-th history. 

 Ejk = neutron energy of k-th track of j-th history. 

 operator < > = average over all neutron histories 

 

Then multi-group covariance can be calculated by Eq. 

(12) and Eq. (14). 

 

3. Numerical Results 

 

The proposed multi-group covariance tally algorithm has 

been implemented in a Seoul National University MC 

code, McCARD [10], and tested for several cases. All of 

the calculations were conducted in the SCALE 44-group 

structure [11] and ENDF of 238U in JEDNL 3.3 [12] 

which contains File 32 is used for raw covariance data. 

 

3.1 Uniform and 1/E flux distribution 

 

For the proposed method, it requires several subroutines 

such as reconstruction of resonance cross section or 

calculation of sensitivity to resonance parameters. In 

order to validate the proposed method, multi-group 

covariance with uniform and 1/E flux distribution are 

estimated by the proposed method and compared with 

the results from NJOY.  

 Table I, II show the numerical results of uncertainty 

of multi-group cross section with uniform and 1/E flux 

distribution respectively by the proposed method(MC 

Cov Tally), and they are compared to the results of 

ERRORR in NJOY99. From these tables, it is noted that 

the two modules are identical when self-shielding effect 

is not considered. Also, It is observed that the shape of 

asymptotic flux spectrum has little impact on multi-

group covariance in this energy group structure although 

the spectrum is change to uniform to 1/E. 

 

Table I. Uncertainty of Multi-Group Capture Cross 

Section of U-238 from JENDL-3.3 with Uniform Flux 

Energy 

Group 

Upper 

Energy 

Bound 

[eV] 

Multi-

Group 

XS 

[barn] 

Uncertainty (RSD) of  

Multi-Group XS [%] 

ERRORR 
MC Cov Tally 

Mean SD 

1 0.0030 14.864 1.88 1.88 0.00 

2 0.0075 6.0950 1.88 1.88 0.00 
      

21 1.7700 0.48108 2.31 2.31 0.00 

22 3.0000 0.48346 2.73 2.73 0.00 

23 4.7500 0.81972 3.25 3.25 0.00 

24 6.0000 3.0024 4.20 4.22 0.00 

25 8.1000 409.19 2.03 2.04 0.01 

26 10.000 0.77453 3.43 3.43 0.01 

 

Table II. Uncertainty of Multi-Group Capture Cross 

Section of U-238 from JENDL-3.3 with 1/E Flux 

Energy 

Group 

Upper 

Energy 

Bound 

[eV] 

Multi-

Group 

XS 

[barn] 

Uncertainty (RSD) of  

Multi-Group XS [%] 

ERRORR 
MC Cov Tally 

Mean SD 

1 0.0030 14.864 1.88 1.88 0.00 

2 0.0075 6.0950 1.88 1.88 0.00 
      

21 1.7700 0.48108 2.30 2.30 0.00 

22 3.0000 0.48346 2.70 2.70 0.00 

23 4.7500 0.81972 3.24 3.24 0.00 

24 6.0000 3.0024 4.19 4.21 0.00 

25 8.1000 409.19 2.03 2.01 0.01 

26 10.000 0.77453 3.46 3.45 0.01 

 

3.2 TMI-1pin cell problem 

 

The proposed method has been tested for a TMI-1 pin 

cell problem [13], a OECE/NEA benchmark problem for 
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Uncertainty Analysis in Modeling (UAM). In order to 

compare the result with that of ERRORR, a mid-life 

Light Water Reactor (LWR) spectrum defined by 

Electric Power Research Institute (EPRI) [14], built-in 

flux spectrum in ERRORR, is applied to the ERRORR 

calculation as an asymptotic flux spectrum. Note that 

multi-group covariance generated by ERRORR are 

infinitely diluted since EPRI flux spectrum is the 

asymptotic spectrum. MC calculations are performed for 

100 active cycles and 1000 histories per cycle. 

 Table III shows the numerical results of uncertainty 

of multi-group cross section in TMI-1 pin cell problem 

compared to those of ERRORR. From this table, it is 

noted that self-shielding effect make some differences in 

the multi-group covariance estimation. 

 

Table III. Uncertainty of Multi-Group Capture Cross 

Section of U-238 from JENDL-3.3 in TMI-1 problem 

Energy 

Group 

Upper 

Energy 

Bound 

[eV] 

Multi-

Group 

XS 

[barn] 

Uncertainty (RSD) of  

Multi-Group XS [%] 

ERRORR 
MC Cov Tally 

Mean SD 

1 0.0030 14.864 1.88 1.88 0.00 

2 0.0075 6.0950 1.88 1.88 0.00 
      

21 1.7700 0.48108 2.30 2.31 0.00 

22 3.0000 0.48346 2.70 2.70 0.00 

23 4.7500 0.81972 3.24 3.32 0.00 

24 6.0000 3.0024 4.19 4.14 0.00 

25 8.1000 409.19 2.03 4.27 0.00 

26 10.000 0.77453 3.46 3.33 0.00 

27 30.000 61.994 6.15 4.25 0.01 

28 100.00 44.546 1.79 2.56 0.00 

29 550.00 10.893 0.76 2.84 0.01 

30 3000.0 2.2595 0.40 12.06 0.11 
      

 

6. Conclusions 

 

In this study, the MC multi-group covariance tally 

algorithm for multi-group covariance data generation 

from continuous-energy MC transport calculation has 

been developed. In order to calculate the multi-group 

covariance estimation in the MC simulation, some 

mathematical derivations for reducing double integration 

into single one are introduced. The developed multi-

group covariance tally algorithm has been implemented 

in McCARD, then some numerical calculations have 

been conducted for test. It is observed in TMI-1 pin 

problem that self-shielding effect makes a difference in 

multi-group covariance generation. 

 The proposed method has an advantage that the exact 

self shielding effect can be reflected in the multi-group 

covariance evaluation when compared to the 

conventional nuclear data processing code. It is expected 

that self shielded multi-group covariance data can be 

provided by this method for more accurate S/U analysis.  
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