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1. Introduction 

 

In the field of nuclear engineering, deterministic and 

stochastic methods are used to solve radiation transport 

problems. Deterministic methods solve the transport 

equation for the average particle behavior and also 

contain uncertainties associated with the discretization of 

the independent variables such as space, energy and 

angle of the transport equation and can admit solutions 

that exhibit non-physics features [1]. The Monte Carlo 

method obtains results by simulating individual particles 

and recording some aspects of their average behavior [2]. 

This method enables detailed, explicit geometrical, 

energy and angular representations and hence is 

considered the most accurate method presently available 

for solving complex radiation transport problems. 

 One of the difficulties associated with Monte Carlo 

method is the amount of computer time required to 

obtain sufficient precision in the simulations. Despite 

substantial advancements in computational hardware 

performance and widespread availability of parallel 

computers, the computer time required for analog Monte 

Carlo is still considered exorbitant and prohibitive for 

the design and analysis of many relevant real-world 

nuclear applications especially for the problems with 

complex and large geometry [1]. But there are many 

ways other than increasing simulation time in the Monte 

Carlo method by which the precision can be improved. 

These ways are known as Variance Reduction techniques 

and required enabling the Monte Carlo calculation of 

quantities of interest with the desired statistical 

uncertainty. Without the use of variance reduction 

techniques in complex problems, Monte Carlo code 

should run continuously for days or weeks and still 

cannot obtain statistically significant reliable results. The 

goal of Variance Reduction techniques is to produce 

more accurate and precise estimate of the expected value 

than could be obtained in analog calculation with the 

same computational efforts [3].  

 RMC is a Monte Carlo transport code which has 

been being developed by Department of Engineering 

Physics, Tsinghua University in China since 2008 as a 

tool for reactor core analysis on high-performance 

computing platforms [4]. To meet the requirements of 

reactor analysis, RMC now has such functions as 

criticality calculation, fixed-source calculation, burnup 

calculation and kinetics simulations. Some techniques 

for geometry treatment, new burnup algorithm, source 

convergence acceleration, massive tally, parallel 

calculation, and temperature dependent cross sections 

processing have been implemented in RMC to improve 

the efficiency and functions. 

 In this paper, we mainly present several variance 

reduction techniques developed and implemented in 

RMC code recently including geometry splitting/roulette 

and weight window. Based on weight window technique, 

a new strategy of inner iterative fixed source calculation 

is also developed.  

 

2. Methodology 

 

2.1 Figure-of-merit  

 

During a Monte Carlo calculation, according to Central 

Limit Theorem, the estimated relative error squared R2 

should be proportional to 1/n, where n is the number of 

histories. As each history will take on average, the same 

amount of computer time and the used computer time T 

in a Monte Carlo calculation should be directly 

proportional to n. Therefore R2T should be 

approximately constant [1]. Thus the metric of efficiency 

for a given tally, called the figure-of-merit (FOM), is 

defined as: 

  FOM = 1 / (𝑅2𝑇) (1) 

where 

 R = relative error for the sample mean and 

 T = computer time for the calculation.  

 

2.2 Geometry splitting/roulette 

 

Geometry splitting with Russian roulette is one of the 

oldest and most widely used variance-reducing 

techniques in Monte Carlo codes. When used judiciously, 

it can save substantial computer time. Splitting generally 

decreases the history variance but increases the time per 

history, whereas Russian roulette generally increases the 

history variance but decreases the time per history [5]. 

 Each cell in the problem geometry setup is assigned 

an importance I by the user and the value of I should be 

proportional to the estimated value that particles in the 

cell have for the quantity being scored.  

 When a particle of weight W passes from a cell of 

importance I to one of higher importance I', the particle 

is split into a number of identical particles of lower 

weight. If I'/I is an integer n (n>1), the particle is split 

into n identical particles, each weighting W/n. Weight is 

preserved in the integer splitting process. If I'/I is not an 

integer but still great than 1, splitting is done 

probabilistically so that the expected number of splits is 



Proceedings of the Reactor Physics Asia 2015 (RPHA15) Conference 

Jeju, Korea, Sept. 16-18, 2015 

 
equal to the importance ratio. Denoting n = [I'/I] to be 

the largest inter not exceeding I'/I, p = I'/I – n is defined. 

Then with probability p, n+1 particles are used and with 

probability 1 – p, n particles are used.  

 On the other hand, if a particle of weight W passes 

from one cell of importance I to another of lower 

importance I', so that I'/I < 1, Russian roulette is played 

and the particle is killed with probability 1 – (I'/I), or 

followed further with probability I'/I and weight W∙I/I'.  

 

2.3 Weight window 

 

The weight window shown in Fig. 1 is a phase space 

splitting and Russian roulette technique. For each space, 

a lower weight bound is supplied and the upper weight 

bound is a multiple of the lower weight bound. These 

weight bounds define a window of acceptable weights. 

If a particle is below the lower weight bound, Russian 

roulette is played and the particle's weight is either 

increased to a value within the window or the particle is 

terminated. If a particle is above the upper weight bound, 

it is split so that all the split particles are within the 

window [5]. No action is taken for particles within the 

window.  

 

 
Fig. 1. Weight window [5]. 

 

2.3.1 Weight window generator 

 

Variance reduction parameters vary with problem types 

and it’s quite difficult to choose weight window 

importance functions by guessing, intuition, experience, 

or trial and error. The weight window generator is a 

method that automatically generates  weight window 

importance functions, thus the task of choosing 

importance is simplified.  

 The importance of a particle at a point P in phase 

space equals the expected score generated by a unit 

weight particle. Imagine dividing the phase space into a 

number of cells or regions [6]. The importance of a cell 

then can be defined as the expected score generated by a 

unit weight particle after entering the cell. Thus, the 

cell's importance can be estimated as:  

  Importance = score/weight (2) 

where 

 score = total score because of particles (and their 

progeny) entering the cell and  

 weight = total weight entering the cell.  

 Although the generator and weight window concepts 

are independent, they are used in a complementary 

fashion. By using a window inversely proportional to the 

importance, the mean score from any track in the 

problem is roughly constant. In other words, the window 

is chosen so that the track weight times the mean score is 

approximately constant [7]. Under these conditions, the 

variance is mostly due to the variation in the number of 

contributing tracks rather than the variation in track 

score.  

 

2.3.2 Mesh-based weight window 

 

The geometry of the problems must be divided when no 

single set of weight window parameters can be 

representative of a whole region. By using mesh-based 

weight window, a mesh importance grid map is 

generated and superimposed, which is a good way to 

subdivide the space without complicating the cell 

geometry. The mesh-based weight window method 

makes it more convenient to use weight window 

technique.  

 

2.4 Inner iteration for fixed source calculation based on 

weight window 

 

Traditionally, fixed source shielding calculations using 

weight window require trial and error and typically 

involve many steps and several iterations to get a set of 

reasonable weight window parameters.  

 To improve efficiency and simplify the usage of 

weight window, a new strategy of inner iterative fixed 

source calculation is developed.  

 A single fixed source calculation is divided into 

several batches. The first batch can be run with or 

without variance reduction techniques and generates a 

set of weight window parameters which are then used in 

the second batch. A set of more reasonable parameters 

are generated after the second batch run and those are 

then used by the next batch. The number of batches is 

assigned by the user. Fig. 2 shows the flow chart of this 

strategy when the calculation is divided into 3 batches.  

 

 
Fig. 2. Flow chart of inner iterative fixed source 

calculation with weight window with batch number 3.  

 

 The inner iteration method avoids repeatedly reading 

input and generating output, which saves time and 
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decreases data transmission error.  

 One of the most common frustrations when using the 

weight window generator is the output of zero weight 

windows [8]. There are two reasons that zero weight 

window is generated from a region: no particle have 

entered the region or particle have entered the region but 

none of those that entered scored. The inner iteration 

method can use tallies that are highly correlated with the 

ultimate tally desired but easier to obtain in first few 

batches and use the ultimate tally in the last several 

batches taking advantage of the weight windows 

generated previously. Thus the problem of zero weight 

windows can be optimized by inner iteration method.  

 By employing this new strategy, the importance map 

or variance reduction parameters are produced and used, 

and the expected scores are obtained during a single 

fixed source calculation.  

 

3. Numerical Verification 

 

In order to verify and test the performance of these 

updated variance reduction techniques implemented in 

RMC, several numerical tests are made. All the 

following calculations are run a laptop with an Intel Core 

i5-3210M CPU.  

 A plate model is constructed to calculate the 

shielding of a neutron source, the side length of which is 

100cm and is divided into 10 layers or cells uniformly as 

shown in Fig. 3. The material inside is water and a 

monoenergetic 2 MeV isotropic point neutron source is 

placed in cell 1. 

 

 
Fig. 3. Plate model.  

 

3.1 Cell importance and weight window 

 

The model is calculated four times by RMC code using 

different techniques and all these calculations are 

performed for 1 minute on the same computer. The 

relative errors of neutron flux in each cell are obtained 

and shown in Fig. 4. 

 After one minute calculation, without using specific 

variance reduction techniques, the relative error of 

neutron flux is above 20% when the distance is greater 

than 60 cm, as shown in the black line. 

 By adopting cell importance and weight window and 

assigning the parameters by experience, the calculation 

precision becomes better, as the red and blue lines show. 

But because these cell importance and weight window 

parameters are not optimized and just given by guess 

and experience, the calculation efficiency is improved 

not enough. 

 
Fig. 4. Results of one minute calculations.  

 

 By using weight window with parameters from 

weight window generator, the results are much better 

and all the relative errors are under 20%, as the pink line 

shows. It can be said that the weight window technique 

is effective but the parameters are critical. Only with 

optimized parameters, can weight window play an 

efficient role.  

 

3.2 Mesh-based weight window 

 

While this plate model is simple and small, there are 

many real problems with complex and large geometry 

which need mesh weight window and mesh tally. For 

testing, this model is superimposed by a 5×20 grid and 

the importance of each small grid is assigned by mesh 

weight window generator.  

 Using mesh tally, the calculation is performed twice, 

one with mesh weight window and the other without. As 

no single measurement like FOM can be applied, instead 

comparing what fraction of voxels have less than some 

amount of relative error is shown in Fig. 5.  

 

 
Fig. 5. Relative error histogram of mesh tally. 

 

 The calculation time is 1.331 minutes and 1.357 

minutes, respectively, which are almost the same, but the 

efficiency is quite different.  By using mesh weight 

window, there are about 80% of the tallies whose 

relative errors are under 20%. On the other hand, without 



Proceedings of the Reactor Physics Asia 2015 (RPHA15) Conference 

Jeju, Korea, Sept. 16-18, 2015 

 
using weight window, only about 50% of the relative 

errors are under 20%. The comparison shows high 

efficiency of the use of mesh-based weight window.  

 

3.3 Inner iterative fixed source calculation 

 

Although using weight window with generator is quite 

efficient, it has to make iterative calculations to generate 

a set of reasonable parameters. For this model, two 

whole fixed source calculations are made to get a set of 

reasonable weight window parameters before the third 

calculation is performed to obtain the final results.  

 As comparison, an inner iterative fixed source 

calculation with weight window is made with batch 

number 3. The total number of initial neutron histories of 

these two strategies is the same which is 150,000.  

 
Fig. 6. Comparison of two methods. 

 

Table I. Results of 100-cm-thick water penetration 

Method 
Neutron 

flux tally 

Relative 

error 

Time 

(min) 
FOM 

Manual 

outer 

iteration 

9.76E-08 0.218 0.98 21.5 

Inner 

iteration 
9.30E-08 0.189 0.92 30.4 

 

 Fig. 6 and Table I show the results and comparison of 

traditional manual multistep weight window method and 

inner iterative fixed source calculation. The FOM (/min) 

for this 100-cm-thick water penetration problem is 21.5 

and 30.4, respectively. The inner iteration method avoids 

repeatedly reading input and generating output, which 

saves time and decreases data transmission error. It can 

be said that the new inner iteration method not only 

makes it more convenient to use weight window but also 

improves the variance reduction efficiency.  

 

4. Conclusions and future work 

 

Several traditional and effective variance reduction 

methods including geometry splitting/roulette and 

weight window technique/weight window generator 

have been implemented in RMC code. These methods 

improve the calculation precision greatly and are of 

necessity for Monte Carlo codes.  

 Based on the weight window technique, a new inner 

iteration method for fixed source calculation is also 

developed, which improves both convenience and 

efficiency.  

 The inner iteration in fixed source calculation is still 

a rough strategy and method. Some aspects need more 

research later, such as the tradeoff between particle 

number per batch and the batch number.  
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