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1. Introduction 
 
Solving the three dimensional(3-D) Boltzmann transport 
equation in the reactor core calculation and shielding 
calculation requires vast majority of computational 
resource such as memory and CPU time. Therefore, it’s 
necessary to develop a massively parallel 3-D transport 
code for both eigenvalue and shielding calculations. 

In this paper, a new parallel SN code named Hydra 
is developed. It is a 3-D code based on the Koch-Baker-
Alcouffe(KBA) parallel sweeping algorithm[1]. The main 
features are as follows: 
1. The 3-D Cartesian and Cylinder orthogonal 

structured grids are applied; 
2. The domain decomposition parallelism is based on 

the KBA sweeping algorithm; 
3. Both forward and adjoint calculation can be 

performed; 
4. The SN order can be adjusted for different energy 

groups; 
5. The reflective, vacuum, periodic and rotational 

boundary conditions are involved; 
6. The weighted diamond difference, weighted 

diamond difference with zero-flux fixed up and 
theta-weighted diamond[2] difference are involved; 

7. The first collision source method is applied for ray 
effect elimination; 

8. The parallel output adopts Silo-hdf5 format. 
 
This paper is organized as follows: Theoretical 

models are described in Sec. 2. The numerical results of 
Hydra are shown in Sec. 3. Sec. 4 shows the analysis of  
parallel efficiency. Concluding remarks are given in Sec. 
5.  
 

2. Theoretical model 
 
2.1 Discretization methods  
 
The multi-group steady-state state Boltzmann transport 
can be written as: 
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Integrating each term of Eq.(1) in a given direction

( )Ω , ,m m m mm ξ η  and finite volume element ( , , )i j k , 
we can get the angularly and spatially discretized 
transport equation as follows: 
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Eq.(2) is the neutron balance equation in XYZ 
coordinate. For simplicity, the energy group subscript g 
has been ignored. In the R-Theta-Z coordinate, the form 
is: 
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Where, 
m: the angular index; 
i,j,k: the index of finite volume element; 

mw : the quadrature weight of the angle of m; 

    mm , mξ , mη : the cosine value of angle m. 
 

2.2 KBA parallel algorithm 
 
The KBA parallel sweeping algorithm was developed by 
Koch, Baker and Alcouffe during the 1990’s. In the KBA 
sweeping, the original three-dimensional body is 
decomposed into two-dimensional sub-domains of size
(I , J ,K)b b . Each sub-domain is broadcasted on the 
appointed processor. For each processor, the sub-domain 
is divided into K/ Kb  blocks as illustrated in Fig. 1. 
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Fig. 1 domain decomposition of KBA method 

 
Ib , Jb , Kb are the size of blocks for each sweeping 
direction. The sweeping order through blocks is showed 
in Fig. 2. 
 

 
Fig. 2.1 block sweep order in XYZ geometry. 

 

   
Fig. 2.2 block sweep order in R-Theta-Z geometry. 

 
It should be noted that the angular flux calculation is a 
serial wavefront solver in each block, as illustrated in 
Fig. 3. Therefore, the sweeping is extended along the 
wavefront. 

     
Fig. 3 the wavefront solver in each block 

 
The theoretical parallel efficiency is: 

 
2

2 (I/ I / 2)b b b

MK
MK K J J

ε =
+ + −

  (4) 

Where, 
M: the number of angle in one octant; 
I,J,K: the size of the body for each direction. 
The incoming angular fluxes into each 

computational block come from boundary conditions or 
adjacent blocks. The angles are pipelined so that the next 
angle in the octant is started as soon as the previous 
angle is finished. 

 
2.3 First collision source method 
 
The first collision source method is derived by splitting 
the angular flux into the collided and uncollided 

components[3]: 
 u cf f f= +   (5) 
The uncollided angular flux satisfies: 
 ( , ) ( ) ( , ) ( , )u u

tr r r S rf fΩ⋅∇ Ω +∑ Ω = Ω   (6) 
For the collided angular flux, the external source is 
removed: 
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If the fission material exists, we should add the fission 
source to the right side of Eq. (7). The uncollied flux 
has the analytic solution: 
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Where, p is the location of the point source. 
3. Numerical result 

 
All the numerical calculations were performed on the 
machine of NECP lab(CPU: Intel Xeon E5620, 
2400MHz; Memory: 12GB). 

 
3.1 PWR assembly calculation 
 
This is a 15 × 15 PWR UO2 fuel assembly. The 
configuration is given in Fig. 4. The average enrichment 
of 235U is 2.4%. The lattice code HELIOS[4] is applied to 
produce the 4-group homogenized cross sections for 
each pin. 

 
Fig 4 configuration of PWR assembly 

 
In this problem, the Kinf and power distribution by 

Hydra with homogenized cross sections are compared 
with the reference results from HELIOS. The results are 
given in Table 1 and Fig. 5. 

 
Table 1 the Kinf result of HELIOS and Hydra 
 HELIOS Hydra error/pcm 

Kinf 1.28429 1.28549 120 
 

The relative error of Kinf is less than 0.1% and the 
maximum error of relative pin power error is less than 
0.8%. The results of Hydra and HELIOS are in good 
agreement. 
 

Ω 

Ω 
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Fig 5 the relative error of power distribution 

of Hydra compared with HELIOS 
 
3.2 PWR core calculation 
 
This is a 1/4 PWR core problem, as illustrated in Fig. 6. 
There are 6 kinds of assemblies in the core, which are 
given in Fig. 7. The UO2 enrichment are 3.1%, 2.4% and 
1.8%, respectively. Half of the assemblies are loaded 
with control rods. The SRAC is applied to produce the 4-
group homogenized cross sections. The reference results 
come from MCNP code[5] in multi-group mode. The Keff 
result is shown in Table 2. Figure 8 gives the flux 
distribution of each group. 
 

 
Fig 6 1/4 PWR core 

 

   
UO2 3.1wt% UO2 2.4wt% UO2 1.8wt% 
 

   
UO2 3.1wt% UO2 2.4wt% UO2 1.8wt% 
(black rod)   (black rod)  (black rod) 

Fig 7 six kinds of lattice type 
 

Table 2 the Keff result of MCNP and Hydra 
 MCNP Hydra error/pcm 

Keff 0.94104 0.93965 139 
 

   
Group 1            Group 2 

   
Group 3            Group 4 

Fig 8 Flux distribution of each group 
 
3.3 Three dimensional cylinder problem 
 
This is a designed 3-D cylinder core to verify the 
accuracy of Hydra in R-Theta-Z geometry. The 
configuration of cylinder core is given in Fig. 9. 
 

 
Fig 9 the configuration of cylinder core 

 
The outside diameter of the core is 120cm, and the 

height is 160cm. The results are compared with the 
references form TORT[6] calculation, in which the mesh 
amount is set to 120×10×160. The number of energy 
group is 4, and the SN order is 8. The comparison of flux 
error, computational time and parallel efficiency are 
showed in Table 3. 

 
Table 3 Comparison of TORT and Hydra 

mesh 120×10×160 120×120×160 
Time TORT：849 s 

Hydra ：6s 
serial：16124 s 
100cpu ：183s 

Max error of flux 1.37e-04 ～ 
Parallel efficiency ～ 88.15% 

     
The results of Hydra and TORT are in very good 

agreement. The parallel efficiency of Hydra is 
approximately 90% under the condition of 100 
processors. 
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4. Parallel efficiency test 

 
In order to test the parallel efficiency of Hydra, the 
Kobayashi problem is calculated. The Kobayashi 
problem is composed of three regions: source region, 
vacuum region and shielding region, as illustrated in Fig. 
10. The scattering cross section is 50% of the total cross 
section for the shielding material[7]. S16 considering 
isotropic scattering is applied in the calculation, and 
0.25cm spatial resolution is adopted with 400×400×
400 meshes. The parallel efficiency with 4, 16, 25, 64 
and 100 processors is given as shown in Fig. 11. 

The theoretical parallel efficiency has ignored the 
time spent communicating. The practical parallel 
efficiency should be[8]: 

2[ ][ ]
2 (I/ I J/ J 2)

task

b b b task comm

TMK
MK K T T
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Where, 

taskT : amount of time spent calculating a single 
block in a given angular direction; 

 

commT : time spent communicating the data exiting 
to the two neighboring blocks. 

Considering the time spent communicating, the practical 
and theoretical parallel efficiency are in good agreement 
for 4 to 100 processors. 
 

 
Fig 10 The configuration of Kobayashi problem 

 

 
Fig 11 Parallel efficiency test of Hydra 

 

5. Conclusions 
 
A new SN transport code Hydra is developed based on 
the KBA sweeping algorithm. Both the X-Y-Z 
orthogonal mesh and R-Theta-Z orthogonal mesh are 
involved. Several calculations prove that the results of 
Hydra are in good agreement with other codes such as 
TORT, MCNP(multi-group) and HELIOS. In additions, 
Hydra has very good parallel efficiency on O(100) 
processors. 
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