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1. Introduction 

The method of characteristic (MOC) has been favored 
for many recent whole core transport codes; some 
current research codes are: the nTRACER code [4] from 
Seoul National University, the MPACT code [11] from 
the University of Michigan, and the Dragon code [9] 
from École Polytechnique de Montréal. However, it is 
well-known that whole core transport with MOC is both 
computational expensive and requires significant 
storage. On the other hand, the discrete ordinates (SN) 
methods have been successfully applied to large 
systems, as done demonstrated by the computer code 
Attila. [8] 
  However, all previous discrete-ordinates methods 
implemented in available production computer codes 
were formulated only for problems containing spatial 
cells with planar boundaries. This creates geometric 
approximations and inefficiencies for modeling any 
physical system with curved boundaries – the curved 
boundaries must be approximated using a greatly many 
very fine spatial cells, each fine cell having a planar 
boundary. Fig. 1. illustrates what’s new in this paper. 
 In this paper, we derive, implement, and test 2-D 
discrete-ordinates methods, which are applicable for 
systems having curved interfaces between material 
regions, and which treat these curved surfaces 
analytically. The key benefits of discrete-ordinates 
methods on curved spatial grids over the MOC method 
include: (i) a standard highly-optimized quadrature sets, 
(ii) a single user-specified spatial grid, (iii) a simple 
extension to 3-D transport, and (iv) a small memory 
footprint for the computer. 

!  
Fig. 1. The scope of the work in this paper [6] 

2. Geometry & Topology 

When SN methods are applied to curved spatial grids, 
the geometry is more complex than geometries with 
linear boundaries. The description of SN equations 

requires the “topology” information, which is a math 
term to represent the connectivity and neighborhoods 
information. So this section introduces the necessary 
terminology for later explanation of our SN methods. 

2.1 Curve parametrization 

We consider spatial grids that consist of any planar 
shapes bounded by lines and circular arcs or any other 
curve that can be parametrized. Although our method is 
not restricted to lines and circular arcs, we discuss only 
lines and circular arcs as examples. A curve is 
parametrized by associating all points on it with real 
numbers. A line and a circular arc are parametrized as: 

where t is the parametrization parameter. If we “walk” 
along the curved in the direction of increasing parameter, 
the normal vector pointing to the “right” is defined as the 
“outer normal vector”, which is denoted as !  for the 
point associating with parameter t. Fig. 2 illustrates this. 

!  
Fig. 2. The outer normal vector of the curve c at 
parameter t.  

 Next, several one-dimensional curve integrals for a 
curve c with parameter range [a,b] are defined: 
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where !  and !  are respectively the x and y 
components of the outer normal vector ! .  

2.2 Topology  

The geometry formed by lines and circular arcs can be 
much complex. Fig. 3. is an example shape formed by 
two circles and one triangle, which divide the space into 
7 spatial “cells” with curved boundaries. 

!   

Fig. 3. Geometry formed by two circles and one triangle. 
The spatial “cell 1” is bounded by two lines and two 
circular arcs. The red lines denote the outer boundaries. 

 Consider a spatial cell f, all its boundaries are 
oriented are denoted as: 

It is important to keep in mind that the boundaries are in 
the counter-clockwise direction. When two spatial cells 
share a common curved boundary, the common 
boundary has opposite directions for the two neighbor 
cells. Fig. 4. illustrates this. 

!  
Fig. 4. Two cells and their boundaries. Two boundaries 
c1 and c2 have opposite directions when belonging to 
two neighboring cells f1 and f2. 

By divergence theorem, the sum of all boundary vector  

!  , as defined in equation (6), is zero for a spatial cell: 

Furthermore, we define a volume integral over the 
spatial cell f: 

3. Neutron Balance Equation 

The SN algorithm is derived from integration of the 
neutron transport equation over a spacial cell. This 
section derives one important equation called the 
neutron balance equation, which illustrates the balance 
of neutron population within a spacial cell. 

3.1 Integration of neutron transport equation 

Consider a spatial cell f, the integration of multigroup 
discrete ordinates equation with isotropic scattering is: 

where f denotes the area of integration and !  
; n is the angle index with a total number of N angle, and 
g is the energy group index with a total number of G 
energy groups; k is the reactivity coefficient or the 
eigenvalue of the equation; !  is the total cross 
section of group g, !  is the isotropic scattering 
cross section from group g’ to group g, !  is the 
fission yield cross section of group g, and !  is the 

fission spectrum of group g; !  is the unit vector of the 
direction of flight with angle index n and !  is the 
corresponding weight; !  is the angular flux at angle 

!  and group g, and !  is the scalar flux of group g. 
The angular flux and scalar flux are related with: 

 Recall equation (6) and equation (9) of the definition 
of boundary and area integrals, we define the following 
averaged boundary and area flux: 
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where f denotes the spatial cell, and c denotes the 
boundary curve; !  and !  are the starting and 
ending parameter of the boundary curve. We further 
assume that the material is homogeneous within a spatial 
cell f : !  is the total cross section of group g; 
!  is the scattering cross section from group g’ 
to group g; !  is the fission yield cross section of 
group g; !  is the fission spectrum of group g. Then 
the integral neutron transport equation (10) becomes: 

 Furthermore, we define some source terms: 

Then equation (16) becomes the neutron balance 
equation: 

The unknowns in the neutron balance equation are the 
average boundary flux !  and the average area flux 

! . We need more equations for solving these 
unknowns, and the additional equations are called 
auxiliary equation. By the process of source iteration, 

the source terms !  and !  are considered as 
known quantities. 

4. Categorization of Boundaries 

For a specific direction of flight, all boundaries of a 
spatial cell is defined as incoming-like, outgoing-like, 
or parallel based on the sign of the dot product between 
the average outer normal vector and the direction of 
flight. The average out normal vector for the boundary 
curve c is defined as: 

which has the same direction with ! , as defined in 
equation (6). Fig. 5. illustrates the categorization 
criterion. 

!  
Fig. 5. Criterion of categorization of boundaries. 

This categorizes all boundaries of a spatial cell f into 
three distinct sets: 

 For a curved boundary, even though it can have 
neutrons entering and exiting at the same time, the use of 

a single average outer normal vector or the !  
vector categorize all boundaries without ambiguity. It is 
possible to split the spatial cell to avoid re-entering 
boundaries, but numerical results show that doing this 
gain little advantage. [6] 

5. Auxiliary Equations 

In section 3, we have derived one equation for the 

unknown average cell flux ! and average boundary 
flux ! . So additional equations are necessary. In 
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this section, we introduce 3 methods for derivation of 
additional auxiliary equations. All these auxiliary 

equations have only ! and !  as the 
unknowns. By a process called Sweeping (introduced in 
section 6), the incoming boundary-averaged fluxes can 
be treated as known quantities. 

5.1 Step method (STEP) 

The assumption made in the step method is that the 
outgoing boundary-averaged fluxes equal the cell-
averaged flux. So the step auxiliary equations are: 

5.2 Simplified step characteristic method (SSC) 

The assumption made in the simplified step 
characteristics method is that the neutron transport 
inside a spatial cell can be approximated by a 1-D 
transport along the direction of flight, as depicted in Fig. 
6. 

!  
Fig. 6. Visualization of the SSC method 

The SSC auxiliary equation is: 

where !  is the cell source density: 

!  is the cell total cross section: 

and l is the 1-D characteristic length in 3-D space: 

5.3 Multiple balance method (MB) 

The auxiliary equations in the step and the SSC method 
contain no neutron physics. So it is more favorable if the 
auxiliary equations have forms similar to the neutron 
balance equation (21). In 1990, Morel & Larsen [10] 
have invented the multiple balance method for 1-D 
problem, in which the auxiliary equations have a form 
similar to the balance equation. To extend the method 
into 2-D, we define for each outgoing-like boundary c a 
weight function ! : 

The weight function has steepest sloop along the !  
vector (see equation (7) for definition), and the 
coefficients !  and !  are a function of the curve 
c, and are determined by the conditions given by the 
equations (32), (33) and (34).  
 The MB auxiliary equations are obtained by 
integrating the SN equation (10) with weight function 
!  for each boundary c. The resultant MB auxiliary 
equation is: 

where the additional curve integrals are defined as: 
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6. Sweep Algorithm 

A 2-D curved spatial grid contains many spatial cells 
with curved boundaries. Each spatial cell is visited 
exactly once, and during each visit the cell’s average cell 
flux and outgoing flux are updated according to the 
neutron balance equation (see section 3) and the 
auxiliary equations (see section 5). The order of visit is 
called the sweep order. To find the sweep order, an 
order graph is constructed, which requires that a cell is 
visited after all its incoming-like boundary-averaged 
flux are calculated. Section 4 discusses whether a 
boundary is incoming-like, outgoing-like, or parallel in 
details. Fig. 7. shows the sweep order and the order 
graph for a pin-cell. 

!  
Fig. 7. Sweep order and order graph for a pin-cell. 

7. WIMS-D Cross Section Library 

To compare the SN methods and the widely used MOC 
method, the CASL VERA benchmark problems [1] are 
used. Because the benchmark document does not 
provide the cross section data, we use the WIMS-D 
library [5] to construct the macroscopic cross sections.  

Table I. WIMS-D Material Composition for VERA 
Problems  

For resonant nuclide, the absorption and fission yield 
cross sections are calculated by the formula provided by 
the WIMS-D library document [5]: 
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in multigroup cross section is not the goal here. 

8. VERA Benchmark Problem 

To compare the SN methods with the MOC method, the 
VERA benchmark problem 1A, 1E and 2A are studied 
here. Problem 1A is a single fuel pin-cell with no IFBA 
coating; problem 1E is a single fuel pin-cell with IFBA 
coating; problem 2A is a fuel assembly containing 17x17 
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methods’ accuracy only. Again, our purpose is not to 
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methods can be an alternative to MOC method. The 
MOC quadrature sets are denoted as “AmPn Dd”, which 
means we use m azimuthal angles per quadrant, and n 
polar angles per octant, and a ray spacing of d cm. The 
SN quadrature sets are standard ones [3].  

Table II. Number of angles in different quadrature sets 

 To compare the quality of the solution, we measure 
the collision rate, which is defined as: 

!  
Fig. 8. The geometry for pin-cell [1] 

Table III. Pin-cell Dimension Information [1] 

8.1 Problem 1A: single pin-cell with no IFBA 

The pin-cell radial mesh is shown in Fig. 9. There are 32 
angular sectors. All boundaries are reflecting. 

!  
Fig. 9. The spatial mesh for pin-cell 1A 

The error comparison in k-eigenvalue and collision rate 
versus the computational time are shown in Fig. 10. and 
Fig. 11. The MOC solution data points are simulated 
with a variety of angular quadrature sets: A4P2, A4P4, 
A8P4. The SN solution data points are also simulated 
with a variety of angular quadrature sets: S4, S8, S12, 
S16, S20. The dashed lines are the Monte Carlo 
uncertainties within two standard deviations. 

!  

Fig. 10. K-eff error comparisons for problem 1A. The 
closer to the 0 the better. Data points on the same line 
have different quadrature sets. 
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!  
Fig. 11. Collision rate error comparisons for problem 
1A. The closer to 0 the better. Data points on the same 
line have different quadrature sets. 

When the MOC solution has a relatively wide ray 
spacing such as 0.05 cm and 0.02 cm, the solution do not 
converge when simulate with more angles. The STEP 
and SSC method have comparable accuracy with MOC. 
Table IV. compares the multigroup Monte Carlo k-
effective and the KENO continuous energy Monte Carlo 
k-effective benchmark. We conclude that a more 
accurate resonance treatment is necessary to improve the 
solutions.  

Table IV. Validation of WIMS-D Data Library for 
Problem 1A 

8.2 Problem 1E: single pin-cell with IFBA 

The pin-cell radial mesh is shown in Fig. 12. There are 
32 angular sectors. All boundaries are reflecting. 

!  

Fig. 12. The spatial mesh for pin-cell 1E 

The error comparison in k-eigenvalue and collision rate 
versus the computational time are shown in Fig. 13. and 
Fig. 14. The MOC solution data points are simulated 
with a variety of angular quadrature sets: A4P2, A4P4, 
A8P4. The SN solution data points are also simulated 

with a variety of angular quadrature sets: S4, S8, S12, 
S16, S20. The dashed lines are the Monte Carlo 
uncertainties within two standard deviations. 

!  

Fig. 13. K-eff error comparisons for problem 1E. The 
closer to 0 the better. Data points on the same line have 
different quadrature sets. 

!  

Fig. 14. Collision rate error comparisons for problem 1E. 
The closer to the 0 the better. Data points on the same 
line have different quadrature sets. 

When the MOC solution has a relatively wide ray 
spacing such as 0.05 cm and 0.005 cm, the solution do 
not converge when simulate with more angles. This 
shows one of the advantage of SN methods when 
treating the very thin IFBA layer, since SN methods treat 
curved boundary analytically, which avoids the very fine 
ray spacing required by IFBA pin-cells. [12] The STEP 
and MB method have comparable accuracy with MOC. 
The SN methods i.e. STEP, SSC, and MB are less 
expensive than MOC with 0.0005 cm ray spacing. Table 
V. compares the multigroup Monte Carlo k-effective and 
the KENO continuous energy Monte Carlo k-effective 
benchmark. The WIMS-D k-effective has a large error 
from the continuous energy KENO benchmark, so more 
accurate resonance treatment is necessary. 
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Table V. Validation of WIMS-D Data Library for 
Problem 1E 
 

8.3 Problem 2A: zero power assembly 

Problem 2A is a fuel assembly contains 17x17 pin-cells, 
24 of which are guide tube, one instruction tube is in the 
center, and the rest are fuel pin-cells. The pin-cell 
configuration is shown in Fig. 15. and each pin-cell is 
divided into 16 radial sectors. The spatial meshes are 
illustrated in Fig. 16, because of symmetry only a 
quarter is shown. All boundaries are reflecting. 

!  
Fig. 15. The pin-cell configuration for problem 2A 

!  

Fig. 16. The spatial mesh for problem 2A, only a quarter 
assembly is shown. 

 Table VI lists the error in k-eigenvalue, pin-cell 
power and the time and storage costs. The storage of the 
SN methods do not depend on much on the quadrature 
set. This is an advantage of the SN method. 

Data K-eff K-eff Uncertainty
WIMS-D MG. 0.808911 0.000078
KENO CE. 0.772366 0.000078
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kTable VI. List of k-effective versus time & pin-cell power for Problem 2A  



Proceedings of the Reactor Physics Asia 2015 (RPHA15) Conference 
Jeju, Korea, Sept. 16-18, 2015 

 The error comparison in k-eigenvalue is shown in 
Fig. 17. and the comparison of max-min pin power ratio 
is shown in Fig. 14. The MOC solution data points are 
simulated with two angular quadrature sets: A4P2, 
A4P4. The SN solution data points are also simulated 
with two angular quadrature sets: S4, S8. The dashed 
line is the Monte Carlo uncertainties within two standard 
deviations. The max-min pin power ratio is defined as: 

!  
Fig. 17. K-eff error comparisons for problem 2A. The 
closer to 0 the better. Data points on the same line have 
different quadrature sets. 

!  
Fig. 18. Max-min pin power ratio error comparisons for 
problem 2A. The closer to MC dashed line the better. 
Data points on the same line have different quadrature 
sets. 

 In terms of k-eigenvalue, the SN method is 
comparable with the MOC method, and foe the max-min 
pin power ratio, the MB and SSC method can achieve 
better accuracy. 

!  
Fig. 19. Comparison of  pin-cell power distribution 

 The pin-cell power distributions are shown in Fig. 
19. and the normalization is applied such that the 
average is 1.0. Fig. 20. compares the relative errors in 
percentage to the multigroup Monte Carlo benchmark 
solution. The MB solution and MOC solution have 
comparable errors. 
 Table VII. compares the multigroup Monte Carlo k-
effective and the KENO continuous energy Monte Carlo 
k-effective benchmark. Fig. 21. he multigroup Monte 
Carlo k-effective and the KENO continuous energy 
Monte Carlo pin-cell power distribution benchmark. 
More accurate treatment of resonance is necessary. 

Table VII. Validation of WIMS-D Data Library for 
Problem 2A 

Max-min pin power ratio =

Max pin power

Min pin power

(46)
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!  

Fig. 20. Comparison of pin-cell power relative errors to 
the multigroup Monte Carlo benchmark solution. 

!  

Fig. 21. Comparison between the WIMS-D mutigroup 
Monte Carlo and KENO-VI continuous energy pin 
power distribution. 

9. Mini-Assembly Problem with Big Flux Gradient 

We test another problem big flux gradient, which is a 
mini-assembly consisting of 3x3 pin-cells with vacuum 
boundaries surrounding the water pin-cell. Fig. 22. 
illustrates the geometry and spatial meshes and the 
material composition. The fuel pin-cells are the VERA 
benchmark fuel pin-cells. 

 

!  
Fig. 22. The spatial grid for the mini-assembly problem, 
which consists of a 3x3 grid of pin-cells. The top and 
right boundaries next to the moderator pin-cells are 
vacuum, and the bottom and left boundaries next to the 
fuel pin-cells are reflecting.  

 The multigroup Monte Carlo benchmark pin-cell 
power distribution is shown in Fig. 23. The uncertainty 
is small enough so the the number is accurate within +/- 
0.0001. From the center fuel pin-cell to the outer fuel 
pin-cell, the pin-cell power reduces by 24%. So there is a 
big gradient in the flux as well. 

!  
Fig. 23. The pin-cell power distribution in the fuel pin-
cells. 

 The error comparison in k-eigenvalue is shown in 
Fig. 24. and the comparison of max-min pin power ratio 
is shown in Fig. 25. The MOC solution data points are 
simulated with a variety of angular quadrature sets: 
A4P2, A4P4, A8P4. The SN solution data points are also 
simulated with a variety of angular quadrature sets: S4, 
S8, S12, S16, S20. The dashed lines are the Monte Carlo 
uncertainties within two standard deviations. The max-
min pin power ratio is defined in equation (46). 
 The MB solution is significantly better than the 
MOC solution. A possible reason why the MB method is 
the most accurate solution is because the derivation of 
the MB method does not assume the flux is flat in a cell, 
while the other methods, i.e. STEP, SSC and MOC 
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MOC methods all assume the flux in a cell to be flat. 

!  
Fig. 24. K-eff error comparisons for mini-assembly 
problem. The closer to 0 the better. Data points on the 
same line have different quadrature sets. 

!  
Fig. 25. Max-min pin power ratio error comparisons for  
the mini-assembly problem. The closer to MC dashed 
line the better. Data points on the same line have 
different quadrature sets. 

10. Extension to 3-D 

Extension to 3-D for the SN method discussed in the 
paper is straightforward, especially when the 3-D 
geometry is extrusion of a 2-D shapes in the axial 
direction (two layers with different geometries can stack 
together), which is frequently encountered in reactor 
simulation. Fig. 26. illustrates the difference between 3-
D MOC and 3-D SN, where in the MOC method 
neutrons transport one characteristic line by one 
characteristic line, but in the SN method neutrons 
transport one layer by one layer (a layer is a 2-D plane 
dividing in the axial direction). The time costs for both 
methods are: 

For MOC the information of each characteristic line is 
required to store, the storage costs for both methods are: 

When all layers have the same geometry, only one 2-D 
plane information is required to store. A recent work 
conducted at MIT aims at reducing the MOC storage 
cost to be close to !  [2].  
  

!  

Fig. 26. Illustration of the difference between 3-D MOC 
and 3-D SN transport. 

 We saw from numerical results that MOC and SN 
have comparable time and storage cost. So when 
extended to 3-D,  SN methods are advantageous over the 
MOC method in terms of time and storage cost. 

11. Conclusion 

In conclusion, we have studied realistic problems from a 
simple pin-cell to an assembly, using an industrial 
standard cross section library. We demonstrate that the 
discrete ordinates methods including STEP, SSC and 
MB can be an alternative method to MOC for reactor 
simulation. 
 We find that the SSC and MB methods are 
comparable to MOC in both accuracy and computational 
cost. For difficult problems with large spatial flux 
gradients, our simulations show that the MB method is 
significantly more accurate.  
 Moreover, given the widely-acknowledged inability 
of MOC to realistically treat 3-D geometries, it seems 
highly likely that for 3-D problems, the SN methods will 
be considerably more efficient than MOC. 
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3-D MOC: line by line 3-D SN: layer by layer

⌦̂n



Proceedings of the Reactor Physics Asia 2015 (RPHA15) Conference 
Jeju, Korea, Sept. 16-18, 2015 

Acknowledgements 

Thanks to Prof. Joo, Hangyu from Seoul National 
University for coordinating the RPHA15 meeting and 
offering an opportunity for submitting this paper. The 
invitation from Prof. Shaohong Zhang from Shanghai 
NuStar Corporation to the RPHA15 is greatly 
appreciated. Ms. Yu, Hui, Li, Shou and Liu, Zhiyan from 
SNPSDC, Beijing inspire this paper of using the WIMS-
D data library to study the VERA benchmark problems. 
Boyd, Will, Ms. Li, Lulu from MIT, Prof. Wang, Kan 
from Tsinghua University, and Cao, Liangzhi from Xi’an 
Jiaotong University also gave feedback to the some 
related work. Without the long lasting help from Prof. 
Larsen, Edward, Downar, Thomas, Marin, William, and 
my graduate colleagues Liu, Yuxuan and Zhu, Ang from 
University of Michigan, this work is not possible. The 
encourage from the deputy vice president Lin, Zhongqin 
from Shanghai Jiaotong University, Ms. Yang, Yanhua 
and Chen, Yixue from SNPSDC Beijing are highly 
appreciated. Finally, special thanks to the vice executive 
officer Liu, Zhaohua from CNNC Tianwan Nuclear 
Power Plant for giving me my first touch with the 
nuclear industry. 

References 

1. Godfrey, A. “Vera Core Physics Benchmark 
Progression Problem Specifications,” CASL-
U-2012-0131-004  (2014). 

2. Gunow, Geoffrey, John Tramm, Benoit Forget, and 
Kord Smith, Tim He, “SimpleMOC - A Performance 
Abstraction for 3D MOC,” Proc. ANS MC2015, 
Nashville, TN, April 19–23, 2015, American Nuclear 
Society (2015) (CD-ROM). 

3. Hebert, A. “Applied Reactor Physics”, Presses 
Internationales Polytechnique, Canada (2009). 

4. Hyun, Min Ryu, Ho Cho, Chang Hyun Lim, Yeon 
Sang Jung and Han Gyu Joo, “Preliminary 
Assessment of nTRACER and McCARD Direct 
Whole Core Transport Solutions to VERA Core 
Physics Benchmark Problems”,  Transactions of the 
American Nuclear Society, Anaheim, California, 
Nov. 09–13, 2014, CD-ROM(2014) 

5. Leszczynski, F. D. L. Aldama, and A. Trkov, 
“WIMS-D Library Update,” International Atomic 
Energy Agency, Vienna, Austria  (2007). 

6. Liu, Changyuan, Ph.D. Thesis:, Discrete Ordinates 
Methods for Curved Spatial Grids, University of 
Michigan (2015). 

7. Liu, Yuxuan, Ph.D. Thesis: A Full Core Resonance 
Self-shielding Method Accounting for Temperature-
dependent Fuel Subregions and Resonance 
Interference, University of Michigan (2015). 

8. Lucas, D.S., 'Core Modeling of the Advanced Test 
Reactor with the Attila Code', M&C 2005: 
International Topical Meeting on Mathematics and 
Computation, Supercomputing, Reactor Physics, and 
Nuclear and Biological Applications, Avignon, 
France (2005). 

9. Marleau, G., Hebert, A., Roy, R., A User Guide for 
DRAGON Version 4, IGE-294, Institut de genie 
nucleaire, Ecole Polytechnique de Montreal (2013). 

10. Morel, J.E. and Larsen, E. “A Multiple Balance 
Approach for Differencing the SN Equations,” Nuc. 
Sci.and Eng. 105, 1-15 (1990). 

11. MPACT Development Team, "MPACT User 
Manual," University of Michigan, Ann Arbor, 
(2013).  

12. Walker, D. Erik, M.S. Thesis: Modeling Integral 
Fuel Burnable Absorbers Using the Method of 
Characteristics, University of Tennessee (2014). 


