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1. Introduction 

 

The 3D whole-core heterogonous transport calculation 

plays a very important role in high fidelity calculations 

for reactor physics, among which, 2D/1D fusion 

method[1] (including 2D/1D method[2]) is one of the most 

promising methods. In conventional 2D/1D fusion 

method, the axial leakage is flat on the top/bottom 

surfaces of the homogenous cells and the radial leakage 

is flat along the axial direction of the 2D calculation 

plane, so these approximations will get some accuracy 

lost. This work is to analysis and minus the errors these 

approximations bring. In 1D calculation the radial 

leakage is fitted along axial direction while in 2D 

calculation the distribution of axial leakage is also 

introduced. The numerical results indicate that these two 

improvements reduce the errors brought by the flat 

leakage approximation.  

 

2. 2D/1D Fusion Method 

 

The multi-group neutron transport equation can be 

written as  
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The 2D equation of 2D/1D fusion method is obtained by 

integrating Eq. (1) over
1 1[ , ]k kz z 

. 
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where, the axial leakage is 
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The 1D equation is got by integrating Eq. (1) over 

1 1[ , ], [ , ]i i j jx x y y 
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where, the radial leakage is, 
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For the conventional 2D/1D method, the 3D geometry is 

divided into several layers for 2D calculations, and then 

divided into parallel pins for 1D calculation, as show in 

Fig.1. 2D calculations supply the radial leakage for 1D 

calculations, while 1D calculations supply axial leakage. 

Fig. 2 shows the calculation flow of 2D/1D transport 

code MOCHA2D1D. 

 
Fig.1. 2D/1D meshing figure 

 

 
Fig. 2 MOCHA-2D1D calculation flow 

 

3. Radial Leakage Reconstruction 

 

For the 2D calculations, the resulting leakage between 

cells is flat along axial direction. However, the mesh is 

much finer than the height of 2D layers. This leakage 

distribution along axial direction might change 

significantly in some case. So applying Radial leakage 

reconstruction along axial direction is needed. 

Here, Sn difference method is applied for the 1D 

 

                

                

                

                

2
D 

    
    

    
    

1
D 



Proceedings of the Reactor Physics Asia 2015 (RPHA15) Conference 

Jeju,Korea,Sept. 16-18, 2015 

 
calculation, and the radial leakage is fitted using a 

quadratic polynomial.[3,4] Choosing Sn method is to 

guarantee no approximation on angle. Since 1D 

calculation does not take much time, the differential 

method is easy to get fine mesh flux. 
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The coefficients (
n

ll ) are determined from radial 

leakage integral on layer 1n , n ,and 1n . The 

coefficients are obtained by 
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Using these coefficients, the radial leakage of each 1D 

fine mesh could be obtained. Fig. 3 shows the radial 

leakage distribution before and after fitting. 

 
Fig.3.Radial leakage fitting along axial direction 

 

4. Axial Leakage Reconstruction 

 

According to the previous work of Prof. Cho[1], choosing 

2D flat source mesh as 1D calculation domain could 

obtain better results while the computation time and the 

memory consumption will increase, the memory 

consumption increase is the major restriction. So most 

2D/1D codes choose a cell as the 1D calculation domain.  

To capturing the leakage distribution on the top/bottom 

surface of the cell, a method to reconstruct the 2D 

distribution of the axial leakage is introduced as Eq. (6). 

According to this expression, an assumption is 

introduced that the distribution of leakage on the 

top/bottom surface is the same for different angles. Then 

the shape factor of each flat source mesh is obtained 

directly using the scalar flux of different layers. 

Multiplying this shape factor and the leakage could 

generate the axial 2D distribution. 
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Fig.4 Axial leakage 2D distribution calculation  

 

Using the shape factor of axial leakage for each cell, the 

2D distribution of axial leakage on each pin could be 

obtained as shown in Fig. 4. Since the problem we 

calculate is small, the memory increasing is not the key 

restriction. But we can estimate the additional memory.  

The axial leakage array of the current calculating layer 

becomes larger, the multiple is the number of flat source 

mesh. The axial leakage is not isotropic, only the shape 

factor of axial leakage on each direction is same. 

 

5. Numerical Result 

 

In order to test the reconstruction methods, a 3x3 pin 

problem is designed, and the pin geometry is shown in 

Fig. 5. The pitch of each pin is 1.0cm, and the height is 

25cm. Cross sections are listed in Table I. Rectangle pin 

geometry is used to eliminating the errors introduced by 

the homogenization approximation of the 1D calculation. 

4 cases are calculated to compare the reconstruction 

effect: 1) with radial leakage reconstruction, 2) with 
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axial leakage reconstruction, 3) with both axial and 

radial reconstruction, 4) reference case. For all cases, 5 

by 5 meshing is adopted for each pin during the 

calculation. 

In the reference case, 1D calculations are performed for 

each flat-source-region. For other case 1D calculations 

are performed for one pin. 40 rays for one pin on each 

direction, 6 azimuthal angles and 4 polar angles in an 

octant, 10 layers are used. The results are shown below.  

In the first case, 1D calculations with radial leakage 

reconstruction are performed for each flat-source-region.  

40 rays for one pin on each direction, 6 azimuthal angles 

and 4 polar angles in an octant, 5 layers are used. The 

results of with and without radial leakage reconstruction 

are shown in Table II and Table III. 

In the second case, 1D calculations with radial leakage 

reconstruction are performed for each pin.  200 rays for 

one pin on each direction, 6 azimuthal angles and 4 polar 

angles in an octant, 10 layers are used. The results of 

with and without axial leakage reconstruction are shown 

in Table IV and Table V. 

In the third case, 1D calculations with radial leakage rec

onstruction are performed for each pin.  200 rays for on

e pin on each direction, 6 azimuthal angles and 4 polar a

ngles in an octant, 5 layers are used. The results of with 

or without both radial and axial leakage reconstruction ar

e shown in Table VI and Table VII. 

      
x-y plane      x-z plane 

Fig.5 reference case configuration 

Table I cross section 
Cross 

section 
Total 

Nu 

fission 
fission Scatter 

Fuel 2.81E+00 8.54E-01 3.5E-01 2.26E+00 

Rod 6.44E+00 0.00E+00 0.0E+00 3.14E+00 

Coolant 6.37E+00 0.00E+00 0.0E+00 6.31E+00 

 

In first case, the error of eigenvalue decreases by 20 pcm 

with the radial leakage reconstruction, and the pin power 

of fifth layer, where the layer of maximum pin power is, 

has not big difference because both of them are accuracy 

enough. The results indicate that the radial leakage is not 

the major source of error in this case.   

From the results of the second case, it could be found 

that flat axial leakage introduced about 100 pcm error in 

eigenvalue and 0.5% error in maximum pin powers layer. 

Axial leakage reconstruction gives a more accurate 

distribution of leakage of the top/bottom surface, which 

brings 40 pcm improvement in eigenvalue and reduces 

the pin power error significantly. So in this case the 

domain error source is the flat axial leakage. 

In the third case, both axial leakage reconstruction and 

radial leakage reconstruction are applied. The error of 

eigenvalue is decrease about 15 pcm, because these two 

methods correct the eigenvalue in opposite directions. 

The pin power of fifth layer still improved a lot. The 

results indicate that when the leakage is large and 

changes greatly, reconstruction methods could improve 

the result.   

Table II eigenvalue of first case 

First case eigenvalue error/pcm 

reference 1.25899  - 

no reconstruction 1.25840  -59  

radial leakage 

Reconstruction 
1.25860  -39  

 

Table III pin power difference of 5th layer 

First case Error of pin power 

No reconstruction

(%) 

0.00  0.02  

-0.01  0.00  

radial leakage  

reconstruction(%) 

0.02  0.11  

-0.08  0.02  

 

Table IV eigenvalue of second case 

Second case eigenvalue Error/pcm 

reference 1.25899  - 

no reconstruction 1.26010  111  

axial leakage 

Reconstruction 
1.25972  73  

 

Table V pin power difference of 10th layer 

Second case Error of pin power 

No reconstruction

(%) 

0.58  0.56  

0.58  0.58  

axial leakage  

reconstruction(%) 

0.09  0.07  

0.09  0.09  

 

Table VI eigenvalue of third case 

Third case eigenvalue Error/pcm 

reference 1.25899  - 
no reconstruction 1.26061  162  

Both reconstruction 1.26046  147  

 

Table VII pin power difference of 5th layer 

Third case Error of pin power 

No reconstruction 

(%) 

-0.49  -0.39  

-0.58  -0.49  

Both reconstructio

n(%) 

0.00  0.04  

-0.02  0.00  
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6. Conclusions 

 

Two improvements are proposed for the conventional 

2D/1D fusion transport method, in which the radial 

leakage from the 2D calculation is fitted along axial 

direction for 1D Sn equation, and 2D distribution of the 

axial leakage from 1D calculation is fitted for the 2D 

MOC calculation. Both reconstructions contribute some 

improvements to the accuracy of the eigenvalue and pin 

powers. The effect of reconstruction is depended on the 

shape of true leakage. For the given problem, the radial 

leakage is the main source of the bias, so the 

reconstruction shows more improvements to the final 

results. More investigation will be performed for the pin 

powers closed to the moderator for the bigger problems. 

Next we will apply this method to C5G7 benchmark to 

test the performance. 
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