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1. Introduction 

 
Parallel computation on GPU has been receiving 

attention from the researchers on the reactor physics 

computations. It is suited to problems where the same 

calculation is applied to numerous numbers of data. As 

well as the Monte Carlo neutron transport in which 

neutrons are simulated in parallel based on the 

Boltzmann transport equation, the depletion calculation 

also fits on this property in that numerous depletion 

areas are processed by solving the burnup equation. 

There has been research [1,2] to apply the GPU 

parallel computation to the depletion calculation. 

Heimlich et al. [2] developed a GPU depletion solver 

based on the two variants of Runge-Kutta methods with 

optimum fine step calculation. Kim et al. [1] developed 

a scalable GPU depletion solver based on the 

Chebyshev rational approximation method (CRAM) [3] 

with a Gauss-Seidel linear solver. Still, there is no 

research in which both the depletion region and the 

depletion calculation of each region are parallelized. 

In this paper, a depletion module on GPU based on 

the matrix exponential by the CRAM is introduced and 

validated. The purpose of this research is to find what 

parallelism condition gives the optimum result for the 

solver on GPU when both the depletion regions and the 

equation solver per region are parallelized. The Jacobi 

method, in which the calculation can be easily 

parallelized, is used to solve linear systems that appear 

in the CRAM calculation. 

 

2. Model and Methods 

 

In this section, the methods applied to the depletion 

module are introduced. Then the model used for the 

validation of the module is described. 

 

2.1 Matrix Exponential Method 

 

The burnup equation is a master equation that 

describes the depletion of a material over time by the 

decay of the consisting nuclides and the reaction with 

the neutron, which can be written as Eq. (1). 

 
( )

( ),
dN t

N t
dt

= A  (1) 

where t is the time, A is a burnup matrix in which the 

decay constant and the reaction rates of each nuclide are 

included, and the vector ( )N t  is the density of nuclides 

that consist of the material of our interest at the specific 

region at time t. 

The general solution of Eq. (1) can be written as Eq. 

(2), which includes a matrix exponential. 
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where t0 denotes the initial time where we know the 

initial density 
0( )N t . 

 

2.1 CRAM 

 

CRAM is an approximation method for calculating 

the matrix exponential, based on the residue integration 

and the rational approximation. It is suitable for the 

problem in which all its eigenvalues of the matrix on 

exponent are on or close to the real axis of the same 

sign. The suitability of the CRAM to the depletion 

calculation has been well investigated. [3] Following 

the partial fraction decomposition form [3] of the K-th 

order CRAM, the equation (3) must be solved to 

calculate the matrix exponential. 
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where the term θk and αk are the pre-calculated 

constants that corresponds to the pole and residue of the 

k-th rational approximation term respectively. 
 

2.3 Jacobi Method and Its Parallel Implementation 

 

The typical burnup matrix is sparse; its row contains 

few entries below the order of hundreds, and most of 

their number is below 40. Therefore, row-wise 

parallelization is beneficial to the performance of the 

calculation over column-wise parallelization. The 

Jacobi method is capable of this parallelization because 

its row-wise calculation has no dependence on the value 

of each other within a step of iteration. 

For each order k, to solve the linear system 
( ) ( )

0( )k k

kA x tN=  for ( )kx , the Jacobi method is 

applied to k systems in parallel On each step of the 

Jacobi iteration, it processes each row by a thread 

within the thread block by iterating through a virtual 

‘chunk’ of the rows, of which its size is less than or 

equal to the thread block. This approach enables a 

simple thread-block-wise synchronization to be 

performed instead of multiple calls to the expensive 

device-wise synchronization. 

After a step of calculation is concluded, the following 

Eqs. (4)(5) are used to determine the convergence 

between two successive steps ( , )k ix and ( , 1)k ix + . 

 ( , 1) ( , ) ( , )| | | |,k i k i k i

relx xx + −  (4) 

 ( , 1) ( , ) | ,a

k i

b

i k

sx x + −   (5) 

where i is an index of the current step, 
rel  is a relative 

tolerance, and 
abs  is an absolute tolerance for the 
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convergence test. If Eq. (4) or Eq. (5) is satisfied, the 

solver assumes the vector ( )kx  has converged at step k. 

The results whether each row satisfied Eq. (4) or Eq. 

(5) are collected by the CUDA synchronization API 

‘__syncthreads_and()’, which returns a non-zero integer 

only when every thread inside the block sends the non-

zero integers. The maximum iteration count is set to 

1000, and the function ends if either the solution 

converged or the iteration count hit the limit.  

 

2.4 PWR Pin Cell Model 

 

A typical PWR fresh fuel pin cell is selected to 

validate the CRAM GPU module. The model is 

supplied from the example input in the user manual of 

the Monte Carlo neutron transport code McCARD [4]. 

Its geometric configuration and scales are specified in 

Fig. 1. 

 

 
Fig. 1. Geometric specification of the PWR pin cell model. 

 

The boundary condition of each side of the moderator 

is reflective. 

Table I describes the initial properties and conditions 

of the fresh fuel pin cell. 

 

Table I: Initial pin cell properties 

Material 

Fuel UO2 

Gap Air 

Cladding Zr 

Moderator H2O 

Temperature 

(K) 

Fuel, Gap, Cladding 870.00 

Moderator 585.22 

U-235 Enrichment (wt%) 3.36 

Boron Concentration (ppm) 1000 

Power Density (W/gHW) 36.875 

Power (MW) 3.54067 

Burnup time step (s) 86400 

 

Table II describes the initial configuration of the 

materials used in the fresh fuel pin cell input. Note that 

the depletion process is only applied to the UO2. 

 

Table II: Initial material configuration 

Material 
Density 

(g/cm3) 
Nuclide 

Weight Fraction 

(%) 

UO2 10.176 

O-16 11.8500 

U-234 0.0237 

U-235 2.9618 

U-238 85.1645 

Air 0.001 O-16 100.0000 

Zr 6.550 

Zr-90 51.4500 

Zr-91 11.2200 

Zr-92 17.1500 

Zr-94 17.3800 

Zr-96 2.8000 

H2O 0.700 

H-1 11.1900 

O-16 88.8100 

B-10 0.0020 

B-11 0.0080 

 

The depletion matrix was constructed based on the 

reaction rates in the fuel pin, which were calculated by 

the McCARD. Based on the decay library supplied with 

the McCARD distribution by default, the depletion 

matrix includes 1695 nuclides. Figure 2 shows the 

distribution of non-zero entries in the constructed 

depletion matrix.  

 

 
Fig. 2. Sparsity pattern of the depletion matrix generated from 

the PWR pin cell model 

 

The variable ‘nz’ on Fig. 2 denotes the number of 

non-zero entries of this matrix. The matrix is extremely 

sparse, only having 0.99% of the non-zero terms. 

Therefore, the memory for this matrix can be saved by 

storing the matrix into a sparse format. For example, by 

converting the matrix into the CSR format, which 

compresses a matrix into three arrays, the 21.9 MB of 

memory required for the full double matrix can be 

reduced to 340 KB, saving 98.5% of the memory space. 

 

3. Validation Results 
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In this section, the implemented GPU solver is 

validated by the reference solutions. Only the range 

where the atomic number density is greater than 

1.0 #/cm3 = 10-24 #/barn/cm are considered. This is for 

including Eq. (5) as the convergence criteria, which can 

reduce the step needed to converge the solution in the 

range of our interest while neglecting the nuclides of 

density that are physically meaningless. 

 

4.1 Reference Solutions 

 

As reference solutions, two solutions based on 

different methods were calculated to validate the GPU 

depletion module. One is a 16th-order CRAM solver 

run on a CPU, in which its linear solver uses Gaussian 

elimination. The solver is provided by the McCARD as 

an option. This result will be notated as ‘CPU CRAM’ 

in this paper. The other is a solution calculated on 

MATLAB®  with 100 significant digits using Symbolic 

Math Toolbox™. The built-in function 'expm', which 

internally utilizes the Padé approximation with the 

scaling and squaring technique, was used to calculate 

the solution. [6] This solution is expected to be the most 

accurate result. 

The relative error of the CPU CRAM to the 

MATLAB expm solution is plotted on Fig. 3. 

 

 
Fig. 3. Relative error of the traditional matrix exponential 

method and CRAM implmentation on CPU, compared to the 

MATLAB expm solution. 

 

Above the density 1.0 #/cm3, the CPU CRAM has a 

relative error of 9.00×10-7 at maximum, and most errors 

are below the order of 10-10. 

 

4.2 Relative Tolerance 

 

First, the relative tolerance εrel in Eq. (4) used by the 

GPU Jacobi CRAM was varied and tested. Figure 4 

shows the relative error of the solutions compared to the 

CPU CRAM using the Gaussian elimnation. The 

absolute tolerance εabs in Eq. (5) was not considered 

here, by setting the εabs
 = 0.  

 

 
Fig. 4. Relative error of the GPU Jacobi CRAM solutions, 

compared to the result from the CPU CRAM, depending on 

the relative tolerance. 

 

Regardless of the relative tolerance, the Jacobi solver 

calculated the result close to the CPU CRAM solver 

using the Gaussian elimination. Considering that the 

double-precision floating-point can only express its 

significant digits around 15 to 17, this indicates that two 

solvers calculated roughly equal solutions. 

Next, the Fig. 5 compares the results from the GPU 

Jacobi CRAM to the MATLAB expm solution. The 

solution from the CPU CRAM is also plotted. 

 

 
Fig. 5. Relative error of the GPU Jacobi CRAM solutions, 

compared to the MATLAB expm result, depending on the 

relative tolerance. 

 

The overall results from GPU Jacobi CRAM shared 

similar behavior with the result from the CPU CRAM. 

Compared to the EXPM, all relative tolerance 

conditions including the CPU CRAM gave a similar 

order of the maximum error, 9.00×10-7. 

 

4.3 Absolute Tolerance 

 

Next, the absolute tolerance εabs in Eq. (5) was varied, 

while the relative tolerance εrel in Eq. (4) was fixed to 

10-20 and 10-6, respectively. It is to validate that the use 

of the absolute tolerance will not significantly affect the 

accuracy of the solution inside the range of densities of 

our interest. 

Figure 6 shows the relative error of each conditions 

compared to the CPU CRAM using the Gaussian 

elimination. 
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Fig. 6. Relative error of the GPU Jacobi CRAM solutions, 

compared to the result from the CPU CRAM, depending on 

the absolute tolerance. 

 

Condition 0abs = , marked with the blue circles in 

Fig. 6, is the same condition as the case tested in section 

4.2, which is also marked with the blue circles in Fig. 4. 

Inside the given range, almost all solutions by the 

Jacobi CRAM gave the same relative error, except the 

condition in which 61. 100rel −=   and 151.0 10abs −= . 

Figure 7 shows the relative error of each conditions 

compared to the EXPM. 

 

 
Fig. 7. Relative error of the GPU Jacobi CRAM solutions, 

compared to the MATLAB expm result, depending on the 

absolute tolerance. 

 

Although the condition in which 61. 100rel −=   and 

151.0 10abs −=  gave the less accurate result in Fig. 6, 

the order of its relative error to the MATLAB expm is 

similar to that of other convergence conditions around 

the density where discrepancy happened. 

 

4. Performance Analysis 

 

Two main parameters were varied to determine their 

optimum values in the GPU CRAM depletion module: 

the convergence conditions in Table III and thread 

number per block. The thread block number determines 

both the speed and occupancy of the GPU. Low GPU 

occupancy means the device is underutilized, but it also 

implies that more solvers can run on the device 

simultaneously. The performance tests in this section 

were conducted on the system described in Table III. 

 
Table III: Computing system for profiling 

CPU 13th Gen Intel®  Core™ i5-13500 2.50GHz 

RAM 32.0 GB 

GPU NVIDIA GeForce RTX 4070 

VRAM 12.0 GB 

OS Windows 10 19044.3208 

 

4.1 Convergence Check Tolerance 

 

Table IV is about the number of steps required for 

each Jacobi solver to decide whether the solution of 8 

CRAM-induced systems has converged. 

 
Table IV: Convergence step used in Jacobi CRAM 
k 1 2 3 4 5 6 7 8 

abs  
rel          

0 

1.0E-06 109 113 115 118 120 121 123 122 

1.0E-10 109 113 115 118 120 121 123 122 

1.0E-20 109 113 115 118 120 121 123 122 

1.0E-25 

1.0E-06 15 16 16 17 17 18 18 18 

1.0E-10 16 16 16 17 17 18 18 18 

1.0E-20 19 19 19 19 19 19 19 20 

1.0E-15 

1.0E-06 15 15 15 15 15 15 16 16 

1.0E-10 16 16 16 16 16 17 17 17 

1.0E-20 19 19 19 19 19 19 19 20 

 

The variable k denotes the index of the eight matrices 

generated from the 16th-order CRAM. Introducing the 

absolute tolerance in any order decreased the step 

needed for the calculation. Meanwhile, the change in 

the relative tolerance had little effect on the 

convergence step count. 

Figure 6 shows the average runtime of completing a 

single CRAM calculation for the given input, with its 

convergence condition changing. Each calculation was 

repeated ten times. 
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Fig. 8. Total runtime to complete a whole calculation with 

thread block of size 1024, with regards to the convergence 

conditions. Time spent for memory copy is included. 

 

As expected from the number of steps in Table IV, 

the existence of the absolute tolerance had a noticeable 

effect on the performance, while the difference in the 

relative tolerance made only a slight change to the 

runtime. 

 

4.2 GPU Thread Usage and Occupancy 

 

As mentioned in section 2.3, the module utilizes k/2 

thread blocks for the k-th order CRAM, and each thread 

block solves one linear system by the Jacobi method. 

Selecting an optimal number of threads per block will 

determine the performance and scalability of this solver. 

More threads per block will reduce the runtime of the 

parallel calculation, but each solver will consume more 

registers and resources, decreasing the possible 

occupancy achievable on the GPU. On the other hand, a 

smaller block size implies that more work is allocated 

to each thread, possibly deteriorating the performance 

of the solver on one individual problem. However, this 

will increase the available resources on the GPU, thus 

processing more inputs per device in parallel. 

Table V summarizes the total runtime taken to finish 

one time step of depletion calculation, the theoretical 

occupancy of the GPU, and the actual occupancy 

achieved with regards to the thread number. The 

performance test was conducted based on the 

convergence condition 201.0 10rel −=  and 

251.0 10abs −= . 

 
Table V: Runtime and GPU occupancy 

Thread 

number 

Runtime 

(ms) 

GPU 
Theoretical 

Occupancy 
(%) 

GPU 
Achieved 

Occupancy 
(%) 

Estimated 
Runtime 

per region 
(ms) 

1 75.469 50.0 2.08 3.145 

16 10.867 50.0 2.08 0.453 

32 6.195 50.0 2.08 0.258 

64 3.623 83.3 4.17 0.181 

128 2.219 83.3 8.33 0.222 

256 1.475 83.3 16.67 0.295 

512 1.438 66.7 33.33 0.719 

1024 1.326 66.7 66.67 1.326 

 

The thread numbers over 256 do not have a 

significant difference in performance between each 

other, but their occupancies differ. Using 1024 threads 

filled the theoretical occupancy of 66%. It implies that 

more kernels cannot be processed simultaneously on 

this GPU, and the usage of the GPU is limited to 66% 

of its full ability. Meanwhile, with 256 threads, a 

similar performance can be achieved compared to the 

case of 1024 threads while deriving a higher theoretical 

occupancy and lower achieved occupancy, which 

makes four more kernels to be processed 

simultaneously. Assuming that all the possible 

resources are allocated to GPU kernels to run them 

simultaneously, therefore fully achieving the theoretical 

occupancy, the best result is expected from the case of 

64 threads, whose effective runtime takes 0.181 ms per 

region. However, using fewer threads lower than 64 

decreased the theoretical occupancy, achieving the 

same occupancy as the case of 32 threads, and their 

effective runtimes for each region deteriorated. 

 

5. Conclusions 

 

The depletion solver based on the CRAM and the 

Jacobi method was implemented. When setting the 

convergence criteria of the iterative solver in the 

CRAM, a strict relative tolerance is recommended in 

that they don’t significantly affect the performance. The 

existence of the absolute tolerance helped to reduce the 

iteration step needed to converge the solution by 

skipping the convergence test for the density below the 

scale of our interest. If the available GPU resources are 

limited, assigning more threads per solver was 

beneficial to increase individual performance. A low 

number of threads, at least over 32, is recommended to 

reduce the effective runtime of each depletion 

calculation over the multiple depletion regions. 
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