
Proceedings of the Reactor Physics Asia 2023 (RPHA2023) Conference

Gyeongju, Korea, October 24-26, 2023

Development of GPU Based Depletion Module by CRAM

Woo Kyoung Ko and Hyung Jin Shim

Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
*Corresponding author: shimhj@snu.ac.kr

1. Introduction

Parallel computation on GPU has been receiving

attention from the researchers on the reactor physics

computations. It is suited to problems where the same

calculation is applied to numerous numbers of data. As

well as the Monte Carlo neutron transport in which

neutrons are simulated in parallel based on the

Boltzmann transport equation, the depletion calculation

also fits on this property in that numerous depletion

areas are processed by solving the burnup equation.

There has been research [1,2] to apply the GPU

parallel computation to the depletion calculation.

Heimlich et al. [2] developed a GPU depletion solver

based on the two variants of Runge-Kutta methods with

optimum fine step calculation. Kim et al. [1] developed

a scalable GPU depletion solver based on the

Chebyshev rational approximation method (CRAM) [3]

with a Gauss-Seidel linear solver. Still, there is no

research in which both the depletion region and the

depletion calculation of each region are parallelized.

In this paper, a depletion module on GPU based on

the matrix exponential by the CRAM is introduced and

validated. The purpose of this research is to find what

parallelism condition gives the optimum result for the

solver on GPU when both the depletion regions and the

equation solver per region are parallelized. The Jacobi

method, in which the calculation can be easily

parallelized, is used to solve linear systems that appear

in the CRAM calculation.

2. Model and Methods

In this section, the methods applied to the depletion

module are introduced. Then the model used for the

validation of the module is described.

2.1 Matrix Exponential Method

The burnup equation is a master equation that

describes the depletion of a material over time by the

decay of the consisting nuclides and the reaction with

the neutron, which can be written as Eq. (1).

()

(),
dN t

N t
dt

= A (1)

where t is the time, A is a burnup matrix in which the

decay constant and the reaction rates of each nuclide are

included, and the vector ()N t is the density of nuclides

that consist of the material of our interest at the specific

region at time t.

The general solution of Eq. (1) can be written as Eq.

(2), which includes a matrix exponential.

0 0() (),tN t t e N t+ = A (2)

where t0 denotes the initial time where we know the

initial density
0()N t .

2.1 CRAM

CRAM is an approximation method for calculating

the matrix exponential, based on the residue integration

and the rational approximation. It is suitable for the

problem in which all its eigenvalues of the matrix on

exponent are on or close to the real axis of the same

sign. The suitability of the CRAM to the depletion

calculation has been well investigated. [3] Following

the partial fraction decomposition form [3] of the K-th

order CRAM, the equation (3) must be solved to

calculate the matrix exponential.

1

0 0 0

/

1

0

2

() () 2Re(() ()),t

k k

K

k

N N Ne t t t t   −

=

+ −A
A I (3)

where the term θk and αk are the pre-calculated

constants that corresponds to the pole and residue of the

k-th rational approximation term respectively.

2.3 Jacobi Method and Its Parallel Implementation

The typical burnup matrix is sparse; its row contains

few entries below the order of hundreds, and most of

their number is below 40. Therefore, row-wise

parallelization is beneficial to the performance of the

calculation over column-wise parallelization. The

Jacobi method is capable of this parallelization because

its row-wise calculation has no dependence on the value

of each other within a step of iteration.

For each order k, to solve the linear system
() ()

0()k k

kA x tN= for ()kx , the Jacobi method is

applied to k systems in parallel On each step of the

Jacobi iteration, it processes each row by a thread

within the thread block by iterating through a virtual

‘chunk’ of the rows, of which its size is less than or

equal to the thread block. This approach enables a

simple thread-block-wise synchronization to be

performed instead of multiple calls to the expensive

device-wise synchronization.

After a step of calculation is concluded, the following

Eqs. (4)(5) are used to determine the convergence

between two successive steps (,)k ix and (, 1)k ix + .

 (, 1) (,) (,)| | | |,k i k i k i

relx xx + − (4)

 (, 1) (,) | ,a

k i

b

i k

sx x + −  (5)

where i is an index of the current step,
rel is a relative

tolerance, and
abs is an absolute tolerance for the

Proceedings of the Reactor Physics Asia 2023 (RPHA2023) Conference

Gyeongju, Korea, October 24-26, 2023

convergence test. If Eq. (4) or Eq. (5) is satisfied, the

solver assumes the vector ()kx has converged at step k.

The results whether each row satisfied Eq. (4) or Eq.

(5) are collected by the CUDA synchronization API

‘__syncthreads_and()’, which returns a non-zero integer

only when every thread inside the block sends the non-

zero integers. The maximum iteration count is set to

1000, and the function ends if either the solution

converged or the iteration count hit the limit.

2.4 PWR Pin Cell Model

A typical PWR fresh fuel pin cell is selected to

validate the CRAM GPU module. The model is

supplied from the example input in the user manual of

the Monte Carlo neutron transport code McCARD [4].

Its geometric configuration and scales are specified in

Fig. 1.

Fig. 1. Geometric specification of the PWR pin cell model.

The boundary condition of each side of the moderator

is reflective.

Table I describes the initial properties and conditions

of the fresh fuel pin cell.

Table I: Initial pin cell properties

Material

Fuel UO2

Gap Air

Cladding Zr

Moderator H2O

Temperature

(K)

Fuel, Gap, Cladding 870.00

Moderator 585.22

U-235 Enrichment (wt%) 3.36

Boron Concentration (ppm) 1000

Power Density (W/gHW) 36.875

Power (MW) 3.54067

Burnup time step (s) 86400

Table II describes the initial configuration of the

materials used in the fresh fuel pin cell input. Note that

the depletion process is only applied to the UO2.

Table II: Initial material configuration

Material
Density

(g/cm3)
Nuclide

Weight Fraction

(%)

UO2 10.176

O-16 11.8500

U-234 0.0237

U-235 2.9618

U-238 85.1645

Air 0.001 O-16 100.0000

Zr 6.550

Zr-90 51.4500

Zr-91 11.2200

Zr-92 17.1500

Zr-94 17.3800

Zr-96 2.8000

H2O 0.700

H-1 11.1900

O-16 88.8100

B-10 0.0020

B-11 0.0080

The depletion matrix was constructed based on the

reaction rates in the fuel pin, which were calculated by

the McCARD. Based on the decay library supplied with

the McCARD distribution by default, the depletion

matrix includes 1695 nuclides. Figure 2 shows the

distribution of non-zero entries in the constructed

depletion matrix.

Fig. 2. Sparsity pattern of the depletion matrix generated from

the PWR pin cell model

The variable ‘nz’ on Fig. 2 denotes the number of

non-zero entries of this matrix. The matrix is extremely

sparse, only having 0.99% of the non-zero terms.

Therefore, the memory for this matrix can be saved by

storing the matrix into a sparse format. For example, by

converting the matrix into the CSR format, which

compresses a matrix into three arrays, the 21.9 MB of

memory required for the full double matrix can be

reduced to 340 KB, saving 98.5% of the memory space.

3. Validation Results

Proceedings of the Reactor Physics Asia 2023 (RPHA2023) Conference

Gyeongju, Korea, October 24-26, 2023

In this section, the implemented GPU solver is

validated by the reference solutions. Only the range

where the atomic number density is greater than

1.0 #/cm3 = 10-24 #/barn/cm are considered. This is for

including Eq. (5) as the convergence criteria, which can

reduce the step needed to converge the solution in the

range of our interest while neglecting the nuclides of

density that are physically meaningless.

4.1 Reference Solutions

As reference solutions, two solutions based on

different methods were calculated to validate the GPU

depletion module. One is a 16th-order CRAM solver

run on a CPU, in which its linear solver uses Gaussian

elimination. The solver is provided by the McCARD as

an option. This result will be notated as ‘CPU CRAM’

in this paper. The other is a solution calculated on

MATLAB® with 100 significant digits using Symbolic

Math Toolbox™. The built-in function 'expm', which

internally utilizes the Padé approximation with the

scaling and squaring technique, was used to calculate

the solution. [6] This solution is expected to be the most

accurate result.

The relative error of the CPU CRAM to the

MATLAB expm solution is plotted on Fig. 3.

Fig. 3. Relative error of the traditional matrix exponential

method and CRAM implmentation on CPU, compared to the

MATLAB expm solution.

Above the density 1.0 #/cm3, the CPU CRAM has a

relative error of 9.00×10-7 at maximum, and most errors

are below the order of 10-10.

4.2 Relative Tolerance

First, the relative tolerance εrel in Eq. (4) used by the

GPU Jacobi CRAM was varied and tested. Figure 4

shows the relative error of the solutions compared to the

CPU CRAM using the Gaussian elimnation. The

absolute tolerance εabs in Eq. (5) was not considered

here, by setting the εabs
 = 0.

Fig. 4. Relative error of the GPU Jacobi CRAM solutions,

compared to the result from the CPU CRAM, depending on

the relative tolerance.

Regardless of the relative tolerance, the Jacobi solver

calculated the result close to the CPU CRAM solver

using the Gaussian elimination. Considering that the

double-precision floating-point can only express its

significant digits around 15 to 17, this indicates that two

solvers calculated roughly equal solutions.

Next, the Fig. 5 compares the results from the GPU

Jacobi CRAM to the MATLAB expm solution. The

solution from the CPU CRAM is also plotted.

Fig. 5. Relative error of the GPU Jacobi CRAM solutions,

compared to the MATLAB expm result, depending on the

relative tolerance.

The overall results from GPU Jacobi CRAM shared

similar behavior with the result from the CPU CRAM.

Compared to the EXPM, all relative tolerance

conditions including the CPU CRAM gave a similar

order of the maximum error, 9.00×10-7.

4.3 Absolute Tolerance

Next, the absolute tolerance εabs in Eq. (5) was varied,

while the relative tolerance εrel in Eq. (4) was fixed to

10-20 and 10-6, respectively. It is to validate that the use

of the absolute tolerance will not significantly affect the

accuracy of the solution inside the range of densities of

our interest.

Figure 6 shows the relative error of each conditions

compared to the CPU CRAM using the Gaussian

elimination.

Proceedings of the Reactor Physics Asia 2023 (RPHA2023) Conference

Gyeongju, Korea, October 24-26, 2023

Fig. 6. Relative error of the GPU Jacobi CRAM solutions,

compared to the result from the CPU CRAM, depending on

the absolute tolerance.

Condition 0abs = , marked with the blue circles in

Fig. 6, is the same condition as the case tested in section

4.2, which is also marked with the blue circles in Fig. 4.

Inside the given range, almost all solutions by the

Jacobi CRAM gave the same relative error, except the

condition in which 61. 100rel −=  and 151.0 10abs −= .

Figure 7 shows the relative error of each conditions

compared to the EXPM.

Fig. 7. Relative error of the GPU Jacobi CRAM solutions,

compared to the MATLAB expm result, depending on the

absolute tolerance.

Although the condition in which 61. 100rel −=  and

151.0 10abs −= gave the less accurate result in Fig. 6,

the order of its relative error to the MATLAB expm is

similar to that of other convergence conditions around

the density where discrepancy happened.

4. Performance Analysis

Two main parameters were varied to determine their

optimum values in the GPU CRAM depletion module:

the convergence conditions in Table III and thread

number per block. The thread block number determines

both the speed and occupancy of the GPU. Low GPU

occupancy means the device is underutilized, but it also

implies that more solvers can run on the device

simultaneously. The performance tests in this section

were conducted on the system described in Table III.

Table III: Computing system for profiling

CPU 13th Gen Intel® Core™ i5-13500 2.50GHz

RAM 32.0 GB

GPU NVIDIA GeForce RTX 4070

VRAM 12.0 GB

OS Windows 10 19044.3208

4.1 Convergence Check Tolerance

Table IV is about the number of steps required for

each Jacobi solver to decide whether the solution of 8

CRAM-induced systems has converged.

Table IV: Convergence step used in Jacobi CRAM
k 1 2 3 4 5 6 7 8

abs
rel

0

1.0E-06 109 113 115 118 120 121 123 122

1.0E-10 109 113 115 118 120 121 123 122

1.0E-20 109 113 115 118 120 121 123 122

1.0E-25

1.0E-06 15 16 16 17 17 18 18 18

1.0E-10 16 16 16 17 17 18 18 18

1.0E-20 19 19 19 19 19 19 19 20

1.0E-15

1.0E-06 15 15 15 15 15 15 16 16

1.0E-10 16 16 16 16 16 17 17 17

1.0E-20 19 19 19 19 19 19 19 20

The variable k denotes the index of the eight matrices

generated from the 16th-order CRAM. Introducing the

absolute tolerance in any order decreased the step

needed for the calculation. Meanwhile, the change in

the relative tolerance had little effect on the

convergence step count.

Figure 6 shows the average runtime of completing a

single CRAM calculation for the given input, with its

convergence condition changing. Each calculation was

repeated ten times.

Proceedings of the Reactor Physics Asia 2023 (RPHA2023) Conference

Gyeongju, Korea, October 24-26, 2023

Fig. 8. Total runtime to complete a whole calculation with

thread block of size 1024, with regards to the convergence

conditions. Time spent for memory copy is included.

As expected from the number of steps in Table IV,

the existence of the absolute tolerance had a noticeable

effect on the performance, while the difference in the

relative tolerance made only a slight change to the

runtime.

4.2 GPU Thread Usage and Occupancy

As mentioned in section 2.3, the module utilizes k/2

thread blocks for the k-th order CRAM, and each thread

block solves one linear system by the Jacobi method.

Selecting an optimal number of threads per block will

determine the performance and scalability of this solver.

More threads per block will reduce the runtime of the

parallel calculation, but each solver will consume more

registers and resources, decreasing the possible

occupancy achievable on the GPU. On the other hand, a

smaller block size implies that more work is allocated

to each thread, possibly deteriorating the performance

of the solver on one individual problem. However, this

will increase the available resources on the GPU, thus

processing more inputs per device in parallel.

Table V summarizes the total runtime taken to finish

one time step of depletion calculation, the theoretical

occupancy of the GPU, and the actual occupancy

achieved with regards to the thread number. The

performance test was conducted based on the

convergence condition 201.0 10rel −= and

251.0 10abs −= .

Table V: Runtime and GPU occupancy

Thread

number

Runtime

(ms)

GPU
Theoretical

Occupancy
(%)

GPU
Achieved

Occupancy
(%)

Estimated
Runtime

per region
(ms)

1 75.469 50.0 2.08 3.145

16 10.867 50.0 2.08 0.453

32 6.195 50.0 2.08 0.258

64 3.623 83.3 4.17 0.181

128 2.219 83.3 8.33 0.222

256 1.475 83.3 16.67 0.295

512 1.438 66.7 33.33 0.719

1024 1.326 66.7 66.67 1.326

The thread numbers over 256 do not have a

significant difference in performance between each

other, but their occupancies differ. Using 1024 threads

filled the theoretical occupancy of 66%. It implies that

more kernels cannot be processed simultaneously on

this GPU, and the usage of the GPU is limited to 66%

of its full ability. Meanwhile, with 256 threads, a

similar performance can be achieved compared to the

case of 1024 threads while deriving a higher theoretical

occupancy and lower achieved occupancy, which

makes four more kernels to be processed

simultaneously. Assuming that all the possible

resources are allocated to GPU kernels to run them

simultaneously, therefore fully achieving the theoretical

occupancy, the best result is expected from the case of

64 threads, whose effective runtime takes 0.181 ms per

region. However, using fewer threads lower than 64

decreased the theoretical occupancy, achieving the

same occupancy as the case of 32 threads, and their

effective runtimes for each region deteriorated.

5. Conclusions

The depletion solver based on the CRAM and the

Jacobi method was implemented. When setting the

convergence criteria of the iterative solver in the

CRAM, a strict relative tolerance is recommended in

that they don’t significantly affect the performance. The

existence of the absolute tolerance helped to reduce the

iteration step needed to converge the solution by

skipping the convergence test for the density below the

scale of our interest. If the available GPU resources are

limited, assigning more threads per solver was

beneficial to increase individual performance. A low

number of threads, at least over 32, is recommended to

reduce the effective runtime of each depletion

calculation over the multiple depletion regions.

REFERENCES

[1] K.M. Kim, N. Choi, H.G. Lee, H.G. Joo, Practical

methods for GPU-based whole-core Monte Carlo depletion

calculation, Nuclear Engineering and Technology, Vol 55, p.

2516, 2023.

[2] A. Heimlich, F.C. Silva, A.S. Martinez, Fast and accurate

GPU PWR depletion calculation, Annals of Nuclear Energy,

Vol 117, p. 165, 2018.

[3] M. Pusa, Higher-Order Chebyshev Rational

Approximation Method and Application to Burnup Equations,

Nuclear Science and Engineering, Vol 182, p. 297, 2016.

[4] H.J. Shim, B.S. Han, J.S. Jung, H.J. Park, C.H. Kim,

MCCARD: MONTE CARLO CODE FOR ADVANCED

REACTOR DESIGN AND ANALYSIS, Nuclear Engineering

and Technology. Vol 44, p. 161, 2012.

[5] H.G. Lee, H.G. Joo, Optimization of the GPU-Based

Depletion Solver in nTRACER, Transactions of the Korean

Nuclear Society Autumn Meeting, p 17–18, 2020.

[6] Al-Mohy, A. H. and N. J. Higham, A new scaling and

squaring algorithm for the matrix exponential, SIAM Journal

on Matrix Analysis and Applications, Vol 31, No. 3 p. 970,

2009.

