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1. Introduction 

 
Nuclear reactor dynamics is a complex phenomenon 

involving Core Neutronics (CN), Thermal Hydraulics 

(TH) and Fuel Performance (FP) modeling. Nuclear 

design requires this Multiphysics analysis to be 

performed to enhance safety and optimize fuel 

consumption. CN is responsible for capturing alterations 

in fuel composition and power distribution within the 

core. TH, on the other hand, deals with the transfer of 

heat from the cladding wall to the coolant. The FP 

analysis delves into the temporal behavior of fuel rods 

and the heat transfer from the fuel centerline to the outer 

cladding. Notably, no single code possesses the capacity 

to comprehensively model all these phenomena.  

To tackle these challenges, Multiphysics coupling 

modules have been devised, allowing for the 

simultaneous study of various physics phenomena by 

incorporating insights from other physics models. Of all 

the various physics models, the FP model stands out as 

one of the most resource-intensive in terms of both time 

and memory consumption. Within the Multiphysics 

framework, it is the FP model that accounts for the 

dynamic gap heat conductance from the pellet to the 

cladding. This dynamic gap has a significant impact on 

a multitude of safety parameters, as it models the 

mechanical interactions between the pellet and the 

cladding. 

Efforts have been undertaken to introduce surrogate 

models for FP in the context of depletion and transient 

analysis  [1, 2]. The objective of this research is to 

develop a deep learning (DL) surrogate model tailored 

to replace the FP module within the Multi Physics Core 

(MPCORE) coupling code developed at Ulsan National 

Institute of Science and Technology (UNIST). Presently, 

the model is equipped to execute Hot Zero Power 

(HZP) Rod Ejection Accident (REA) simulations at the 

Beginning of Cycle (BOC). Notably, the surrogate 

model's construction does not account for the burnup 

effect, resulting in improved results due to the uniform 

initial burnup across all fuel rods. 

 

2. Methods and Results 

 

2.1 MPCORE Framework 

 

MPCORE is Multiphysics external coupling 

framework developed at CORE lab UNIST [3]. The 

purpose of this framework is to couple codes modeling 

different physical phenomena and give accurate 

feedback to other models. Among the coupled codes, 

CN code is RAST-K (RK) [4], CTH1D and CTF [5] are 

two TH codes and FRAPTRAN [6] is the only FP code 

used for transient analysis. FP code FRAPTRAN used 

for transient analysis calculate the fuel pellet, cladding 

temperatures, gap width and gap conductance. Among 

the RK-CTH1D-FP coupled simulation, approximately 

70% of the time is taken by FP.   
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Fig. 1. Proposed MPCORE model replace FRAPTRAN with 

DL Model. 

 

Deep Learning (DL) trained surrogate model as FP 

code is proposed in this research for Multiphysics 

simulations. Fig. 1 illustrates the working of MPCORE. 

The dotted line show the intended inclusion of DL 

model in MPCORE. 

 

2.2 Reactor Description 

 

The dataset is prepared for 10 s HZPREA transient 

analysis at BOC for Watts Bar reactor. Reactor consist 

of 193 fuel assemblies with 8 different kinds of control 

rods. It is 17x17 fuel assembly with 25 guide tubes and 

264 fuel rods (Westinghouse design). Material 

specification is given in the benchmark document [7]. D 

control bank is withdrawn 127 steps to introduce the 

positive reactivity of $1.2. D bank position and core is 

octal symmetric. To remove this symmetric effect, data 

for only 1 octant fuel rods is obtained. Complete core 

and the octant selected are shown in Fig. 2. Complete 

reactor core consists of 50952 fuel rods but the selected 

octant consist of 6447 fuel rods. The data is split into 

70% training data (4513 rods), 15% validation data 

(967 rods) and 15% testing data (967 rods). 
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Fig. 2. Complete core and selected octant for fuel rod data. 

 

2.3 Deep Learning Model 

 

Single fuel rod is composed of multiple axial meshes 

(10 considered for this study) that are dependent on 

each other (spatial sequence). Fuel rod behavior at any 

time depends on the previous time history of fuel rod 

(temporal sequence). Convolutional neural network 

(CNN) is used for spatial sequence prediction and 

LSTM (Long-Short Term Memory) is used for temporal 

sequence information. Input data comprises of linear 

power provided by RK, while film heat transfer 

coefficient (fHTC), coolant temperature and coolant 

pressure are provided by TH code. Gap width as 

predicted by FP code is used as an input for the next 

step. Gap width is dynamic from the start of transient 

for uncertainty cases, therefore, it is also used as an 

input feature. Input data is provided to time distributed 

layer of CNN. CNN data is further fed to flatten layer 

before LSTM layer. LSTM works on the convoluted 

data and find the chronological order between the 

sequences. The network developed is shown in Fig. 3. 

 

 
 

Fig. 3. DL Model trained for FP modeling. 

 

2.4 Parameters for DL model 

 

Adam optimizer is used in this study with learning 

rate of 0.001 and batch size of 32. Mean Squared error 

(MSE) is taken as the loss metric and Peak Signal to 

Noise Ratio (PSNR) is taken as evaluation metric. The 

formula for MSE is given as: 

    
m 1 n 1

2

i 0 j 0

1
M .SE I i, j K i, j

mn

 

 

     (2.1) 

Where m=92 the number of time steps for 1 fuel rod, 

n=70 the number of output variables at any time step (7 

outputs for each spatial mesh). I(i,j) is the original result 

as given by the FRAPTRAN code while K(i,j) is the 

predicted value from DL model. 

PSNR is calculated as: 

 

2

I
10

MAX
PSNR 10.log .

MSE

 
  

 
 (2.2) 

MAXI is the maximum value of any single output 

variable at any time step. MSE is the one given by (1). 

Different value of MSE and PSNR values are obtained 

for each fuel rod. 

 

2.5 Best model selection 

 

General architecture of the DL is shown in Fig. 3. 

The number of layers that can be used for spatial 

sequence (CNN) or temporal sequence (LSTM) can 

vary. The type of models and their evaluation metric for 

50 epochs is shown in Table I. The table shows the 

number of layers of each type of neural network. 

  
Table I: Layers selection for best model. 

Model CNN LSTM Dense PSNR 

Simple 2 1 1 48.22 

First 3 1 1 34.36 

Second 2 1 2 19.62 

Third 2 2 1 56.58 

 

Best model is obtained for 2 CNN, 2 LSTM and 1 

dense layer. 50 epochs were used to test each variant, so 

the model that performed badly might perform better for 

more epochs. Testing with more epochs for each variant 

is not computationally feasible. The best three models 

obtained from hyper parameter selection search are 

shown in Table II.  

  
Table II. Hyper parameter optimization. 

Model Activation filters/

Units 

Learnin

g rate 

Batch 

Size 

Loss 

First relu/tanh,re

lu/sigmoid 

64/512 0.001 32 2.18e-06 

Secon

d 

relu/tanh/si

gmoid 

64/256 0.001 32 2.29e-06 

Third tanh/tanh/ta

nh 

64/256 0.001 16 4.06e-06 

 

The best model is selected with minimum MSE value. 

 

2.6 Results 

 

The model is executed for 350 epochs and the best 

model with minimum loss is obtained at 39 epoch. The 

results obtained for MSE and PSNR for the model are 

shown in Table III. PSNR metrics is better metrics to 

evaluate the image quality. As the value becomes higher 

the quality of the predicted image closely resembles the 

original one. 
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Table III. Results for the best model 

Data Training Validation Testing 

MSE 1.81e-06 2.18e-06 2.12e-06 

PSNR 65.21 65.02 64.88 

 

Results obtained for train, test and validation data is 

in the same range that shows that the model is not over 

fit for the training data. The loss curve for the training 

and validation data is shown in Fig. 4. Evaluation metric 

of PSNR is also plotted with the number of epochs. 

 

  
(a)  (b)  

Fig. 4. Fuel rods gap distribution (a) Loss curve MSE with 

epochs (b) Evaluation metric PSNR. 

 

The best model is selected with the smallest loss 

value. The histogram of PSNR values for all training, 

validation and testing fuel rods are shown in Fig 5. 

Minimum value of PSNR obtained for single fuel rod in 

training, validation and testing data is 56.08, 54.18 and 

51.17 respectively. Maximum value of PSNR obtained 

for single fuel rod in training, validation and testing data 

is 73.22, 72.76 and 72.96 respectively. 

 

  
(a)  (b)  

Fig. 5. Histogram of PSNR values (a) training and validation 

data (b) testing data. 

  

The MSE value obtained for all the predicted value is 

shown in Table IV. 

  
Table IV. MSE value for parameters 

Data Training Validation Testing 

Fuel centerline 3.70e-06 2.80e-06 4.10e-06 

Fuel surface 3.30e-06 1.50e-06 3.80e-06 

Doppler fuel 5.60e-06 6.20e-06 6.70e-06 

Clad inner 2.40e-06 3.60e-06 2.40e-06 

Clad outer 2.10e-06 3.20e-06 1.80e-06 

gap HTC 1.10e-06 2.30e-06 2.50e-06 

Gap width 2.20e-07 2.30e-07 3.50e-07 

 

Uniform distribution of gap width is used during the 

data generation step, but the power is not following the 

uniform distribution. More rapid change in power is 

observed near the rod withdrawal assemblies. Uniform 

distribution in all the input parameters may further 

increase the PSNR. Quantile or power transformation 

can be used at the preprocessing step for uniform 

distribution of all input parameters. At present, the input 

is only scaled between 0-1. Power transformation may 

be applied in future to increase the model accuracy. 

The linear power input and output trends for 1 sample 

rod, PSNR value of 68.0, is shown in Fig. 8. Gap width 

slightly increases in the start for some cases due to 

densification and will keep on decreasing for rest of the 

transient time. The output shows the actual (solid line) 

and predicted (dashed line) results for each axial mesh 

from 1 (bottom of fuel rod) to 10 (top of the fuel rod). 

 

  

(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Fig. 6. Qualitative result for single fuel rods gap distribution; 

Input feature (dotted: actual) {(a) linear power}; Output 

features (solid line: actual, dotted line: predicted) {(b) – fuel 

centerline temperature (c) fuel surface temperature (d) doppler 

fuel temperature (e) cladding inner surface temperature (f) 

cladding outer surface temperature (g) gap heat transfer 

coefficient (h) gap width} 

     

Gap HTC keep on increasing with time as the gap 

closes. Fuel temperatures (centerline, doppler, surface) 

also keep on increasing with time. The axial meshes are 

numbered from bottom to top. Cladding outer 

temperature is provided to TH module while doppler 

fuel temperature is provided to CN module. Other 

parameters are used in next step modeling and output 
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comparison. Thus, the present surrogate model will 

completely replace the FP module of MPCORE. 

Most of the parameter values are in well agreement 

with the actual rod results. Gap width is different for 

each rod in the start. All the temperature values start 

from 565oC because REA is starting from HZP. In HFP, 

the initial temperature for all the rods may be different 

as well. This model is trained for HZP REA transient so 

it cannot be used for HFP REA transient. 

 

3. Discussion 

 

It is evident from the results mentioned above that the 

neural network can perform all the tasks of FP code. 

Earlier researchers use surrogate models for gap 

conductance prediction. But in this research, one DL 

model taking the spatial and temporal sequence 

information and performed all tasks of FP (temperature, 

gap conductance, and gap width prediction). The safety 

parameters like fuel centerline temperature that were 

predicted by FP code can now be predicted accurately 

with DL model. For robust training of DL model, 

variable gap width is assumed for each fuel rod.  

In actual coupled analysis, linear power is dependent 

on FP code outputs. Coolant characteristics are also 

dependent on the gap conductance and cladding 

temperatures. Including surrogate model in MPCORE 

code will affect the output of CN and TH module. The 

change in RK and TH code will affect the behavior of 

surrogate model. So, the actual test of the DL trained 

surrogate model lies in the final inclusion of DL model 

in MPCORE.  

 

4. Conclusion 

 

The surrogate model in place of complex FP code is 

proposed in this research. Current MPCORE framework 

couples CN-TH-FP code, in which the FP code takes 

the highest computation time. This framework is not 

feasible for application of uncertainty propagation. This 

surrogate model can speed up the Multiphysics coupling 

methodology and UQ results can be obtained in 

reasonable time. The results obtained by the surrogate 

model is in close agreement with the actual results of 

FRAPTRAN FP code. BEPU approach requires the use 

of dynamic gap conductance with CN and TH codes. 

Surrogate model fulfils the criteria for BEPU in very 

less execution time. The trained model has well 

predicted the temperatures and gap characteristics for 

fuel rod.  

FP code used for training the DL model is 1.5D code. 

The code itself has some limitations and 3D codes (like 

BISON) can yield better results. DL trained model can, 

at best, be the replacement of 1.5D code. It means that 

DL models trained with higher dimensionality codes can 

easily surpass the accuracy of low dimensional codes in 

terms of accuracy. The time requirement of DL model is 

negligible as compared to the actual FP code. 

Many prospects open following this work. One of 

future work can be to replace the TH module in 

MPCORE with DL model. Using CNN2D and LSTM in 

place of whole core subchannel TH code may speedup 

the work manifolds. The resultant product will take 

similar time for Multiphysics modeling as taken by 

simple CN module. 
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