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1. Introduction

During the operation of the reactor, the neutron
flux distribution will be affected by the
introduction of external reactivity, which will
lead to the change of the power distribution
shape everywhere in the reactor core, and
ultimately affect the thermal and safety analysis
of the reactor core [1]. Therefore, in the core
physics calculation program it is essential to
simulate the time-dependent process, that is,
calculate the neutron dynamics. This calculation
can be performed by solving the point-reactor
dynamic equation or the neutron space-time
dynamic equation [2][3]. It is fast to solve the
point-reactor dynamic equation, but it cannot
simulate the spatial variation of neutron flux
density or power. The spatial variation of
neutron flux density or power can be accurately
described by solving the neutron space-time
dynamics equation. However, the computational
is of huge complexity, which cannot meet the
actual analysis needs such as reactor core design
and operation state simulation. Therefore, it is
significant to study the neutron dynamics
method with both accuracy and efficiency for
reactor operation and safety analysis.
In recent years, artificial neural network has
developed rapidly, but in the field of nuclear
core physics calculation, it still has not played a
similar application effect as other fields [4]. The
reason can be summarized as follows.
1) The calculation of the physical quantities
involved in the neutron spatiotemporal dynamics
is complex, which not only needs to solve the
time-dependent transport equation, but also
needs to consider the delayed neutron effect. It
would be important to decide the surrogate
object.
2) It is costly to obtain the training samples for
neural networks. Neural networks need to rely
on a large number of samples for training, and
the time and computing resources consumed by
sample acquisition also need to be considered as
a cost in the evaluation of new methods.
3) Black-box properties of neural networks. The
mathematical and physical information of the

problem itself is not involved in the training of
the network, and the extrapolation generalization
of the obtained network is poor.
In this paper, the prediction of time series
problem is transformed into the prediction of the
coefficients of a time-dependent function, where
the function is based on a spatial mesh, that is,
each mesh under investigation has a set of
coefficients to be predicted. According to these
coefficients, the power distribution at any time
can be obtained by substituting them into the
target time.

2. Theoretical introduction

2.1 Timing function of power

The surrogate problem in this paper is based on
the calculation of the neutron space-time
dynamics problem, and the construction of the
function refers to the point reactor dynamics
theory. The dynamic equation of the reactor
considering the delayed neutron effect is usually
called the dynamic equation of the point reactor
model [5].
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Where, ( ) / ( )in t C t are the changes of neutron
density and the precursor nucleus concentration
of group i delayed neutrons with time,
respectively.  t is the change of reactivity
with time; / /i i  are the neutron generation
time, group i delayed neutron share and delayed
neutron constant, respectively, are the
characteristic parameters of the reactor;  is
the total percentage of delayed neutron. When
step reactivity is introduced, the general solution
of the problem will consist of seven exponential
items:
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Where Ai is the amplitude parameter, i is the
frequency parameter, and n0 is the neutron
density in the initial state. For a given
disturbance, if the values of the parameters iA
and i can be determined, the neutron density
at any time can be accurately calculated from the
above equation. In this paper, based on the time
function expression in the point-reactor model,
the value of each observation mesh is performed
as prediction target, and a neural network model
for rapid prediction of core power with
disturbance as input is built.

2.2 Neural Network model

The model built in this paper takes the location
and the magnitude of the disturbance as
variables, and expresses the introduction
position in the form of "one-hot code". The
value of the undisturbed position is 0, and the
disturbance position is the measure of the
disturbance amount (e.g. Material density
change, control rod position change, etc.), as
shown in Figure 1-(a), the disturbance x is
introduced at the mesh (2,2), then the form of the
input is the array shown in Figure 1-(b).

0 0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

x

Fig.1. Take the form of a "one-hot code" as input,
with the input position filled with the quantity of

introduction, and the other position is 0

Since the prediction target is the coefficient of
the function expression, the coefficients need
to be extracted from the training samples, and
the Curve_fit function in Python is used in this
work. The Curve_fit function is based on
optimization, which automatically fits the
coefficients according to the function form
provided by the user, the coefficients to be fitted,
and the input and output values. Due to the large
number and nonlinearity of the parameters to be
fitted, if the parameters are fitted without
constraints, messy parameter combinations that
deviate from the physical background of the
problem will be obtained, which is not
conducive to the subsequent training of neural
networks. Therefore, a set of initial values and
constraints should be provided when using
curve_fit. In this paper, it is considered that there
is a slight difference between the relative change
of individual mesh power and the relative

change of total power when reactivity is
introduced. Therefore, the fitting parameter
group of mesh power over time can be found
according to the parameter group corresponding
to the total power change function. The obtained
reactivity equation (2-4) is derived from the
point-heap equation,
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Where, / /i il   are the neutron lifetime, the
delayed neutron share, and the delayed neutron
constant respectively; are the characteristic
parameters of the reactor; given the introduced
reactive disturbance ρ, the corresponding 7 ω
can be solved. Since this equation is of 7th order
and cannot be solved directly, graphical methods
are generally used, as shown in Figure 2. In this
paper, the gradient descent solver tool grad_opt
is used to calculate the corresponding seven ω
values under the given disturbance in the 7
solution domains, respectively. grad_opt is an
optimization tool for solving the minimum value
of a function provided by the DAKOTA[6]
toolbox, which can quickly calculate the optimal
solution within a given value range. The solved
ω is then used to calculate the amplitude
parameter A according to equations (2-5).
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At this time, the parameter set corresponding to
the expression of the power change of the full
reactor after the introduction of reactivity has
been obtained. This set of parameters is used as
the initial value and provided to curve_fit to fit
the power change function of the each mesh.

Fig. 2. Schematic of the graphical method for the
solution of the reactivity equation

So far, the agency problem that this network can
deal with is the introduction of one step
disturbance. In this work, a sequence network
model is built to fit the situation where the
disturbances are introduced successively.
Recurrent neural networks (RNNs)[7] are a
special family of neural networks for processing
and analyzing sequential data such as time series
data. The RNN model performed in this work is
illustrated as shown in figure 3, where the input
is the disturbances presented in time series and
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the same with the output.

Fig. 3. The structure of RNN in this work

2.3 Calculation flow

The computational flow of this work is showed
in figure 5.
1) Firstly, the Python script is used to generate
the samples of random disturbance position and
random disturbance amount, transform them into
input form, and pass them to the neutron
spatiotemporal dynamics calculation program
SARAX-TRANSIENT[8], and output the power
change state corresponding to each sample with
time.
2)Secondly, the curve_fit function in Python is
used to extract the parameter combination of
each sample, which is used as the input label to
make the training sample set. In order to obtain a
reasonable fitting effect, the initial value of the
parameter combination is calculated according to
the total amount of each sample.
3) The training samples were provided to the
neural network prediction model built using
Keras framework for training;
4) After the 1) -3) training operation is
completed, the change function associated with
time of the core power shape for predicting the
same type of reactivity introduction event can be
obtained.

Fig.4. Flow chart

3. Numerical calculations

In this paper, the model provided by
ANL-BSS16[9] one-dimensional benchmark
problem is taken as an example to introduce the
process of training and using neural networks. In
the benchmark problem model, zones 2 and 6 are
filled with active material containing fission
medium, and reactivity is introduced by means
of density change. This is shown in Figure 4.

Fig. 5. ANL-BSS16 benchmark problem

Figure 6 shows the schematic diagram of the
computational mesh of the model, the yellow
mesh area is the mesh that may introduce
disturbance, and the power changes of a total of
30 meshes will be used as the target for
calculation and prediction.

Fig. 6. Modeling

3.1 Selection of model parameters

The combination terms of the seven groups of
iA and i in Equations (2-4) were selected

within the acceptable range of accuracy. Taking
the model described in 3.1 as an example, as
shown in Figure 7, 2.1% positive density
disturbance (corresponding to +0.11β reactivity)
was introduced into mesh No. 7 of the model,
and the power change with time was observed at
mesh No. 10. To obtain the highest function
fitting accuracy, all seven exponential fitting
terms should be retained.

Fig.7. Confirmation of fitting function accuracy:
Take the sample with 2.1% density change as an

example

3.2 Model Construction

Samples with different disturbance locations and
different amounts of disturbance were randomly
generated, and the dynamics of 2s was
calculated using the SARAX-TRANSIENT
program, and the power level changes of 30
meshes were output. Curve-fit function is used



Transactions of the Korean Nuclear Society Autumn Meeting
Gyeongju, Korea, October 26-27, 2023

to fit and record sample parameters and generate
sample sets for mesh training and validation. The
neural network is built using the Python-based
Keras framework, and the structural information
is shown in Table 1.

Table 1: the neural network structure in this work
Convolutional Layer

Layer Number of
convolution
kernels

Size of
convolution
kernels

c1 8 5
Fully Connected Layer

Layer Number of
node

Activation
Function

f1 32 ReLU
f2 64 ReLU
f3 128 ReLU
f4 64 ReLU
f5 32 ReLU
f6 30 ReLU

3.3 Calculation results

A) Single Introduction

The prediction function is constructed by the
trained network and brought into the test sample
respectively. The fitting parameters of the
problem shown in Figure 6 are predicted and
brought back to the time function. The
comparison results with the reference values are
shown in Figure 8. The predicted values are in
good agreement with the 7-term fitting equation,
and then fit with the reference values as
expected.

Fig. 8. Comparison between prediction and reference

Several groups of test samples were randomly
generated, and the trained network was used to
predict, taking the sample shown in Figure 9 as
an example, the error bars in are 1% and 3%1

respectively, where the results are as expected.

1 The expected error is 10% and we use 1% and 3% error
bars for an envelope of the results.

Fig. 9. Test sample results (reactivity introduced
+0.056β and +0.14β, respectively)

B) Multiple introduction

Generate a set of samples randomly for the
multi-point introduction problem. Since the
input mode has the characteristic of "one-hot
code", it can be used directly without changing
the network structure. After training, the network
can predict the introduction problem of random
combinations, and the error distribution is shown
in Figure 10. Among them, since the calculation
target in this paper is the power distribution, the
30 meshes of the current problem are used as 30
comparison objects to compare with the
reference value to ensure good local features
when calculating the error distribution. The error
of the 200*30 comparison results here is
controlled within 10% and is normally
distributed.

Fig. 10. Error distribution of Test Set in Multiple
Introduction Problem

C) Time series introduction
The same with A) and B), a set of samples in
time series has been generated. An example is
selected as demonstration to show the way of
fitting the mesh power with successive
disturbance as showed in fig , where the
reactivity introduction in time 0, 0.5s, 1s, 1.5s
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and 2s is +0.032β, +0.042β, +0.044β, -0.033β
and -0.009β respectively. The parameters of
exponential function will change with the new
introduction while still be effected by the history,
which is suitable for performing RNN, as
showed in figure 11.

Fig. 11. The fitting of mesh power in serial
disturbance problem with peicewise exponential

function

In this work, the number of time sequence is 5,
and the final mesh power is selected for error
evaluation. The error distribution is showed in
figure 12 . Since error will accumulate in the
process, where the initial power of next time step
is the terminal power of last step, the error of
final results will relatively larger, which can be
enveloped by 20%.

Fig. 12. Error distribution of test set in serial
introduction problem.

4. Conclusion and Prospect

In this paper, the dynamic change process of
nuclear core power is fitted by the time function
expression, and the convolutional neural
network is used to predict the change of the
expression coefficient with the input, and the
continuous-time prediction problem is converted
into the prediction of a small number of discrete
coefficients. The test results are good on the
one-dimensional model ANL-BSS16, which
provides a new idea for the surrogate model
research of nuclear core transient calculation.
The work of this paper will continue to be
carried out to model, train and test on 3D models,
and consider more complex working conditions
to achieve the ultimate goal of assisting to solve
the actual needs of engineering.
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