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1. Introduction 

 
Multi-physics reactor simulations using the Monte 

Carlo (MC) method present a distinctive challenge due 

to the nature of the MC method itself. To obtain proper 

power distribution and subsequently calculate 

temperature and coolant density distributions, the 

problem domain must be discretized into smaller cells, 

even if the material is uniform. However, this 

discretization comes at the cost of diminishing the MC 

method's ability to efficiently handle continuous 

geometry. Furthermore, this approach requires a 

substantial number of particles to obtain solutions with 

reasonable uncertainties. Consequently, a higher level of 

computational power becomes a necessity, particularly 

when pursuing enhanced confidence in the results. 

 

In this study, we propose a novel approach by 

combining Functional Expansion Tally (FET) with 

Machine Learning (ML) and delta-tracking to address 

this challenge. In the FET methodology, actual solutions 

are approximated using a truncated linear combination of 

polynomials, while Monte Carlo (MC) tallies determine 

the corresponding coefficients of these polynomials. 

This unique feature enables FET to generate a continuous 

representation of reactor power. Additionally, we 

incorporate on-the-fly ML training during the simulation, 

utilizing the discrete distribution of fuel temperature and 

coolant density calculated by a thermal-hydraulics (TH) 

solver to perform regression. We implemented the 

proposed method into MCS code [1] to provide 

preliminary solutions for a fuel pin cell multi-physics 

problem. 

 

There have been several attempts to address this issue, 

including localized delta tracking (LTD) [2] and coupled 

multi-physics approaches using FET in conjunction with 

modified Continuously Varying Material Tracking 

(CVMT) [3]. While LTD is capable of handling 

continuously varying fuel temperature in the radial 

direction only, the proposed method can manage both 

radial and axial directions for both fuel temperature and 

coolant density. The spatially varying coolant density 

also implies spatially varying boron nuclide density in 

the coolant. In contrast to employing CVMT, the 

proposed approach utilizes the well-known delta-

tracking to accommodate the continuous variations in 

temperature and coolant density. Additionally, the 

proposed method leverages advancements in ML to 

obtain continuous representations of fuel temperature, as 

well as coolant temperature and density. 

 

 

2. Methodology 

 

2.1 Functional Expansion Tally 

 

FET [3,4,5] solutions can be obtained by expanding 

the tally quantity as a linear combination of polynomials 

𝜓(𝜉) as shown in the Eq. 1 

 

𝑓(ξ⃗) = ∑ �̅�𝑛𝑘𝑛ψ𝑛(ξ⃗)

∞

𝑛=0

(1) 

 

�̅�𝑛 = ⟨𝑓, ψ𝑛⟩ = ∫𝑓(ξ⃗)ψ𝑛(ξ⃗)ρ(ξ⃗)𝑑ξ⃗
Γ

(2) 

 

where �̅�𝑛 is the expansion coefficients, 𝜉  is the neutron 

phase space consisting of (𝑟, �⃗⃗�, 𝐸) , and 𝑘𝑛  is the 

normalization constant which can be calculated 

according to the choice of the polynomials basis set that 

is being used. 

 

The calculations of the expansion coefficients in Eq. 2 

are easily done in MC simulations with both analog and 

collision-based estimator. The unbiased collision-based 

estimator for coefficients �̅�𝑛 to reconstruct power (using 

Eq. 1) is defined in Eq. 3 
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1
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𝑁

𝑖=1

(3) 

 

where 𝑁 is the total number of particles in each batch, 𝐾𝑖 

is the total number of collisions of particle 𝑖 , 𝑤𝑖,𝑘  is 

particle 𝑖 weight at collision 𝑘, 𝜅(𝜉𝑖,𝑘) is the amount of 

energy released per fission at phase space 𝜉𝑖,𝑘 , and 

𝛴𝑡(𝜉𝑖,𝑘)  is the total macroscopic cross section for 

reaction 𝑥 at phase space 𝜉𝑖,𝑘. 

 

In the MCS code, Legendre polynomials are used for 

rectangular geometry problems, while Zernike 

polynomials are employed for radial problems. For 

multi-dimensional FET, such as in the case of fuel pin 

geometry, the solution is assumed separable. Hence, the 

reconstructed axial and radial power can be utilized to 
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represent the multi-dimensional power distribution 

within the cylindrical fuel pin. 

 

2.2 Machine Learning 

 

After conducting several batches (MCS uses batch 

system, in which one batch can contain one or more 

cycles) of MC simulation, power reconstruction both 

radial and axial directions using FET coefficients is 

performed within a fuel pin-cell. Subsequently, a 

thermal-hydraulic (TH) calculation is carried out to 

determine the two-dimensional fuel temperatures, and 

one-dimensional coolant temperatures and densities as 

well as the cladding temperatures for each reconstructed 

mesh. 

 

The obtained discrete distributions of material 

properties serve as a dataset for training an Artificial 

Neural Network (ANN) at each TH calculation. The 

objective of ANN training is to perform regression, 

allowing us to obtain continuous representations of fuel 

temperature, coolant temperature, and coolant densities 

within the problem geometry. ANN is favored over 

multi-dimensional interpolation because with ANN, 

there is no need to store discrete distributions of material 

properties; instead, only ANN parameters need to be 

saved. The ANN training is performed on-the-fly during 

the simulation and independently for each fuel pin. To 

facilitate ANN training and model prediction during 

particle tracking, a Fortran library from [6] was 

employed in this study. 

 

Two ANN architectures are trained at every TH 

calculation. The first architecture (Fig. 1) is employed to 

predict the temperature of the fuel pellet. It takes two 

inputs: radial and axial positions of the given fuel pin. 

This is because the fuel pellet temperature exhibits 

significant variations in both the radial and axial 

directions. The second ANN architecture (Fig. 2) is 

utilized to determine the temperature and density of the 

coolant, as well as the temperature of the cladding. It 

only requires the axial position as input since these 

material properties vary solely in the axial direction. A 

fraction of 80% of the dataset was utilized for training 

purposes, while the remaining 20% was reserved for 

testing. The maximum acceptable root-mean-squared 

error for prediction using the testing dataset was set at 

3%. 

 

2.3 Delta-tracking 

 

Due to the continuous variation of material properties 

across the fuel pin, delta-tracking is utilized instead of 

conventional surface tracking. One of the main 

challenges in delta-tracking method for continuously 

varying materials is determining the majorant cross 

section. The continuous distributions of fuel temperature, 

coolant density, and, in turn, boron nuclide densities 

have a significant influence on the cross section (XS) 

across the pin cell. 

 

The process of determining the majorant XS begins by 

identifying the maximum microscopic total XS for given 

majorant energy bins (MEB) for each nuclide. By default, 

in MCS, the number of MEB is set to 1200 bins, which 

are distributed across thermal, resonance, and fast 

regions. To ensure the maximum macroscopic XS is 

obtained for a given energy bin, the maximum total XS 

is searched for within overlapping MEB. Once the 

majorant microscopic XS is determined for each nuclide, 

it is multiplied by the highest nuclide densities within a 

given material and then summed to obtain the material-

wise macroscopic XS. The subsequent step involves 

finding the maximum material-wise majorant XS for 

each MEB in the given delta-tracking region, which is 

typically set at the assembly level in MCS. 

 

 
Figure 1. The ANN architecture for fuel pellet 

temperature prediction 

 

 
Fig. 2. The ANN architecture for the prediction of the 

coolant temperature and density, as well as the cladding 

temperature 

 

 

3. Test Problem 

 

To showcase the capabilities of FET combined with 

ML in tackling multi-physics problems using MCS, a 

pin-cell problem was adopted from the VERA 

benchmark [7]. The pin-cell configuration includes two 

Inconel spacer grids at the bottom and top, with five 

zircaloy spacer grids positioned in between. The fuel 

consists of 2.1 wt.% enrichment with radial reflective 
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boundary conditions, while vacuum boundary conditions 

are applied in the axial direction. The problem involves 

a critical boron concentration (CBC) search at a full 

power level which corresponds to 67 kW of thermal 

power. In the current study, the presence of Xenon is not 

considered in this test problem. 

 

Three cases were developed for comparison with the 

proposed method. The first two cases, P1 and P2, use 

conventional MC coupled multi-physics approach in 

which the problem domain is discretized into several 

cells. Each cell has uniform material properties such fuel 

temperature and coolant density. In the P1 case, the 

problem is discretized into 25 axial meshes and 1 radial 

mesh, with a simulation of 3.0x106 particles per batch. 

While the P2 case utilizes 100 axial meshes and 5 radial 

meshes (only for the fuel pellet) to capture smoother 

distribution of fuel temperature in both radial and axial 

direction as well as coolant density in axial direction. 

Note all mesh divisions are equidistant. P2 case 

employes 1.2x107 particles per batch to maintain a 

reasonable uncertainty for given the smaller cells’ sizes. 

 

In the FET case, the problem domain discretization 

is not necessary. At every TH update, the power 

distribution is reconstructed into 200 equidistant axial 

meshes and 10 equidistant radial meshes using the tallied 

FET expansion coefficients. Consequently, there are 

2000 data points for training the ANN model to predict 

fuel temperature that has two-dimensional distribution. 

Additionally, there are 200 data points for training the 

ANN model to predict coolant temperature and density, 

as well as cladding temperature that have one-

dimensional distribution. The seventh order of Legendre 

polynomials and ninth order of Zernike polynomials 

were used to reconstruct the power in the axial and radial 

directions respectively. 

 

During the calculation by the TH solver, the radial heat 

conduction calculations within the fuel pellet were 

conducted using 10 radial meshes for all cases, while a 

single mesh was utilized for the gap and cladding regions. 

Subsequently, the resulting radial fuel temperature 

distribution was averaged based on the number of radials 

meshes used in the neutronic calculations. All cases 

employed a total of 50 batches, with 25 batches 

designated as active batches. The TH updates were 

performed every 5 batches of the MC simulation. 

 

 

 

 

 

 

 

 Fig. 3. Axial distributions of normalized power, fuel 

temperature, and coolant density for P2 and FET cases. 

 

3. Results and Discussion 

 

Table 1 displays the calculation results for all cases. 

The coolant's CBC tends to increase as the distribution 

of material properties becomes smoother. The difference 

in CBC between the P2 and FET cases is approximately 

only 3 ppm. It's worth noting that, despite the smaller 

number of histories in the FET case, the resulting 

maximum standard deviation in axial power is quite 

small. The FET case also exhibits the shortest running 

time, even when compared to P1 case, partly due to its 

continuous geometry representation without 

discretization within same material. The FET case has 

Table 1. Calculation Results  

Cases # of axial/radial 

discretization 

# of particle 

histories/batch 

CBC (ppm) Max σ on axial 

power 

Running time 

(CPU-hours) 

P1 25/1 3.0x106 1810.2±0.8 2.4% 75.3 

P2 100/5 1.2x107 1814.5±0.7 3.4% 718.0 

FET N/A 3.0x106 1817.8±1.0 2.9% 60.6 
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only four cells for each material in the fuel pellet, gap, 

cladding and coolant. In contrast, P2 case has 1300 cells 

(1000 cells for fuel pellet material, and the remaining for 

gap, cladding and coolant) that deteriorates the MC 

tracking efficiency. 

 

Fig. 3 shows axial distribution comparisons for 

normalized power, fuel temperature and coolant density 

between P2 and FET cases. As illustrated in the figure, 

the axial distribution of the power, fuel temperature, and 

coolant densities of the FET case agree very well with 

the P2 case. To perform direct comparisons and 

quantitatively assess the accuracy of the FET case, a 

mesh power tally was done for each case. In the mesh 

power tally, the power was tallied in 100 bins axially and 

the relative differences of the FET cases are compared 

with the other cases in Fig. 4. The figure clearly indicates 

that axial power of the FET case is closer to the axial 

power of the P2 case that has smoother fuel temperature 

and coolant density distributions. This may suggest that 

as the problem domain discretization is smoother, the 

solutions would approach FET case’s solutions. 

Fig. 4. Percent differences on the axial power (using 

mesh tally) of the FET case against P1 and P2 cases. 

 

 

4. Conclusion 

 

The implementation of the FET method combined 

with the ML technique in MCS has proven to be highly 

effective for addressing MC coupled multi-physics for 

pin-cell problems with spacer grids. The approach 

achieved very good accuracy despite utilizing fewer 

particle histories. That is largely due to the fewer number 

of cells used in the presented method. The problem 

domain discretization into large number of cells 

diminishes the advantage of the MC method to treat 

geometry continuously.  Moreover, the relative standard 

deviation of the axial power in the FET case was 

comparable to that of the P2 case despite smaller number 

of histories used by the FET case. 

 

Although not discussed in this paper, it is also 

important to note that the FET approach offers the 

advantage of requiring smaller computational memory 

during simulations, especially for whole core problems. 

This is because, in the proposed method, the fuel pellet 

is not divided into multiple cells, resulting in only a 

single material data being saved for each fuel pellet. 

Additionally, while this study does not employ 

Computational Fluid Dynamics (CFD) as a TH solver, 

the proposed method has potential to solve the 

difficulties in mapping unstructured meshes used in CFD 

into the meshes used for neutronics calculations. 

 

While the calculation time for the on-the-fly training 

is a small fraction compared to the tracking time in the 

pin-cell problem, it is no longer the case for assembly or 

whole core problems because the training must be done 

for each pin-cell. Therefore, it is imperative that the 

training is carried out in parallel and possibly with 

optimizers. Also, the continuously varying Xenon 

distribution should be incorporated into the method to 

broaden its applicability to more realistic reactor 

problems. 
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