
Proceedings of the Reactor Physics Asia 2023 (RPHA2023) Conference 

Gyeongju, Korea, October 24-26, 2023 

 

 
Consistent Variational Nodal Diffusion Method Embedded in Method of Characteristics 

 
Kyung Min Kim, Han Gyu Lee, Hyung Jin Shim* 

Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 
*Corresponding author: shimhj@snu.ac.kr 

 

1. Introduction 

 

As the nuclear industries shifted their interests to 

advanced reactors, many institutes have focused on 

developing neutronics codes capable of unstructured 

mesh treatment. Griffin [1] and PROTEUS-MOC [2] are 

representative deterministic codes that successfully 

incorporate finite element mesh. NuDEAL [3] has been 

recently developed, confirming that GPU employment is 

still effective in the planar method of characteristics 

(MOC) operating over the unstructured mesh geometry. 

Several methodologies have been sought to extend the 

solution capability of NuDEAL from 2D to 3D. The 

traditional 2D/1D approaches are excluded due to the 

stability and accuracy issues. The discontinuous 

Galerkin method-based MOC [2] was implemented and 

tested in NuDEAL. However, it was shown that the 

methodology is inefficient when accelerated with GPUs 

[4]. 

Meanwhile, the variational nodal method (VNM) [5], 

based on the hybrid finite element method (FEM) [6], has 

been employed in various neutronics codes for decades, 

such as VARIANT [7] and ERANOS [8]. This method 

was devised as transport solvers involving discrete 

ordinate (SN) or spherical harmonics (PN) methods. 

Therefore, VNM can be naturally reduced to the 

diffusion (P1) formulation. In addition to this, the 

polynomial order can be arbitrarily modified to improve 

the solution's accuracy. 

In this regard, VNM is being investigated to employ 

as a low-order 3D solver coupled with planar MOC over 

the unstructured mesh geometry. Before extending to 3D 

solution capability, the equivalence between VNM and 

MOC in 2D problems should be established. This paper 

deals with the equivalence factors configured under the 

MOC/VNM scheme. Then, verifications are given for 

several problems ranging from an assembly problem to a 

2D core problem. Furthermore, the effectiveness of the 

low-order VNM is compared with coarse mesh finite 

difference (CMFD), a standard acceleration method for 

transport calculation. 

 

2. Background and Methodologies 

 

2.1. Variational Nodal Diffusion Formulation 

 

The VNM formulation is briefly given here, which is 

explained in several papers in detail [5][9]. Also, the 

application is restricted to diffusion formulation. The 

variational weak form can be written as the following 

block matrix equation after the Ritz procedure is applied 

by using the orthogonal bases: 
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where ϕ is the even-parity flux moment defined within 

a volume, J is the odd-parity flux moment on a surface, 

and s is the volumetric source moment. Here, volumetric 

variables are expanded by an orthogonal basis set 

normalized to each element's volume, while an 

orthonormal one is used for the surface variables. In the 

diffusion formulation, even- and odd-parity fluxes are 

equivalent to the scalar flux and the neutron current, 

respectively. The upper part of Eq. (1) represents the 

moment-based nodal balance equation described as 

follows: 
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where K is the element index, and E is the face index 

of the element. The group index is omitted for brevity. 

Matrix A involves the diffusion coefficient and the 

removal cross section (XS) multiplied by the stiffness 

and mass matrix, respectively. Matrix M is defined on 

each face E of element K, which converts the surface 

variables to the volumetric ones. Multiplied by the 

surface current J, the term represents the leakage 

distribution through surface E. The rank of this system is 

determined by the polynomial order for approximating 

the volumetric flux distribution. 

The lower part of Eq. (1) is the weak continuity 

imposed on the surface flux moment. This can be 

expressed for each surface as: 

 

 T T

E E + + − −=M M  (3) 

 

where plus and minus signs indicate the downwind 

and upwind elements which share the surface E, 

respectively. The polynomial order for the surface 

current determines this system’s rank, which is 

independent of the volumetric polynomial order. Ranks 

of Eq. (2) and (3) are generally different. 

 

2.2. Response Matrix Formulation 

 

Eq. (2) is recast into: 

 

 1 1T T Ts J − −= −M M Α M A M , (4) 
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where  1 2, ,M M M  and 

1 2, ,T T TJ J J    . The 

element index is dropped for simplicity. Eq. (4) indicates 

the interface flux moment related to the element source 

and the surface current moment. Then, the partial 

current-like variables analogous to the P1 approximation 

are defined on the surfaces as: 
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It should be noted that the weak continuity constraint 

Eq. (3) is implicitly imposed in Eq. (5). Inserting Eq. (4) 

into (5) and some mathematical manipulations results in 

the response matrix (RM) equation as follows: 
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The RM equation is directly used in the solution 

process with the red-black algorithm or the more general 

four-color Gauss-Seidel method. 

 

2.3. Equivalence Factors 

 

The converged MOC solution does not satisfy Eq. (1) 

in general. Therefore, artificial factors should be 

introduced to make VNM consistent with MOC. A paper 

dealing with the diffusion acceleration method for a 

high-order SN transport solver states that an appropriate 

projection scheme and nonlinear closure terms ensure 

consistency [10]. However, it should be noted that MOC 

cannot generate consistent XS and diffusion coefficients 

corresponding to higher-order bases. This is because 

MOC is technically FEM only with the constant basis 

function, and thus MOC solution space does not include 

the VNM one. Therefore, only the zeroth moment of flux 

and current in VNM is ensured to be consistent with the 

MOC solution. 

These zeroth moments are projected from the transport 

solution as follows: 
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where k is the fine mesh element index, and e is the 

fine mesh face index. It should be noted that the MOC 

mesh involves the coarse mesh on which VNM operates. 

The superscript h indicates the variable is the high-order 

solution, and the upper bar means the moment 

corresponding to the constant basis.  

One of the rows in Eq. (2) is the zeroth-moment nodal 

balance, which is naturally satisfied by the MOC solution. 

However, higher-order nodal balance is not ensured by 

the MOC solution generally. Therefore, a residual vector 

is defined in the element K as follows: 
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where the used vectors are given by:  
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Furthermore, the converged transport solution cannot 

satisfy the weak continuity because Eq. (3) is established 

regardless of the MOC formulation. The discontinuity 

occurs between the interface flux obtained concerning 

downwind and upwind elements as follows: 

 

 T h T h

E E Ef  + + − − −M M . (11) 

 

This discontinuity can be split into both sides 

regarding the concerning elements as follows: 
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where the residual vectors for downwind and upwind 

are given by: 
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The consistent VNM formulation can be established 

by using both the residual vectors: 
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where  1 2,
T

v v v  and  1 2, ,
T

f f f . 

 

2.4. Consistent Response Matrix Equation 

 

The nodal balance equation is derived from the upper 

part of Eq. (15) as: 
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Likewise, Eq. (16) is recast into: 

 

 1 1T T Ts J − − −M M A M A M  (17) 

 

The partial current moment is also constructed with Eq. 

(12) as: 
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where the residual vector for each surface is chosen by 

using Eq. (13) or (14) depending on the direction of the 

surface concerning the element. Eventually, the modified 

RM equation is established by inserting Eq. (17) into (18) 

as follows: 
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Note that the volumetric residual vector corrects the 

volumetric source, while the surface residual vector 

works as a surface source correction factor. This 

modified RM equation is a consistent linearized 

diffusion form with those two correction terms. 

 

2.5. Projection and Prolongation 

 

XS and group constants used in the VNM calculation 

should be homogenized from the MOC solution. The 

homogenized quantities are obtained by: 
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Zeroth moments of flux and partial current are 

projected using Eq. (7) and (8). The flux moment is 

directly set to the initial value of a VNM calculation. 

However, the initial partial current moments are not set 

to Eq. (8) because partial currents obtained by a transport 

calculation do not have to do with the diffusion theory. 

This value is set as Eq. (18), where only the net current 

moment is projected from the MOC calculation. 

There are two options for prolongation operators: 

multiplicative and additive ones. These do not affect the 

solution but convergence behavior. It is shown that the 

additive prolongation requires one more MOC outer 

iteration in general. Therefore, the multiplicative 

prolongation is set as default for now. 

 

2.6. Solution Procedure 

 

Overall solution sequence follows the ordinary VNM 

solution algorithm but involves the XS homogenization 

and the projection of flux and current before the red-

black iteration. The equivalence factors are obtained with 

the projected moments as Eq. (10) and (12). Then, the 

red-black algorithm solves the RM equation constructed 

with these homogenized quantities, as summarized in 

Algorithm 1. 

 

Algorithm 1. Consistent VNM solution procedure. 

Project zeroth flux and partial current moments 

Homogenize XS and group constants 

Generate volumetric and surface equivalence factors 

for fission source iteration do 

Calculate fission source 

for scattering source iteration do 

Update volumetric source with Eq. (10) 

Update surface source with Eq. (12) 

for fixed source iteration do 

Solve Eq. (19) with the red-black algorithm 

end for 

end for 

Update fission source and eigenvalue 

if converged enough break 

end for 

 

3. Verification and Examination 

 

The method is implemented in the NuDEAL code. The 

VNM polynomial orders are set to 2 and 0 for flux and 

current approximations, respectively. Although the 

higher-order moments do not affect solution accuracy, 

the full-rank condition forces the nodal balance system 

to have a minimum rank for stable convergence [11]. The 

C5G7 [12] 2D problems are adopted for investigations. 

 

3.1. Effects of Equivalence Factors 

 

The UO2 assembly is chosen as the test problem. Its 

mesh configurations are depicted in Figure 1. The pin-

wise regular grid is used in the VNM calculation. The 

MOC calculation is performed so that the fission source 
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and eigenvalue errors converge to 10-10. Then, the VNM 

calculation is performed with the converged solution. To 

examine the effects of the two equivalence factors, VNM 

calculations without the factors are also performed. The 

results are illustrated in Table I, demonstrating that the 

eigenvalue errors occur when one of the factors is not 

applied.  

This inconsistency is also revealed in the fission 

source convergence behavior when MOC and VNM are 

performed alternately, as illustrated in Figure 2. The 

fission source does not converge when any correction 

factor is not applied. Therefore, it is confirmed that both 

correction factors are essential to generating a VNM 

solution consistent with MOC.  

 

3.2. Irregular Grid Compatibility 

 

NuDEAL features a low-order calculation using an 

irregular coarse mesh generated by a stencil grid input. 

Figure 3 illustrates irregular grids used in the assembly 

test problem. The convergence behavior is investigated 

for such partitioned coarse mesh. Figure 4 shows the 

results, confirming that the MOC/VNM scheme 

converges well, regardless of the grid regularity. 

 

3.3. Acceleration Effectiveness Comparison 

 

The C5G7 2D core and its mockup configuration are 

solved. The core size is expanded by adding two rows of 

fuel assemblies, both in horizontal and vertical directions. 

Pin-wise regular coarse meshes are used. VNM and 

CMFD are compared from the perspective of 

acceleration efficiency. Figure 5 shows that CMFD 

acceleration requires 7 MOC outer iterations, while 

VNM needs 8. VNM is also effective as a low-order 

acceleration method. 

 

 
Figure 1. Fine and coarse meshes of test problem. 

 

Table I. Eigenvalues of MOC and VNM calculations. 

MOC/VNM 

(V.C.a/S.C.b) Eigenvalue (Diff.) 

None 1.335407 (180 pcm) 

V.C. 1.337157 (354 pcm) 

S.C. 1.331857 (-175 pcm) 

Both 1.333611 

MOC (Ref.) 1.333611 
a volumetric correction factor 
b surface correction factor 

 
Figure 2. Fission source convergence according to 

correction factor. 

 

 
Figure 3. Stencil grid examples: 3×3, 7×7, and 13×13. 

 

 
Figure 4. Convergence behavior of MOC/VNM 

depending on the mesh regularity. 

 

 
Figure 5. Acceleration effects of CMFD and VNM. 
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4. Conclusion 

 

The low-order diffusion VNM is formulated so that 

the VNM calculation is consistent with the high-order 

MOC calculation. Contrary to the nonlinear diffusion 

acceleration for higher-order FEM calculations [10], 

MOC cannot provide consistent physical coefficients 

corresponding to the higher-order bases. Therefore, 

artificial correction factors are introduced for the nodal 

balance equation and the surface flux weak continuity, 

respectively. These equivalence factors work as 

correction terms to the volumetric and surface sources, 

forming a weak linearized diffusion form. The effects of 

those equivalence factors are examined, and it is 

confirmed that they should be simultaneously applied to 

produce MOC-consistent VNM solutions. Furthermore, 

this scheme is compared with CMFD for the low-order 

acceleration method. It is shown that the consistent VNM 

works as the acceleration method well, and only one 

more outer iteration is needed than CMFD. 

The NuDEAL solution capability will be extended to 

3D problems with the developed MOC/VNM solution 

scheme. As planar MOC is embedded in 3D orthogonal 

SN [13], this developed scheme forms a 2D/3D method 

where planar MOC solves a fine mesh 2D domain, and 

the consistent VNM solves the entire 3D domain. The 

acceleration effects of VNM will be investigated even 

under the 3D problems. If the diffusion VNM cannot 

produce sufficiently accurate solutions due to strong 

axial heterogeneity, VNM based on PN or SPN (simplified 

PN) should be employed. It is anticipated that a similar 

equivalence can be formulated for PN or SPN VNM.  
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