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1. Introduction 
 

With the development of advanced nuclear reactor, 
the heterogeneity and neutron leakage of the Pressurized 
Water Reactor (PWR) core is becoming stronger and 
stronger. Under this circumstance, the traditional two-
step method based on assembly homogenization cannot 
meet the requirements of the engineering calculation 
accuracy. Therefore, the pin-by-pin calculation based on 
pin-cell homogenization has gradually become an 
important option as the next-generation routine 
calculation approach.  

Most of the pin-by-pin calculation programs 
introduce diffusion or SP3 approximation in the 
neutronics calculation, such as NECP-Bamboo2.0[1], 
SCOPE2[2], SPHINCS[3] and so on. However, for the 
whole-core Pin-by-pin SP3 calculation, its spatial grid 
can reach tens of millions of orders of magnitude, with 
at least 4 or even 7 energy groups. The computational 
cost, including both storage requirements and 
computing time, still needs to be further reduced. 

In the three-dimensional whole-core pin-by-pin 
calculation, the SP3 neutronics calculation spends the 
largest portion of the computational effort. Therefore, 
the P1 approximation, which shares the same form with 
the neutron diffusion equation, is expected to half the 
calculation cost. Compared with diffusion 
approximation, the P1 approximation can also remove 
the transport correction by retaining the first-order 
anisotropic scattering source. Therefore, this paper 
concentrates on the pin-cell homogenization for PWR-
core pin-by-pin P1 calculation. 

 
2. Theoretical Models 

 
2.1 The P1 Equation 

 
The multi-group steady-state neutron transport 

equation is shown below: 
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where r is the spatial location, 
g  is the neutron angular 

flux of group g (cm-2·s-1),  is the neutron motion 
direction, t, g and f, g are respectively the total and 
fission cross-sections of group g (cm-1), s, g’→ g is the 
scattering cross-section from group g' to group g (cm-1), 
g  is the neutron fission spectrum of group g, v is the 
number of neutrons per fission, g=1, 2, …, G is the 

neutron energy group index. 
Based on the first-order expansion of angular flux and 

scattering cross-section in terms of angular, the P1 
equation can be obtained: 
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where, 
g
is the neutron scalar flux of group g (cm-2·s-1),  

gJ is the neutron current of group g (cm-2·s-1), s1, g’→ g is 

the first-order anisotropic scattering cross-section from 
group g' to group g (cm-1). 

Defining the diffusion coefficient matrix as: 
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can transfer the P1 Eq. into: 
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  Eq. (5) is formally identical to the diffusion equation, 
so the computational efficiency is theoretically the same 
as the diffusion equation. Meanwhile, due to retaining 
the first-order anisotropic scattering source and no 
longer introducing transport correction, the calculation 
accuracy should be higher than the diffusion equation. 

 
2.2 Finite Difference Solution of the P1 Equation 

 
Eq. (5) can be discretized by using the finite 

difference method in three-dimensional Cartesian 
coordinates: 
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Defining the flux at the center of the mesh ( ), ,i j kx y z  as 

, ,i j k  and integrating Eq. (7) in the mesh lead to: 
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Define the leakage of u-direction as Lu: 
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By solving the surface flux and substituting it into 
Eq. (9), the discretized P1 equation can be obtained: 
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where, 
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  Compared with the traditional diffusion equation, the 
energy group of the P1 equation cannot be decoupled 
due to the coupling in the diffusion coefficient matrix. 
Thus, the following iterative solution flow was 
employed: 

 
Fig. 1. Iterative flowchart of P1 equation. 

 
2.3 Pin-cell Homogenization for P1 calculation 
 

During the homogenization, the following quantities 
are required to be conserved: 

1) The effective multiplication coefficient: 
 het hom

eff effk k=  (14) 
2) The scalar reaction rates in each homogenization 

region: 
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3) The scalar neutron leakage rate on each surface in 
the x/y/z directions: 
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Meanwhile, considering the neutron flux density and 
the neutron current density in the homogenization 
region also need to be conserved: 
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The diffusion coefficient matrix can be obtained 
according to Eq. (4), in which the total and first-order 
scattering matrices can be obtained as: 
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  According to the Gauss Law, the total leakage of the 
homogenization region boundary can be written as: 
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On each surface, it can become: 
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According to the FDM solution of P1 Eq. in 2.2, the 
neutron leakage rate after homogenization can be 
estimated as: 
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Thus, the estimated homogenized neutron surface flux 
can be obtained. Therefore, in order to ensure the 
conservation of the leakage, the discontinuity factors of 
neutron flux density at the boundary is introduced: 
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3. Numerical Results 

 
Based on the above methodology, a three-dimensional 
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solver for P1 equation has been developed. 
Correspondingly, a cross-sections homogenization 
program has also been developed based on the PWR-
core pin-by-pin analysis code NECP-Bamboo2.0. In 
order to verify the effectiveness, numerical results are 
introduced in this session by taking the one-step 
heterogeneous calculation results provided by Bamboo-
Lattice [4] as the reference. The reason for using the 
Bamboo-Lattice as the reference is firstly that it is a 
deterministic one-step program, which provides more 
accurate calculation results. At the same time, it is the 
program for generating homogenization constants, 
which can avoid deviations caused by databases and 
computational models.  

 
3.1 Single-Assembly Case 
 

A single fuel assembly case is designed, whose 
diagram is shown in Fig. 2. The reference solution is 
obtained by Bamboo-Lattice with P2 scattering. For 
comparison, in addition to using P1 approximation for 
calculation, this paper also uses diffusion approximation 
and SP3 approximation calculated by the Exponential 
Function Expansion Nodal method (EFEN) [5, 6]. The 
homogenized area is based on the pin-scale. Therefore, 
in order to ensure the consistency in the calculation area 
before and after homogenization, all the calculated 
meshes of the various homogenized calculation method 
are pin-scale. 
As shown in Table Ⅰ, all keff obtained by different 
homogenized calculation are in good agreement with the 
reference, with the deviations less than 50 pcm. As for 
the distribution quantities, the bias of the fission rates 
are shown in Table Ⅱ and Fig. 3. It can be found that the 
bias of diffusion approximation is the largest (max 
1.39% and the root mean square 0.60%). In contrast, the 
bias for P1 and the SP3 are very close, 0.69% for the 
max while 0.30% for the RMS. Overall, the deviations 
of all three methods are acceptable for this example, 
none of which exceed 1.5%. 

According to the traditional homogenization theory, 
the calculation results should be consistent when the 
boundary conditions are the same. For this case, due to 
the reference using P2 scattering for calculation, and 
none of three methods can consider such high-order 
scattering, resulting in a certain deviation. 

 

Fuel

Moderator

  
Fig. 2. The material and geometry diagram of the single 
assembly case. 
 

 
(a) Diffusion approximation 

 
(b) P1 approximation 

 
(c) SP3 approximation 

Fig. 3. The bias of fission rate distributions. 
 

Table Ⅰ: keff of various methods 
 Ref. Diff. P1 SP3 

keff 1.22925 1.22974 1.22894 1.22942 
Bias/pcm - 49 -31 17 
 

Table Ⅱ: The bias of fission rates 
 Diff. P1 SP3 

MAX/% 1.39 0.69 0.50 
RMS/% 0.60 0.30 0.22 

 
3.2 Multi-Assemblies Case 
 

For the further verification, a multi-assembly case 
diagram is shown in Fig. 4. The keff results are shown in 
Table Ⅲ. All keff results obtained by different 
homogenized calculation are in good agreement with the 
reference, with the deviations not exceeding 150 pcm. 
Among them, the bias of the diffusion approximation is 
the largest, and the bias of P1 and SP3 approximation are 
very close.  

Meanwhile, in order to compare the distribution, this 
paper compared the bias between the fission rates of 
different methods and the reference, as shown in Table 
Ⅳ and Fig. 5. For different methods, the bias of the 
diffusion approximation is the largest, whose max bias 
is 9.39% and the root mean square bias is 3.98%. In 
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addition, the P1 and the SP3 approximation are very 
close, both have comparable accuracy. From the Fig. 5, 
only at the interfaces of the assembly, the bias will be 
relatively high, and the bias inside the assembly will be 
minimal, not exceeding 1% for the P1 and the SP3 
approximation. However, there may also be significant 
bias inside the assembly for the diffusion approximation. 

 

Fuel1 Fuel2 Moderator
 

Fig. 4. The diagram of the multi-assembly case. 
 

Table Ⅲ: The keff results of various methods 
 Ref. Diff. P1 SP3 

keff 1.08011 1.08123 1.07937 1.08078 
Bias/pcm - 112 -74 67 

 
Table Ⅳ: The bias of fission rates 

 Diff. P1 SP3 

MAX/% 9.39 3.48 4.26 
RMS/% 3.98 0.92 0.88 
 

 
(a) Diffusion approximation 

 
(b) P1 approximation 

 
(c) SP3 approximation 

Fig. 5. The bias of fission rate distributions for different 
method compared with the reference. 

 
4. Conclusions 

 
In order to further improve the efficiency of PWR-

core pin-by-pin calculation, this paper proposes a new 
homogenization and numerical calculation method 
based on the P1 equation. 

Numerical results indicate that the method has higher 
accuracy compared to diffusion approximation and is 
comparable in accuracy to SP3 approximation. For 
single assembly case, P1 method can reduce the 
deviation to less than 1%. For multi-assemblies case, the 
deviations of the P1 method is significantly lower than 
the diffusion approximation, and this method can reduce 
the deviation from nearly 10% to 3.5%. Therefore, the 
new method provides a theoretical basis for the whole-
core pin-by-pin calculation, which is expected have 
practical applications in the future. 

The P1 equation solved in this paper only have one 
equation, which theoretically has a higher computational 
efficiency than the two coupled equations of SP3 
approximation. 
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