
Transactions of the Korean Nuclear Society Autumn Meeting 

Gyeongju, Korea, October 26-27, 2023 

 

 

 On the treatment of anisotropic scattering in the heterogeneous variational nodal method 

 

Wei Xiao, Tengfei Zhang * 

School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 

 

*Keywords : second-order transport equation, anisotropic scattering, variational nodal method, finite-element 

 

 

1. Introduction 

 

The variational nodal method (VNM) for solving the 

neutron equation was formulated based on a functional 

form of the neutron transport equation. VNM is 

compatible with various spatial and angular 

discretization schemes. It has been successfully applied 

in diverse homogenized problems[1]. Moreover, the 

heterogeneous VNM, which approximates the 

heterogeneous node using the finite element (FE) 

functions, shows great capacity in solving high-fidelity 

problems without spatial homogenizations[2]. The current 

high-fidelity calculation of heterogeneous VNM is 

implemented with the integral method, which cannot 

account for the anisotropic scattering sources. In the 

high-fidelity simulation of light water reactors and 

advanced reactors, the anisotropic scattering effect is of 

importance. However, the procedure to formulate the 

VNM with anisotropic sources differs notably from the 

isotropic case due to presence of the odd-parity terms in 

the second-order transport equation[3][4]. Therefore, to 

perform high-fidelity calculations more accurately, the 

anisotropic formulation of heterogeneous VNM is 

required. 

VITAS is a multi-purpose neutron transport solver 

developed at the Shanghai Jiao Tong University for 

solving steady and time-dependent neutron transport 

problems based on the VNM[5]. It is compatible with 

various geometries, including the geometry made up 

with heterogeneous nodes with FE subdivisions. 

However, the latest version of VITAS can only deal with 

isotropic problems. In this paper, the heterogeneous 

VNM with discrete ordinates (SN) method is formulated 

in the anisotropic problem. Subsequently, the anisotropic 

solver is developed based on the VITAS and verified 

against an anisotropic slab problem. 

 

2. Methods 

 

In the VNM, by defining the even- and odd-parity 

fluxes  +
 and  −

, we add and subtract transport 

equation evaluated at Ω  and −Ω  to obtain[1][6] 

 ( ) ( ) ( ) ( ), , ,g tg g gq  +− + + =Ω r Ω r r Ω r Ω  (1) 

 ( ) ( ) ( ) ( ), , ,g tg g gq + − − + =Ω r Ω r r Ω r Ω  (2) 

where g  denotes the energy group, tg  is the total 

cross-section, q  is the source term, Ω  represents the 

direction, and r  represents the position containing 

( ), ,x y z  in the Cartesian coordinate. Eliminating the 

explicit expression of −  between Eqs. (1) and (2) yields 

the even- and odd-parity equations 
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Assuming there is no external source in the system, and 

considering the anisotropy of the scattering source, the 

time-independent even- and odd parity source terms q+

and q−  are 
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
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where 
effk  is the eigenvalue,   is the prompt fission 

spectrum, f  is the nu-fission cross-section, s

+  and 

s

−  are even and odd scattering cross-sections 

respectively, and the scalar flux is given by 

 ( )( ) ,g gd  + = r Ω r Ω  (7) 

The even- and odd scattering cross-sections are 

expanded with even- and odd-terms of Legendre 

polynomials[4], respectively 
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l  is the order of Legendre polynomials. 

  

2.1 Variational formulation of even-parity equation 

 

The functional of Eq. (3) for node   with the interface 

 , can be written as 
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In the SN method, the angular flux is solved for a set of 

direction , 1,...,n n N=Ω  on the unit sphere, and weights 

nw  are assigned to each direction. In this code, the 

directions are chosen based on Legendre-Chebychev 

quadrature. In the heterogeneous VNM, the radial term 

of the flux is approximated with FE basis functions, 

while the axial term is expanded with orthogonal 

polynomials. Within the node   and direction 
nΩ , the 

spatial distribution of the even-parity flux is 

approximated by 

 ( ) ( ) ( ),, T T

n z nz gf x y + + r Ω  (11) 

and the scalar flux can be expanded as 
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where ( )zf z  is a vector of orthogonal polynomials 

defined at node   and ( , )g x y  is a vector of continuous 

FE basis functions. Triangular and quadrilateral iso-

parametric quadratic FEs were employed to map the 

curved interfaces between materials. Fig. 1 shows a FE 

mesh with 32 elements, used for describing a fuel pin cell. 

 

Fig. 1 A FE mesh for a fuel pin 

To not confuse the nodal and interfacial odd-parity 

flux, the interfacial odd-parity is represented with   in 

the following. The interfacial odd-parity flux at the 

lateral interface   is approximated as 

 ( ) ( )
,

, ,T

n n
f x y y x  

     =   =Ω  (13) 

and at the axial interfaces, the odd-parity flux as 

approximated as 

 ( ) ( )
,

,T

z n n z
xh y Ω  (14) 

where f  are polynomials defined on the lateral surfaces 

and ( , )h x y  denotes a vector of piecewise constants.  

Inserting the trial functions into Eqs. (11), (13) and 

(14) yields the following discretized functional 
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where the coefficient matrices are defined in Table 1. 

 

Table 1 Coefficient matrices of the even-parity equations 
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The surficial odd-parity moments and source moments 

vector are defined as 
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The definitions of all matrices in the even-parity equation 

were detailed in a previous study[6]. Requiring the 

discretized functional in Eq. (15) to be stationary with 

respect to variations in  +  yields the discretized  even-

parity equation as 

 
gn gn gn gngn

A q Dq 
+ + −= + −  (19) 

Similarly, the nodal odd-parity flux is approximated 

as 

 ( ) ( ) ( ),, T T

n z nz gf x y − − r Ω  (20) 

Choosing the expansion function as the trial function, the 

discretized weak form of the odd-parity equation is 

obtained as 

 
gn gn gngn

F P q − + −= − +  (21) 

where the source moments are defined as 

 ( ) ( ) ( ) ( )1 ,gn tg z gnq dV f z g x y q −− −=  r r  (22) 

and the coefficient matrices are defined in Table 2. 
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Table 2 Coefficient matrices of the odd-parity equations 
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2.2 Flat source treatment 

 

In the traditional FE method, the number of unknowns 

is equal to the degree of freedoms of the FE mesh, which 

will incur significant computational cost and memory 

usage when high-order iso-parametric FEs are applied. 

To alleviate this burden, the flat source approximation is 

applied, and the element-wise flux are stored. For 

example, the moments of element-wise average even-

parity flux are defined as 
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where   is diagonal matrix composed of the element 

areas. With the element-wise moments, the flat even-

parity source is defined as 
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where the flat source moments in Eq. (24) are obtained 

as 
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Then, the source moments 
gn

q
+

 is obtained by inserting 

Eq. (24) into Eq. (17) 
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Similarly, the odd-parity source moments in Eqs. (18)

and (22) are given by 
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2.3 Nodal response matrix equations 

 

By requiring the projection of nodal even-parity flux 

to be continuous across the interfaces and defining the 

partial currents j +  and j − [6], the nodal response matrix 

equations are derived from Eqs. (19) and (21) as 

 
gn gn gn gngn gn gn

j B q B q R j
−+ −+ + +−

= + +  (32) 
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−+ ++ +−− +
= + − −  (33) 

 ( )gn gn gn gn gngn gn gn
K q K q C j j

−++ +− −− −
= + − −  (34) 

The relevant matrices are defined in Table 3. 

 

Table 3 Response matrices 
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3. Results 

 

3.1 One-group slab problem 

 

The preliminary test problem is an anisotropic 

eigenvalue problem in one-dimensional slab geometry. 

This problem contains two regions, which are shown in 

Fig. 2. The cross-sections are listed in Table 4 with 

scattering order up to 3P . 

In the heterogeneous VNM calculation, the regions are 

discretized into 20 nodes expanded with second-order 

polynomials, and the height of each node is 0.25 cm. A 

quadrature of S36 is applied, which contains 361 

quadrature points on the hemisphere. The polar angle   

defined in the calculation is also illustrated in Fig. 2. The 

reference solution is generated using the multi-group 

mode of OpenMC[7]. 

 

Fig. 2 Layout of the one-group slab problem 
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Table 4 Cross-sections of one-group slab problem (unit: cm-1) 

Region 
t  f  

0s  1,2,3sl l =  

Core 1.10 1.0 0.60 0.10 

Shield 0.95 0.0 0.55 0.15 

 

The eigenvalues 
effk  are compared in Table 5. The 

results indicate that the changes of eigenvalues in the 

VNM by increasing the scattering order are highly 

consistent with those in the OpenMC. When the 

scattering order is P1, effk  in OpenMC and VNM are -

2177 and -2216 pcm, respectively. As the scattering 

order increases to P2, effk  are -1931 and -1982 pcm, 

respectively.  

Table 5 
effk  in the one-group slab problem 

Pl effk * 

(MC) 

effk  

(VNM) 

effk ** 

(MC) 

effk  

(VNM) 

P0 1.69823 1.69925 0 0 

P1 1.67646 1.67709 -2177 -2216 

P2 1.67898 1.67994 -1925 -1931 

P3 1.67892 1.67943 -1931 -1982 
*    The std. of 

effk  in MC is ~15 pcm 

** 
effk  is the difference of 

effk  with 
lP  and 

0P  scattering (unit: pcm) 

Fig. 3 illustrates the spatial distribution of scalar flux. 

It shows that in the core region, the scattering order has 

an insignificant effect on the scalar flux. However, in the 

shield region, the P0 scattering underestimates the flux 

significantly with relative differences up to 30.0%. 

 

 

Fig. 3 Comparison of spatial distribution of scalar flux with 

different scattering orders 

Fig. 4 compares polar distributions of angular flux, 

even- and odd-parity flux with P0 and P3 scattering, at 

node-1 (0.0-0.25 cm), -8 (1.75-2.00 cm) and -20 (4.75-

5.00 cm). At the node-1, the angular flux shows 

symmetry with respect to 90 =  since the node is near 

the reflective boundary. At the node-8, which locates 

near the interface of the core and field, the even-parity 

flux shows great isotropy. However, contributed by the 

extremely anisotropic odd-parity flux, which is induced 

by the large gradient near the interface, the angular flux 

is in highly anisotropic.  

At the node-20, which is locates at the vacuum 

boundary, the angular flux with P0 scattering deviates 

significantly from that with P3 scattering. It can be found 

when P0 scattering is implemented, the angular flux on 

( )9~ 0 , 0   , which is the outgoing direction with 

respect to the boundary, is much smaller due to 

underestimation of both even- and odd-parity flux. The 

underestimation of the outgoing angular flux results in 

the smaller leakage and thus larger eigenvalue. 

 

 

 

Fig. 4 Comparison of polar distribution of flux at different 

locations 

 

4. Conclusions 

 

This work demonstrates the formulation of the SN- 

heterogeneous VNM in the anisotropic problem. The 

anisotropic heterogeneous VNM solver is developed 

based on the VITAS. The solver enables solving 
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anisotropic transport equation and the analysis to both 

even- and odd-parity flux. An anisotropic slab problem 

is used to preliminarily verify the solver. The results in 

the test problem are in consistency with the reference 

solutions from the multi-group OpenMC. The analysis to 

the angular dependence of the flux also illustrates the 

effects due to the scattering order. Future efforts will 

focus on applying the anisotropic heterogeneous VNM 

on the high-fidelity calculations of advanced reactors. 

Moreover, the anisotropic solver will be applied to 

formulate consistent transient solver based on the 

second-order transport equation. 
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