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1 A research start-up group 

1. Introduction 
 
Open-source repository for technical demonstration: 

https://jihulab.com/newcomputelab/frendyplus 
 
The beginning section first reviews the nuclear data 

processing codes, then discusses about the Julia and 
Python programming languages with support for 
libraries written in other languages through the C 
interfaces. Next, it addresses the existing practices of 
Python interface to nuclear data processing codes. And 
finally, it gives the purposes of this work. 

 
1.1 Review of the Nuclear Data Processing Codes 

 

 
Fig. 1. The current states of support for nuclear data 

formats in processing codes 
 
Nuclear data provide fundamental physics properties 

for nuclear engineering and radiological sciences. 
Because of its key roles playing in applications, the 
Nuclear Data Section (NDS) of International Atomic 
Energy Agency (IAEA) and OECD Nuclear Energy 
Agency (NEA) dedicate to maintain a central database 
of evaluated nuclear data. 

The evaluated nuclear data are usually not directly 
ready for being used in applications, and the data need 
to be processed into computational friendly formats. 
This is where the nuclear data processing codes 
participate. 

The evaluated nuclear data are stored in the ENDF-6 
[1], GNDS [2] or GNDS-JSON [3] formats. Fig. 1 
summaries the current state of support for nuclear data 
formats in processing codes.  

Most nuclear data processing codes such as NJOY 
[4] are designed to support ENDF-6 format. The data 
are first transformed into data structures similar to 
ENDF-6 data layout, and then are transformed into 
other custom internal data structures. These internal 

data structures work as scratchpads to store 
intermediate data produced during data processing. 

GNDS is a newer format. Although not specifying 
what data format is used, the practice is the XML (later 
HDF5) format, which is more structural and flexible 
than ENDF-6. Up to now, there are already codes such 
as NECP-Atlas [5], GIDI [6], AMPX/SAMMY [7] and 
Frendy [8] support GNDS, and other codes such as 
RXSP [9], AXSP [10], and GALILÉE [11] are modern 
programs which are expected to be easily integrated 
with support for GNDS. 

In the meanwhile, the Fudge [12] code is designed to 
support GNDS format as its core function. The data are 
first accessed by 3rd-party XML library, and are then 
transformed into custom internal data structures similar 
to the GNDS data layout. 

GNDS-JSON follows mostly the GNDS specification, 
but using JSON to replace XML as the base data 
language. With a closer similarity to data structures in 
many programming languages than GNDS, GNDS-
JSON reduces the nuclear data complexities. Until now, 
there have been no processing code supporting GNDS-
JSON. 

Section 2 will discuss more about the background 
about GNDS and GNDS-JSON. 

 
1.2 Julia and Python Programming Languages and the 
C Interfaces 

 

 
Fig. 2. The Julia and Python programming languages and 

the C interfaces to C, C++ and Fortran libraries 
 
Many processing codes as illustrated in Fig. 1 are 

born at earlier times, where C, C++, and Fortran 
programming languages are adopted for best 
performance. Some recent codes such as Fudge and 
GIDI have begun to write in Python [13] to reduce the 
resources spent on software development. 

In addition to Python, Julia [14] is another relatively 
new programming languages with comparable easiness 
of coding to Python, but Julia generally delivers higher 
performance than Python and is designed for scientific 
computation. A comparison between Julia and Python is 
shown in Table I. 
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Unlike C, C++ or Fortran, both Julia and Python do 
not require programmers to manually manage memories. 
Instead, automatic memory management through 
garbage collection is adopted as the key language 
feature. At the time of coding, both languages allow 
dynamic types to reduce the coding efforts.  

However, Python keeps the mechanism of dynamic 
types to the runtime, but Julia uses type inference to 
determine all possibilities of the types at compilation 
time, and compile the code into binaries. As a result, 
Julia natively executes faster than Python since the 
types are static at runtime. 

What makes it possible for Julia to have dynamic 
types at compilation and static types at runtime is its 
special compiler design. The dynamic types of all 
possibilities are compiled separately, where the same 
code of different types may have different binary codes. 
And at runtime, the corresponding binary codes for the 
inferred type are executed at runtime. While as, at 
runtime, Python uses interpreter to determine the type, 
and translate the corresponding source code into binary 
code to execute. There is extra interpretation work at 
runtime for Python, so native code Python is at greater 
chance slower than Julia. 

 
Table I: Comparison of Features for Julia and Python 

 Julia Python 
Automatic 
Memory 

Management 

Yes, garbage 
collection 

Yes, garbage 
collection 

Dynamic Types Yes Yes 
Dynamic Types at 

Runtime 
No, use type 

inference Yes 

Compiled or Not Yes, just-in-
time (JIT) No 

 
As indicated in Fig. 2, both Julia and Python provide 

interface in C language to precompiled dynamic 
libraries written in other languages such as C, C++, and 
Fortran. 

It is also possible for Julia and Python to inter-
operate with each other in the source code. Section 4 
discusses the use of the PyCall [15] library to allow 
applications written in Julia to directly use the OpenMC 
[16] utilities code in Python to generate the HDF5 [17] 
format nuclear data libraries. 

 
1.3 Existing Python Interface to Nuclear Data 
Processing Codes 

 
PyNJOY [18] is an interface to the NJOY nuclear 

data processing code, whose purpose is to provide an 
additional module to produce cross section libraries for 
deterministic neutron transport code. 

OpenMC code also provides some utilities in Python 
to generate NJOY inputs and call NJOY executable to 
process nuclear data. 

In these two approaches, the Python applications 
communicate with NJOY through the filesystem, and 
the Python applications and NJOY are running in 
separated memory space. 

 
1.4 Purposes of the FrendyPlus and Contribution 

 
In this work, the FrendyPlus extensible interface to 

Frendy processing code is proposed to fulfill the 
following goals: 
l Provide a C interface for Frendy code to Julia 

and Python, where the traditional input files are 
replaced with frontend Julia/Python source code 

l Demonstrate initial support of the GNDS-JSON 
formatted nuclear data for Frendy 

l Propose a nuclear data processing pipeline with 
seamless integration with the OpenMC HDF5 
formatted nuclear data utilities 

 
1.5 Description of Contents 

 
In section 2, an overview of Frendy and FrendyPlus 

in the future nuclear data ecosystem is presented. In 
section 3, details about the design of FrendyPlus are 
elaborated. And in section 4, a verification of nuclear 
data processing using Monte Carlo neutron transport 
benchmarks is addressed. Finally in section 5, the cross-
platform dependencies are discussed. 

 
2. FrendyPlus and Future Nuclear Data Ecosystem 

 
This section provides an overview of the Frendy and 

FrendyPlus processing code in the nuclear data 
ecosystem. 

 

 
Fig. 3. Overview of Frendy and FrendyPlus in the nuclear 

data ecosystem. PENDF is the intermediate nuclear data file 
generated during data processing. ACE is the nuclear data 

format used for continuous energy particle transport. MATXS 
and GENDF are the nuclear data formats used for multigroup 
particle transport. OpenMC HDF5 stands for the nuclear data 

format used in OpenMC. 
 

2.1 New Data Processing Paths from FrendyPlus 
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The original Frendy code takes evaluated nuclear 

data in the ENDF-6 and GNDS data format, and 
generate PENDF and ACE and MATXS/GENDF 
formatted data. Fig. 3 illustrates where Frendy and 
FrendyPlus play roles in the nuclear data ecosystem. 

FrendyPlus allows additional nuclear data processing 
paths such as reading the GNDS-JSON formatted data 
and generating computing friendly data formats other 
than ACE: such as the HDF5 format for OpenMC. 

One advantage of FrendyPlus is that it allows agile 
development of new paths in the Julia/Python 
programming languages.  

 
2.2 GNDS and XML/HDF5/JSON Implementations 

 
When original proposed, GNDS is a specification of 

the data structure of the evaluated nuclear data without 
regulations on which underlying data format should be 
adopted. 

At the earlier time shortly after GNDS specification 
is proposed, the community has reached a consensus for 
XML to be used as the underlying data format. But 
XML greatly increases the nuclear data file size. 

Much recent, to alleviate the problem of occupying 
too much storage space, parts of especially large data 
arrays are replaced with HDF5. So GNDS is now 
usually stored in a mixed XML and HDF5 format. 

GNDS-JSON takes another route that uses JSON as 
the underlying data format, and when desired, binary 
formats such as MessagePack [19] serves as a 
replacement. Data in MessagePack can be accessed in 
the same way as JSON, and data in JSON and 
MessagePack can be mutually exchanged without loss 
of information. 

Instead of considering it to be a new nuclear data 
format, GNDS-JSON should be thought as the GNDS 
specification implemented in JSON. 

Table II provides a brief comparison of 
implementations of the GNDS specification in XML, 
HDF5 and JSON. 

Table II: Comparison of XML/HDF5/JSON 
Implementations of GNDS 

 XML HDF5 JSON 
Text or 
Binary Text Binary Text 

Binary 
Solution 

Partially in 
HDF5 N/A 

e.g. 
Message

Pack 

Concepts 

Label, 
property, 
children 

label 

Dataset, 
property, 
attribute 

Object, 
key-
value 
pairs 

Hierarchy Label-
children 

Dataset-
attribute 

Object 
as value 

Native 
Integer, 

Float, Bool 

All are 
strings Yes 

Yes, 
treat 

integers 

and String and 
floats as 
numbers 

Array of 
Native 
Types 

No Yes Yes 

Array of 
Complex 
Objects 

No No Yes 

Schema for 
Format 

Validation 
Yes No Yes 

Require 
Dedicated 

Data 
Access 
Code 

Yes, e.g. 
GIDI+ 

Yes, e.g. 
GIDI+ 

No for 
many 

program
ming 

language
s 

 
XML and HDF5 share the similar pattern that a 

parent structure has properties and children. In XML 
these children are labels, and in HDF5 these children 
are primitive types or datasets. In JSON, the hierarchy 
structure is simplified where both properties and 
children are combined into the key mapped values. 

What to distinguish JSON from XML and HDF5 is 
its native support for the arrays of complex data 
structures. This simplifies the data structural complexity 
as discussed by Liu2 [3]. 

Because of this simplification in format, GNDS-
JSON does not require the preparation of dedicated 
computer codes for data access interface. For example, 
many codes such as GIDI and Frendy adopt the 
interface GIDI+ [20] for manipulating GNDS in 
XML/HDF5. The GIDI+ interface is bulk in size and 
requires additional maintenance efforts. Moreover, this 
interface is prepared in C++ and Python programming 
languages, which will restrict the migration to other 
programming languages. See discussion by Liu [3] for 
further information. 

 
2.3 Why GNDS-JSON? 

 
In this section, the benefits of GNDS-JSON are 

further emphasized as following: 
 
l Reduced nuclear data complexity: because 

JSON is simpler than XML/HDF5, the nuclear 
data complexity is reduced, so as that the efforts 
to manipulate the nuclear data is reduced. 

l Consistent support for binarization: unlike the 
XML format uses HDF5 for binarization, JSON 
has more concise solutions for binarization 
using formats such as MessagePack. When two 
formats XML and HDF5 are used together, 
programming has increased complexity. 

 
2 https://jihulab.com/newcomputelab/publications/ 
(Temporary copy of publication: ICONE30.pdf) 
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l Format validation: GNDS-JSON has completed 
solution for format validation with JSON 
Schema. However, the format validation for 
GNDS in XML/HDF5 is not as completed as 
GNDS-JSON. 

l Not requiring dedicated data access code: 
because of the data structural similarity of 
JSON to objects in many programming 
languages, no dedicated data access code is 
required. The default or common 3rd party 
JSON libraries in many programming languages 
can be used out of box. 

 
2.4 Sustainability of GNDS-JSON Support 

 
As illustrated in Fig. 1 and emphasized by Fig. 4, the 

GNDS-JSON nuclear data is generated by tools based 
on the Fudge code. 

 

 
Fig. 4. Generation of GNDS and GNDS-JSON formatted 

nuclear data. MSG stands for the MessagePack binary format 
for JSON. 

 
Because GNDS (XML/HDF5) and GNDS-JSON are 

rooted from the same GNDS specifications, the GNDS-
JSON formatted data can be converted from GNDS 
(XML/HDF5) with little efforts. 

Published in the on-line repository [21], nuclear data 
from BROND 3.1, CENDL 3.2, ENDF/B-VIII.0, JEFF 
3.3, JENDL 4.0 and JENDL 5.0 in GNDS-JSON are 
open to public access. In the future, when a new nuclear 
data library is published, only a one-time effort is 
required on to prepare a copy in the GNDS-JSON 
format. 

Because of the availability of nuclear data in GNDS-
JSON now and in the foreseeable future, the adoption of 
GNDS-JSON is a sustainable option. 

 
3. Technical Details of FrendyPlus 

 

 
Fig. 5. An overview of the FrendyPlus extensible interface 

to the Frendy nuclear data processing code 
 
This section addresses details about the design of 

FrendyPlus as an extensible interface to the Frendy 
nuclear data processing code. 

 
3.1 The Frendy Nuclear Data Processing Code 

 
The Frendy nuclear data processing code has a recent 

release of the version 2 (2022/11/04, Ver. 2.01.000) 
[18]. The Frendy code takes nuclear data in the ENDF-6 
format, which is mapped to the ENDF C++ objects in 
memory. However, the ENDF objects are not directly 
used for data processing procedures, and these ENDF 
objects need being converted into the Frendy C++ 
objects. All processing procedures such as cross section 
reconstruction are built on these Frendy C++ objects. 

Traditionally, a nuclear data processing code follows 
the way NJOY code adopts, where an input file 
specifying the steps of nuclear data processing is read 
and followed by the program. Frendy is able to directly 
handle NJOY input files, but also has its own version of 
input files. 

 
3.2 FrendyPlus Design Overview 

 

 
Fig. 6. Comparison of the C and C++ interfaces to a library 
 
One of the design goals of FrendyPlus is to enable an 

easily extensible interface to Frendy. So, the Julia and 
Python programming languages are chosen as the 
frontend languages, with which the users interact by 
writing source codes. 

As illustrated in Fig. 5, on top of the FrendyPlus 
library, a C interface to FrendyPlus is prepared for 
Julia/Python to communicate with the FrendyPlus 
library. Unlike previous approaches used in PyNJOY 
and OpenMC NJOY utilities, the communication with 
underlying processing code is done in memory. 

Besides the C interface, as illustrated in Fig. 6, Julia 
can use the 3rd-party library such as CxxWrap.jl [22], 
and Python can use the 3rd-party library such as 
PyBind11 [23] to better interact with the library 
underneath written in C++. These interfaces are called 
the C++ interface. In these approaches, the 
programming patterns in Julia or Python are kept intact, 
but it requires external coding efforts for the 
development of interface to the underneath library. 
What makes it worse, these approaches require 
compilation of the underlying C++ libraries and linkage 
to the Julia or Python development libraries (written in 
C/C++), which will cause extra efforts to config the 
software environment and build up compilation 
toolchain. 

Therefore, to make the FrendyPlus library more 
portable, plain C interface instead of C++ interfaces is 
shipped. 
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The FrendyPlus libraries are tested in computing 
environment with a combination of operating systems 
(OS) and CPU architectures as summarized in Table III. 
The precompiled FrendyPlus libraries on 
Windows/Linux /MacOS and x86-64 (AMD64)/aarch64 
(ARM64) CPUs are provided in the online repository 
[24], except for Windows on aarch64 CPUs (not for 
technical reasons). In all platforms listed, there are Julia 
and Python interface visioned. The Julia interface is 
ready, but the Python interface is under development. In 
the meanwhile, the calling to the FrendyPlus libraries 
through C interface are tested on all supported 
platforms. 

 
Table III: Current System Architecture Support for 

FrendyPlus  

OS Architec
ture 

FrendyPlus 
Library 

Julia 
Interface 

Python 
Interface 

Windows x86-64 Yes Yes Not yet 
Windows aarch64 Not yet Yes Not yet 

Linux x86-64 Yes Yes Not yet 
Linux aarch64 Yes Yes Not yet 

MacOS x86-64 Yes Yes Not yet 
MacOS aarch64 Yes Yes Not yet 

 
The preparation of the FrendyPlus libraries keeps the 

minimization of the external dependencies in mind. 
Details about the dependencies are summarized in 
Table IV. On Linux, the Lapack version 3 libraries are 
needed, which is accessible on nearly all Linux 
distributions. On MacOS and Windows, no external 
libraries are required. 

 
Table IV: External Dependencies of the FrendyPlus 

Libraries 

OS Dependencies 
Windows All dependencies internal 

Linux Need Lapack version 3 runtime 
libraries 

MacOS OS provided frameworks 
 
The FrendyPlus online repository is has the following 

structures: 
l /doc: documentation providing extra 

information beyond the ReadMe file 
l /examples: example nuclear data and input files 
l /julia: applications in Julia programming 

language 
l /lib: platform dependent compiled FrendyPlus 

libraries with necessary dependencies 
l /python: applications in Julia programming 

language 
 

3.3 Support for GNDS-JSON Nuclear Data Format 
 

One of the design goals for FrendyPlus is to provide 
first class support for the GNDS-JSON nuclear data 
format as to ENDF-6. 

In order to support the GNDS-JSON formatted 
nuclear data, utilities to convert the GNDS-JSON data 
into the Frendy objects are needed according to the 
recent JAEA’s efforts to support GNDS in Frendy [25]. 

 

 
Fig. 7. The conversion rules from GNDS-JSON to ENDF-6  
 
The conversion requires the mapping from GNDS-

JSON data structures to that of ENDF-6. As indicated 
by Fig. 7, some of the important first level keys in the 
GNDS-JSON data structure are identified.  

The general description is extracted from the data 
styles and mapped into ENDF-6 file 1 section 451. The 
resonance parameters are mapped into the ENDF-6 file 
2 section 151.  

Unlike ENDF-6, GNDS-JSON collects the data of 
the same reaction together. In ENDF-6, files such as 
number 3, 4, 5, 6 only store portions of the nuclear 
reaction data. So, the data corresponding to different 
ENDF-6 files need to be separately extracted from 
GNDS-JSON reaction data. 

In GNDS-JSON, there are also sums of reaction 
properties. The most common sum is the sum of cross 
sections, which is mapped to ENDF-6 file 3. 

Currently, in the technical demonstration shipped 
online, only enough implementation to process the 
neutron-neutron reaction (Material ID MAT=25) from 
ENDF/B-VIII.0 is provided. 

As a side notice, JAEA is developing the next version 
of Frendy with support for GNDS [25]. The FrendyPlus 
may by then be upgraded to support GNDS as well. 

 
3.4 FrendyPlus Applications 

 
As discussed in section 3.2, there are some 

applications provided in Julia and Python (Python’s 
interface not yet ready) to facilitate the processing of 
nuclear data. All applications have the same 
functionality between Julia and Python. On one hand, 
these applications provide examples for the user to 
integrate the FrendyPlus extensive interface into their 
own data processing pipeline, and on the other hand, 
these applications provide important common 
components for nuclear data processing. 

Theses applications are listed as followed: 
l run_frendy: it is the application (run through 

Julia/Python) providing the same interface to 
the original Frendy executable. It is for the user 
to quickly start up with the FrendyPlus without 
scarifying the familiarity with Frendy 
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l build_ace_from_endf: it is the application 
converting an ENDF-6 file to an ACE file. The 
steps including resonance reconstruction, 
Doppler broadening, gas production cross 
section generation, probability table generation 
and ACE file generation are decoupled. The 
communication with the Frendy library 
underneath is done in memory. 

l build_ace_from_gnds_json: same as the 
build_ace_from_endf application, but the input 
file is in the GNDS-JSON format. The 
underlying support for GNDS-JSON is under 
development. The user can only test it with the 
provided neutron-neutron reaction data 
(Material ID MAT=25) from ENDF/B-VIII.0. 

l build_ace_thermal_from_endf: it is the 
application converting an ENDF-6 thermal 
scattering file to an ACE file. The steps are 
similar to the neutron ACE file generation case, 
except that a thermal scattering cross section 
generation stage is inserted between gas 
production cross section generation and 
probability table generation. 

l build_openmc_hdf5_from_endf: it is the 
application converting an ENDF-6 file into an 
HDF5 file for OpenMC Monte Carlo neutron 
transport code. Unlike ACE files, the nuclear 
data at different temperatures in HDF5 files are 
stored together, and the common parts among 
these ACE files are stored only once. With the 
new in-memory operation interface, no 
intermediate ACE files are generated. So, the 
storage space is saved. The verification of 
Monte Carlo neutron transport using OpenMC 
is further discussed in section 4. 

 
4. Verification of Continuous Energy Monte Carlo 

Simulation 
 
This section verifies the nuclear data generated from 

FrendyPlus with the Doppler defect pin-cell 
benchmarks [26] simulating with OpenMC code. It is 
also a demonstration of the seamless integration the 
OpenMC Python nuclear data utilities. 

 
4.1 Integrated Support for OpenMC HDF5 Format  

 

 
Fig. 8. Traditional workflow for converting ENDF-6 files to 

OpenMC HDF5 files 
 

OpenMC uses custom HDF5 nuclear data files. 
Traditionally, as indicated in Fig. 8, ENDF-6 nuclear 
data files are first processed by code such as NJOY or 
Frendy to generate ACE files. Then, the ACE files are 

converted by OpenMC Python utilities to generate 
HDF5 files. 

 

 
Fig. 9. An integrated FrendyPlus application in Julia or 

Python for converting ENDF-6 files to OpenMC HDF5 files 
without the generation of intermediate ACE files 

 
However, since each temperature needs a separate 

ACE file, when the number of temperatures is large, 
there can be significant requirement of storage for these 
intermediate ACE files. 

For this reason, the FrendyPlus provide a C interface 
to directly read the ACE NXS/JXS/XSS tables and 
directly send these tables to the OpenMC Python 
utilities in memory. As illustrated in Fig. 9, no 
intermediate ACE files are generated. So, the storage is 
saved. Moreover, floating point number precision is 
also increased, since the ACE files only keep 12 digits, 
and by accessing data directly in memory, full double 
precision is preserved, which is about 16 digits. 

Thanks to the PyCall library, the Python data 
structures can be directly accessed and manipulated in 
Julia without data copy. The syntax to use Python 
libraries in Julia is similar to the native Python. For 
example, the following code in Python: 

data = openmc.data.IncidentNeutron.from_ace(table) 

is replaced by the Julia code: 
local data = openmc.data.IncidentNeutron.from_ace(table) 

where the syntax is almost the same. 
The simulation of the Doppler defect benchmarks 

requires the generation of data at the temperatures of 
0K, 600K, and 900K. Although not used, the 0K cross 
sections are intended for the resonance scattering 
calculation. 

 
4.2 Simulation of the Doppler Defect UO2 Pin-cell 
Benchmarks without Thermal Scattering 

 
The Doppler defect benchmark problems study the 

Doppler broadening effects of fuel in the pin-cells. 
Simulation here includes 14 cases of Pin-cells filled 
with the UO2 fuel. The data is from ENDF/B-VIII.0, 
and both the HDF5 formatted nuclear data from 
FrendyPlus and NJOY2016 are adopted by OpenMC. 
The simulation parameters are summarized in Table V. 

 
Table V: Simulation Parameters for Doppler Defect UO2 

Pin-cell Benchmarks without thermal scattering 

Parameter Value 
Code OpenMC version 0.13.1 

Total Batches 4,000 
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Inactive Batches 100 
Particles per Batch 10,000 

H in H2O 
S(a,b)/Thermal 

Scattering 
Not considered 

Unresolved Resonance Considered 
Resonance Scattering Not considered 

 
The results of K-effective eigenvalues along with 

standard deviations are listed in Table VI. 
 
Table VI: K-Effective Values for Doppler Defect UO2 Pin-

cell Benchmarks without Thermal Scattering 

 FrendyPlus NJOY2016 
0.711% 600K 0.65779(10) 0.65760(10) 
0.711% 900K 0.65229(10) 0.65232(10) 
1.6% 600K 0.95773(13) 0.95808(13) 
1.6% 900K 0.95011(13) 0.95030(13) 
2.4% 600K 1.09994(14) 1.09998(14) 
2.4% 900K 1.09139(14) 1.09154(14) 
3.1% 600K 1.18040(14) 1.18054(14) 
3.1% 900K 1.17129(14) 1.17169(14) 
3.9% 600K 1.24503(14) 1.24525(14) 
3.9% 900K 1.23563(15) 1.23578(15) 
4.5% 600K 1.28148(15) 1.28177(14) 
4.5% 900K 1.27213(15) 1.27209(14) 
5.0% 600K 1.30693(14) 1.30635(14) 
5.0% 900K 1.29730(14) 1.29695(15) 

 
The difference in K-effectives in terms of the number 

of standard deviations between FrendyPlus and NJOY 
for each of the 14 cases are plotted in Fig. 10. All 
differences are within 4 times of standard deviations. So, 
the agreement of K-eigenvalues is good. Although the 
plot hints that FrendyPlus produces slightly larger K-
Eigenvalues, there are too few comparation cases to 
draw an affirmative conclusion. 

 

 
Fig. 10. Distribution of the relative difference K-Effective 
between FrendyPlus and NJOY in terms of number of 

standard deviations among the 14 cases of UO2 benchmarks 
without thermal scattering 

 

The Doppler coefficients calculated as in Eq. (1) are 
compared in Fig. 11. Both FrendyPlus and NJOY have 
the results agreed within 1-2 standard deviations. 

 

              (1) 
 

 
Fig. 11. Comparison of Doppler coefficients for UO2 

benchmarks without thermal scattering 
 

4.3 Simulation of the Doppler Defect UO2 Pin-cell 
Benchmarks with Thermal Scattering 

 
Similar to section 4.2, in this section, the UO2 pin-

cell benchmark problems are simulated with Hydrogen 
in H2O thermal scattering. The thermal scattering 
nuclear data file comes from ENDF/VIII.0 library, 
which is processed by FrendyPlus into the OpenMC 
HDF5 format. Again, no intermediate ACE files are 
generated. The simulation configurations follow Table 
V, except that the thermal scattering is considered. 

The results of K-effective eigenvalues along with 
standard deviations are listed in Table VII. 

 
Table VII: K-Effective Values for Doppler Defect UO2 

Pin-cell Benchmarks with Thermal Scattering 

 FrendyPlus NJOY2016 
0.711% 600K 0.65365(10) 0.65349(10) 
0.711% 900K 0.64801(10) 0.64809(10) 
1.6% 600K 0.95308(13) 0.95342(13) 
1.6% 900K 0.94589(13) 0.94559(13) 
2.4% 600K 1.09541(14) 1.09542(14) 
2.4% 900K 1.08669(14) 1.08707(14) 
3.1% 600K 1.17623(14) 1.17615(14) 
3.1% 900K 1.16720(14) 1.16723(14) 
3.9% 600K 1.24102(14) 1.24105(15) 
3.9% 900K 1.23204(14) 1.23184(14) 
4.5% 600K 1.27794(14) 1.27813(14) 
4.5% 900K 1.26867(14) 1.26833(15) 
5.0% 600K 1.30320(14) 1.30311(14) 
5.0% 900K 1.29345(14) 1.29337(14) 

 
The difference in K-effectives in terms of the number 

of standard deviations between FrendyPlus and NJOY 
for each of the 14 cases are plotted in Fig. 12. All 
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differences are within 3 times of standard deviations. So, 
the agreement of K-eigenvalues is good. 

 

 
Fig. 12. Distribution of the relative difference K-Effective 
between FrendyPlus and NJOY in terms of number of 

standard deviations among the 14 cases of UO2 benchmarks 
with thermal scattering 

 
The Doppler coefficients calculated as in Eq. (1) are 

compared in Fig. 13. Both FrendyPlus and NJOY have 
the results agreed within 3 standard deviations. 

 

 
Fig. 13. Comparison of Doppler coefficients for UO2 

benchmarks with thermal scattering 
 

5. Discussion of Cross-Platform Dependencies 
 
This section discusses dependencies of the 

FrendyPlus libraries, including the modifications 
applied on the underlying Frendy libraries. 

 
5.1 Free from Boost Library Linkage 

 
The Frendy libraries rely on the Boost C++ libraries 

[27] to provides timing utilities, which requires 
dynamic linkage to the `boost_chrono` and 
`boost_timer` libraries. Relying on any specific version 
of Boost will impair the capabilities of cross-platform 
migration. So, the linkage to Boost library is removed. 

 
5.2 Unix Directory Support on Windows  

 

The Frendy libraries rely on the POSIX file system 
directory utility C header `<dirent.h>`, which is 
replaced by a Windows substitute. [28] 
 

 
6. Conclusions 

 
FrendyPlus as an extensible interface in Julia/Python 

programming languages to the Frendy nuclear data 
processing code has been proposed. FrendyPlus enables 
nuclear data processing procedures built directly in 
Julia/Python source codes without the use of input files. 
Cross-platform FrendyPlus binary libraries have been 
provided to enable a consistent user experience across 
different OS and CPU architectures. The example 
scripts of processing neutron and thermal scattering 
reactions have been provided in the online repository. 
And in the meanwhile, the seamless integration with 
OpenMC Python utilities to generate the HDF5 data 
files has been demonstrated. In the demonstration, 
consistent results of K-Eigenvalues from FrendyPlus 
and NJOY for the Doppler defect UO2 pin-cell 
benchmark problems are achieved. Moreover, 
FrendyPlus is the first nuclear data processing code 
demonstrating initial support for GNDS-JSON 
formatted nuclear data. 
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