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Abstract: In this article, we explore the efficiency of the discrete generalized multigroup (DGM) method, 

underpinned by the proper orthogonal decomposition (POD). The DGM method can utilize orthogonal basis functions 

to collapse fine-group fluxes and cross sections to a coarse-group structure. By solving the neutron transport equation 

in a coarse-group structure, the DGM method can effectively reconstruct fine-group flux. To study the effectiveness 

and the efficiency of this method, we choose two typical benchmark problem, includes: 1D UO2-MOX-combination 

assembly problem and 1D HTTR assembly problem. We analyze the accuracy of the method based on different 

snapshot and the efficiency improvement by limiting the truncation order and reconstruction iterations is further 

studied. By constraining reconstruction iterations, this method can reconstruct fine-group energy spectrum with the 

majority of fine-group flux deviations within 1%, while utilizing only 40% of the time required for fine-group 

transport calculation. 

 

*Keywords : the discrete generalized multigroup method; proper orthogonal decomposition; interference; cross 

section collapsing; efficiency 

 

 

 

 

1. Introduction 

 

In the field of reactor physics design, the 

deterministic two-step method remains the primary 

simulation method, due to the advancement of one-step 

methods with the limitations in computational resources. 

However, the current two-step method is based on 

equivalent homogenization and full reflection boundary 

assembly calculations, which can’t effectively meet the 

demands of increasingly complex designs for the new-

generation reactor cores [1]. Various approaches have 

been explored to address the shortcomings of the 

existing two-step method framework [2]. Among these 

approaches, one method is the discrete generalized 

multigroup method (DGM), which uses an orthogonal 

basis to convert a set of fine-group cross sections into a 

set of cross section moments mapped to a coarse-group 

structure [3-5]. These coarse-group cross section 

moments may be used as cross sections in coarse-group 

transport calculations, which lead to coarse-group flux 

moments. The coarse-group flux moments can be 

expanded to produce the fine-group flux using the basis 

functions. This fine-group flux can be used to reconvert 

the fine group cross sections to coarse group moments, 

which continues iteratively until convergence to 

eliminates the error from hypothetical fine energy 

spectrum[6]. However, this method needs to solve the 

higher order moments to obtain sufficiently 

approximate flux spectrum[7]. Richard Reed further 

developed this method by introducing proper 

orthogonal decomposition (POD) into this field. 

performing POD on energy spectrum snapshots can 

obtain orthogonal basis functions that contain physical 

information, which can effectively reduce the truncation 

order[7-9]. However, these studies were limited to 

problems related to light water reactors and didn't 

extensively investigate efficiency. In this work, our 

research expands this method to the more complex 

energy spectrum of the High-Temperature Test Reactor 

(HTTR) problem and conducts preliminary efficiency 

studies. 

 

2. Background 

 

In this section some of the techniques used to model 

the detector channel are described. The channel model 

includes a SiC detector, cable, preamplifier, amplifier, 

and discriminator models.  

 

2.1 Detector Model 

 

Zhu and Forget developed the discrete generalized 

multigroup(DGM) method, which is a way to represent 

the energy-space of a problem from within most 

transport approximations[4]. In this study, we use 

discrete ordinates as this this approximation. Due to it, 

we start with the 1D Sn k-eigenvalue equations with 

multigroup approximation, written as: 
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Where 

, , Ψc g is the angular flux in cell c for group g in 

direction of angle α ； 

 is the cosine of the angle α ； 

,
 

t

c g is the total cross section in cell c for group 

g； 

,, ,
 

s

c g g l  is the lth order Legendre moment of 

the scattering cross section from g’ to g in cell c； 

K is the eigenvalue； 

,c g  is the fission spectrum in cell c for group g; 

,,
 

f

c g is the fission cross section in cell c for 

group g; 

( )lP   is the normalized Legendre polynomial 

of lth order evaluated at  ; 

lN  is the order of Legendre expansion; 

gN is the number of energy groups 

And 

 ( ), , ,, ,
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aN

a l a c a gc g l
a

w P  
=

 =  (2) 

Where Na is the number of discrete angles. The 

weight corresponding to the discrete angle Uα  is Wα  for 

the chosen angular quadrature scheme. 

Now, we divide the energy groups g into a number of 

coarse groups G such that each fine group belongs to 

one coarse group G as: 
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Now, we introduce a set of orthonormal basis vectors 

( )G

iP g , where i is the order of the basis, G is the 

coarse group for the expansion. The Legendre 

polynomials have been used as the basis vectors in the 

original works. The basis vectors is from the 

performing proper orthogonal decomposition (POD) on 

snapshots, which will be presented in the following 

section in the present work. 
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In which, we define the flux moment as: 
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Now, we can define the mapping relationship from 

fine group cross sections to the coarse group structure 

as: 

 
( )

0 , ,0,

, ,0
0 , ,0

gG

c gt g G c t

Gc G
c gg G

P

P g









=
 




 (7) 

 
( )

( )

, ,, , ,0

, , ,

0 , ,

( )
t tG

i c a gg G c g c G

c a G i G

c a gg G

P g

P g










−
=
  


(8) 

 
( )

( )

,, , ,

,

,, ,

0 , ,, ,

, , ,
0 , ,

sG

s c g lg G c g g l

Gc G G i l

c g lg G

P g

P g





 





=
 




 (9) 

 
( )

( )

0 , ,0,

,
0 , ,0

fG

c gf g G c g

Gc G
c gg G

P g v
v

P g









=
 




 (10) 

 ( ), , ,

G

c G i i c g

g G

P g 


=  (11) 

 
Combine the definitions in Eq.(6) and (8) yelids: 
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Eqs. (9)–(12) are substituted into Eq. (4) with Eq. (6) 

to yield, and split the total cross section to two 

components 
, ,0

 
t

c G  and , , ,c a G i , which represent the 

scalar and angular dependent components.  
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In Eq(13), the term , , ,c a G i  represents the correction 

to isotropic total cross section.  

 

2.2 Proper orthogonal decomposition 

 

The previous work has shown that the common 

mathematical orthogonal basis functions needs the 

higher degrees of freedom to approximate the fine 

group flux. We seek a form of basis functions which 

utilize proper orthogonal decomposition) to incorporate 

spectral snapshots to generate. The central goal of POD 

is to generate an orthogonal basis expansion with a 

truncated order N that minimizes the least squares error 

with the target function f(x). In some applications, such 

as image compression, the function f is predetermined, 

e.g., a set of pixel values. For other applications, such 

as reduced order modeling, the function f is not known. 

Snapshots is a method used to generate the POD basis 

[10]. In this work, we regard the fine group flux as the 

snapshot, which is a priori unknown. Hence, selecting 

appropriate snapshots is also a crucial task in this work. 

The energy-dependent flux within a spatial cell of the 

representative (test) problem is a snapshot denoted by 

the vector dn. These vectors form the columns of the 

matrix *M ND R , where M is the number of energy-

groups, and N is the number of snapshots. The basis is 

formed by first defining the matrix TB D D= , which 

is semi-positive definite. Alternatively, the method 

could proceed using D instead of B as the methods are 

equivalent, but a semipositive definite matrix simplifies 

much of the linear algebra. 

We perform the SVD on the matrix B, which is 

equivalent to the eigen-decomposition for semi-positive 

definite matrices as: 

 
1T

B B BB U V Q Q−=  =   (14) 

where 
*N N

BU R  and 
*N N

BV R  are unitary and 

contain the left andright singular vectors, respectively. 

The matrix 
*N N

B
R is a diagonal matrix 

containing the singular values. The matrix 
*N NQ R is 

unitary and contains the eigenvectors of B with 

corresponding eigenvalues contained in the diagonal 

matrix *N NR . 

Since the matrix B is semi-positive definite, 

B B DU V Q V= = =  are the right singular vectors of D, 

and 
2

B B D=  =   are the square of the singular 

values of D, i.e., 

 
2

T T T

D B D D D D

T

D D D

D D V U U V

V V Q Q

=   =

 = 
 (15) 

To form the POD basis, first we arrange the singular 

values and corresponding vectors in decreasing order, 

which sets the zeroth order basis as the most 

fundamental mode within the snapshots. Now, project 

the snapshots onto the modes as: 

   D=j jp q  (16) 

Alternatively, expressed in matrix form: 

     P DQ=  (17) 

An arbitrary length M vector f may be approximately 

represented as: 

 

0

k

j j

j

f a
=

 p  (18) 

The POD basis creates the set of length M basis 

vectors which provide the best kth order expansion in 

the least squares sense as long as the snapshots closely 

approximate the function f. If N≥M then the basis P is 

complete and any length M vector can be reproduced 

exactly using the first M vectors of P. 

Since the DGM method requires a flat zeroth order 

basis as previously mentioned, such a vector is inserted 

as p0, and the remaining columns are shifted by one. 

The vector corresponding to the smallest eigenvalue is 

discarded, and the matrix P is reorthonormalized. This 

work will explore how closely the snapshots must 

approximate the fluxes to provide an adequate basis for 

the DGM method when using truncated basis sets. 

 

3.method  

 

3.1 DGM algorithm 

 

In order to assess the effectiveness and efficiency of 

the POD-based DGM method, in this study, we 

extended the development of the 1-D discrete ordinates 

code, originally developed by Richard Reed. The same 

16-angle Gauss Legendre quadrature and the diamond-

difference approximation were employed in this work. 

The code follows the recondensation algorithm 

employed in previous work and the Krasnoselskii 

iteration[1]. The core formula of this iterative format 

can be represented as follows: 

 
( ) ( )1

1
n n nx x Ax 
+
= − +  (19) 

Notice that if k is set to unity, Krasnoselskii iteration 

reduces to Picard iteration. Eq. (19) is used in the DGM 

algorithm to compute the fine-group flux used in the 

next recondensation iteration. By adjusting the value of 

 , one may select for higher computational expense in 

exchange for stability. Thus there exists an optimum 

value for k, which cannot be known a priori, which 

produces a stable (convergent) progression with the 
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least computational work. It was found that a (non-

optimum) value. In our study, a uniform value of λ=0.8 

was employed for the sake of computational stability. 

Building upon the previous work, the core logic of 

the code has been established. According to the eq 11 

mentioned earlier, the moments of the fission spectrum 

do not depend on the reconstructed energy group flux, 

which can be observed that before the iteration process. 

In the iteration process, the moments of cross-sections 

can be calculated using the current iterative orthogonal 

basis and fine-group flux. This is followed by using the 

transport solver to solve for the zeroth-order flux 

moment and eigenvalue, as described in equation (13). 

Finally, with the obtained moments, the source terms of 

higher-order moments are solved as per the zeroth-order 

solution. Once all the moments are obtained for the 

current state, the fine-group flux can be updated using 

the orthogonal basis. The process iterates, updating 

cross-section moments in each iteration until 

convergence criteria are met. The DGM computation 

process is illustrated in Algorithm 1. As shown below: 

 

Algorithm 1: Recondensation algorithm for the DGM 

method 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Input: mesh, material, basis functions 

Result: updated flux, coarse group sections 

Calculate χ and Q moments 

Initial fine group flux 

While not converged do 

Compute flux moments 

Compute cross section moments 

Solve the order 0 equation 

Update eigenvalue 

For the moment in order=i>0 do 

    Solve ith-order equation 

End 

Reconstruct the fine group flux 

End  

 

3.2 Selecting Coarse group structure 

 

Another distinction between the DGM method and 

traditional group condensation methods is that its 

coarse-group structure selection doesn't follow the 

current conventional general coarse-group structures. 

Instead, it's based on a set of specific group-collapsing 

constraints, ensuring the stability and efficiency of the 

DGM method. Previous work[1] suggested guidelines 

for selecting an appropriate structure that allows higher 

values of k for use in Krasnoselskii iteration. The 

guidelines used in this work are: 

 Limit ratio of smallest to largest  within coarse-

group, where  has been averaged over the fuel 

materials 

 Relax ratio condition for coarse-groups with small 

 
 Limit the number of fine-groups per coarse-group 

 Force coarse-group breaks where desired 

In this work, due to the test problem with different 

energy spectrum and energy group structure. the Scale 

44- and 238-group structures were considered to esting 

the applicability of this method. 

 

4 Test problem 

 

In this study, we tested two problems. One is the 

commonly used 1D repeating 44-group UO2 and MOX 

10-pin problem for testing the DGM method program 

shown in figure1 for testing the code and the snapshot 

choice method. There are 22 fuel mesh and water in 

every cell for this problem. The other is the more 

complex 1D 238-group HTTR problem with a more 

intricate energy spectrum shown in figure2 to optimize 

the efficiency of the DGM method[11]. The mesh 

discretization for this problem is more complex than the 

10-pin case. Please refer to Table 1 for specific details. 

 

 
Fig.1. Depiction of the 10-pin problem 

 

 
Fig.2. Depiction of the HTTR problem 

 

Tab.1 Depiction of the detail in HTTR problem 

Geometry Material 

Width Mesh 

number 

Graphite 

reflector 

Fuel Center 

graphite 

0.9046 5 Graphite+B4C Graphite  Graphite 
0.3819 2 Graphite+B4C He Gas  Graphite 
0.3492 2 Graphite+B4C Sleeve  Graphite 
0.4190 2 Graphite+B4C Fuel  Graphite 
0.1455 1 Graphite+B4C He Gas  Graphite 
0.4190 2 Graphite+B4C Fuel Graphite 
0.3492 2 Graphite+B4C Sleeve  Graphite 
0.3819 2 Graphite+B4C He Gas  Graphite 
0.9046 5 Graphite+B4C Graphite Graphite 

 

As discussed previously, the POD basis requires a 

number of spectral snapshots with which to construct 

the orthogonal basis. The best snapshots would be from 

the full spectral shape for the complete problem, and 

these were used to create the ‘‘full” basis in both 

problem. In practical applications, these snapshots 

would be unavailable as the solution to the problem is 

required to solve the problem. However, the full 

snapshots provide insight into the best performing POD 

basis functions, thus are used as a comparison in this 

work 
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5 result 

 

5.1 10-pin problem 

 

The small representative snapshot is created to 

replace the full problem snapshot, which include: 

infinite pins of UO2 pins with reflective boundary, 

infinite pins of MOX pins with reflective boundary, the 

juntion of the above two pins, a UO2 pin adjacent to a 

MOX pin that includes the interference in the combine. 

These snapshots are respectively referred to as “UO2”,” 

MOX”, “junction”, “combine”. The cross section of 

these snapshots are predefined in the continuous Monte 

Carlo code SERPENT[12]. then with our SN code to 

obtain the fine group energy spectrum. 

In this problem, the ratio of smallest to largest cross 

section was set to 1.3. This atio was ignored if the 

largest total cross section within the coarse group was 

below1.0 cm-1. Finally, a maximum of 60 fine groups 

were allowed within each coarse group. The mapping 

between coarse group and fine group is shown in Table 

2 as follows: 

 

Tab.2. The mapping relationship of 10-pin problem 

CG FG 

0 1～26 

1 27～41 

2 42～43 

3 44 
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Fig.3 Eigenvalue of 10-pin problem with different 

truncation orders 

 

The eigenvalue of this problem in different truncation 

orders is shown in Figure3. With 50 pcm error as 

reference, the full basis can stably converge within this 

range at 4th order. However, since this basis cannot be 

obtained in advance, the best performance is observed 

with the combine basis, which can achieve an 

eigenvalue deviation within 50 pcm at 7th order, 

specifically 37 pcm. Following this, the junction basis 

stabilizes within 50 pcm deviation at 9th order, at 49 

pcm. Both of them are generated from snapshots 

containing complete lattice information. The combine 

basis, due to obtaining the information about 

interference between lattice, performs better. On the 

other hand, the UO2-basis and MOX-basis, containing 

relatively incomplete physical information, exhibit 

relatively poorer performance, only showing better 

eigenvalue deviation results in the full order, which is 

similar to the DLPs basis. 

The energy spectrum of different basis in 5th order is 

shown in Figure4. Due to the presence of negative 

fluxes at low truncation orders, in this study, to 

standardize this process, an absolute value operation 

was applied to the final accumulated energy spectra. 

The Figure5 is the energy spectrum deviations of 

different basises with 44-group SN transport calculation 

result. The absolute value operation was also applied to 

the deviations. 

To further analyze the accuracy of the combine basis in 

energy spectrum reconstruction, a comparison was 

conducted for the deviations between the energy 

spectrum of UO2-pin, the MOX-pin through 

reconstruction and reflective boundary calculation with 

the most obvious interference and the two pins' energy 

spectrum obtained from 44-group fine-group 

calculations. These comparisons are illustrated in 

Figures 6 and 7, respectively. 

For the test problem, using the combine basis, effective 

reconstruction of the energy spectrum of the test 

problem can be achieved at the 7th order, with flux 

deviations for each fine energy group being less than 

0.3%. For the energy spectrum reconstruction of the 

UO2 and MOX lattice, where spatial interference is 

most evident, the flux deviations for each energy group 

remain below 0.5% at the 7th order. Compared to the 

performance of the POD parallel-group method, the 

zeroth-order spectrum, i.e., the traditional parallel-

group method's spectrum, compared to the fine-group 

spectrum, has an average flux deviation of more than 

14% even in the best-performing 1st group at fewer 

groups. 
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Fig.4. the energy spectrum of different basis in 5th 

order for 10-pin problem 



Transactions of the Korean Nuclear Society Autumn Meeting 

Gyeongju, Korea, October 26-27, 2023 

 

 

1E-111E-10 1E-9 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 0.01 0.1 1 10

0

10

20

30

40

50

60

70

80

a
b
s
o
l
u
t
e
 
e
r
r
o
r
 
w
i
t
h
 
4
4
-
g
r
o
u
p
 
e
n
e
r
g
y
 
s
p
e
c
t
r
u
m
(
%
)

energy(MeV)

 full
 combine
 junction
 UO2
 MOX

 
Fig.5. the energy spectrum deviations of different basis 

in 5th order for 10-pin problem 
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Fig.6. the energy spectrum and deviations of different 

order for combine-UO2 pin 
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Fig.7. the energy spectrum and deviations of different 

order for combine-MOX pin 

 

5.2 HTTR Problem 

 

The 10-pin problem have demonstrated the 

functionality of our program and the general principle 

of snapshot selection, which is to preserve as much of 

the physical information within the problem as possible. 

We selected the more complex HTTR problem to 

further investigate the applicability and efficiency of the 

POD-based DGM method. Based on the general 

principle, we just take study to the combine basis and 

full basis. The combine basis is from a snapshot 

developed by a graphite reflector pin, two fuel pins and 

a center graphite pin.  

In this problem, the ratio of smallest to largest cross 

section was set to 1.2. This ratio was ignored if the 

largest total cross section within the coarse group was 

below1.2 cm-1. Finally, a maximum of 30 fine groups 

were allowed within each coarse group. The mapping 

between coarse group and fine group is shown in Table 

3. 

The Table 4 shows the eigenvalue and error with 

fine-group SN result. With 50 pcm error as reference, 

the combine basis only requires a higher order than the 

full basis. The figure 8 and 9 show the reconstructed 

energy spectrum in different truncation order and the 

deviations with fine group energy spectrum. There are 

significant deviations in the energy groups with the 

lowest and highest energies. This is primarily due to the 

low flux in these energy groups, resulting in more 

negative flux values in SN calculation. After applying 

the absolute value operation, these deviations become 

prominent. However, since neutron flux is low in these 

groups, the overall impact is not substantial. The 

effective convergence of eigenvalues with truncation 

order provides strong evidence for the DGM's efficacy 

despite these deviations. 
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Table 3 mapping relations between coarse groups 

and fine groups 

CG FG 

0 1-16 

1 17-46 

2 47-76 

3 77-106 

4 107-136 

5 137 

6 138-147 

7 148-177 

8 178-207 

9 208-237 

10 238 

 

From these results, it can be observed that the 

performance of the combine basis closely aligns with 

full basis in terms of energy spectrum reconstruction for 

most fine groups. The overall eigenvalue deviations are 

also quite similar. This basis can be considered to 

represent the most effective outcome achievable with 

the POD-based DGM method in the HTTR problem. 

Examining the performance of the combine basis at 

different truncation orders reveals that at the 3rd order, 

neutron flux deviations for most energy groups are 

around 1%, while at the 4th order, deviations for most 

energy groups can be maintained at around 0.1%. 

Furthermore, the eigenvalue error can be controlled 

within 30 pcm at this order. 

 

Table 4 the eigenvalue and error of two kinds of basis 

in HTTR problem 

Order Full basis Combine basis 

keff Error/pcm keff Error/pcm 

0 0.951815 -9676.1 0.951815 -9676.1 

1 1.034203 -1437.3 1.038287 -1028.9 

2 1.046499 -207.7 1.048685 10.8 

3 1.048553 -2.3 1.049694 111.8 

4 1.048547 -2.9 1.048327 -24.9 

5 1.048580 0.3 1.048558 -1.8 

6 1.048573 -0.3 1.048566 -1.0 
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Fig.8. the energy spectrum deviations of full basis in 

different orders for HTTR problem 
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Fig.9. the energy spectrum deviations of combine basis 

in different orders for HTTR problem 

5.3 Efficiency test 
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The DGM method has effectively reconstructed the 

fine-group energy spectrum, making it possible to 

obtain homogenized cross-sections for coarse-group 

collapsing, but there are certain efficiency issues. For 

the HTTR problem, the computation time required for 

truncation up to the fourth order has become almost 

equivalent to fine-group SN transport calculations and 

even consumes more memory. Due to it, we have take 

research on its convergence process and relaxed 

convergence criteria to achieve higher. 

Figure 10 is iteration parameters change with 

reconstruction times in 10-pin problem with 3rd order 

with combine basis. This process is representative in 

which it's evident that the eigenvalues have become 

relatively stable after 50 iterations of reconstruction. 

Based on this situation, we test the method of 

calculation time through control        ing the 

reconstruction times in every order in HTTR problem. 

The eigenvalue result and the radio of reconstruction 

time to the fine group transport calculation time of 

different truncation orders with combine basis is shown 

in Table 5. The energy spectrum and deviation of 

different truncation orders with combine basis is shown 

in Figure 10. 

 

Table 5 the eigenvalue and error of combine basis in 

HTTR problem with teration times=50 

Order Eigenvalue Error（pcm） Time radio（%） 

1 1.021815865 -2676.425898 3.89 

2 1.041428935 -715.1188671 9.26 

3 1.052283352 370.3228203 15.83 

4 1.049134582 55.44584828 22.13 

5 1.048065808 -51.43161532 28.16 

6 1.048196856 -38.32677004 34.98 

7 1.047954259 -62.58652632 40.56 

 

From Table 5 and Figure 10, it can be observed that 

by controlling iteration times, although the error 

increases compared to full convergence, effective 

control over computational time has been achieved, 

making the DGM method a truly viable approach for 

group collapsing. 

6 Conclusion 

In this article, we conducted a study on the DGM 

method based on POD. We developed a 1D DGM 

computational program and tested it for snapshot 

selection and group-collapsing constraints. We achieved 

accurate energy spectrum reconstruction for 1D 10-pin 

UO2-MOX problems and the HTTR problem. 

Furthermore, we investigate the efficiency of the DGM 

method and successfully reduced computational time by 

controlling reconstruction iteration times, with a slight 

increase in calculation error. This research demonstrates 

the promising potential of the POD-based DGM method. 

In the future, we will continue to explore its efficiency 

and applicability in two-dimensional problems. 
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Fig.10. the energy spectrum deviations of combine 

basis with iteration times=50 in different orders for 

HTTR problem 
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