
Proceedings of the Reactor Physics Asia 2023 (RPHA2023) Conference

Gyeongju, Korea, October 24-26, 2023

GPU-optimized Monte Carlo code development - preliminary results

Muhammad Rizwan Ali, Murat Serdar Aygul, Deokjung Lee*

Ulsan National Institute of Science and Technology, UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan, 689-798, Korea
*Corresponding author: deokjung@unist.ac.kr

1. Introduction

Monte Carlo (MC) method is usually employed for

high-fidelity particle transport problems where

thousands of particles are simulated. MC codes can

handle complex geometries and hence provide the most

accurate representation of a nuclear reactor among the

spectrum of available methods. The expected value of a

physical quantity depends on the behavior of the

particles that travel within the geometry of the problem.

Hence, the computational intensiveness of the MC

method to obtain an accurate solution is prohibitively

large. Specifically, solving fuel depletion, reactor

transients, and multi-physics problems in a reasonable

time is still a challenge.

The advancements in, and cost-effectiveness of,

graphical processing units (GPUs), have led to a shift of

an increasing number of applications to GPU

architecture. In this context, the MC method can also

achieve much higher floating-point operations per

second (FLOPS) with the utilization of GPUs.

MCS, developed at UNIST, is a high-fidelity neutron

transport code that is highly optimized for CPU systems

and hence shows very good scalability. It can efficiently

utilize CPU-cluster systems employing both shared-

memory and distributed-memory parallelism [1].

Although a code like MCS can efficiently utilize the

available resources, a large computer cluster is required

to attain a more realistic simulation time. Not everyone

can afford a large computer cluster. Hence, an

increasing number of MC codes have either been ported

or developed for the GPU architecture. WARP is the

first continuous-energy MC code developed specifically

for GPUs [2]. GUARDYAN is a time-dependent GPU-

based MC code that can perform nuclear reactor

transient calculations [3]. Shift [4] and PRAGMA [5]

are continuous energy MC codes with PRAGMA

developed specifically for GPUs while Shift can

execute on CPUs as well as GPUs. All of these codes

employ different methods and algorithms to enhance

the performance.

In line with the requirements of reducing the

simulation time, UNIST has commenced the

development of a new GPU-optimized MC code

GREAPMC (Gpu-optimzed REActor Physics Monte

Carlo) in CUDA C++. To focus on the optimization of

geometric and neutron tracking routines, the material

treatment in GREAPMC has been simplified in the

form of multigroup cross-sections. This paper presents

algorithmic choices and modifications with reference to

MCS, initial results, and future directions for the further

development of the GPU-optimized code GREAPMC.

2. Background

2.1 GPU Architecture

A GPU can execute thousands of threads concurrently,

thus providing massive parallelization. In CUDA, 32

threads are clustered together into a warp. The threads

in a warp execute instructions in a lockstep fashion. A

reduced workload on the warp or branching instructions

where some threads have nothing to do or some threads

take different execution paths reduces the performance

of the code. Hence it is always recommended to lessen

the number of branching instructions while developing

a GPU code. A collection of warps forms a thread block.

The computational hardware of NVIDIA GPUs is

divided into Streaming Multiprocessors (SMs). Each

thread block is executed on one SM. In an MC GPU

code, a particle is assigned to one thread. Consequently,

the number of threads can far exceed what the hardware

can physically accommodate. A scheduler efficiently

manages the loading and unloading of thread blocks

onto SMs, adapting based on whether the threads within

a thread block have executed their instruction or are

awaiting data retrieval from memory.

2.2 Memory Hierarchy

A GPU consists of various types of memory, as

shown in Fig. 1 [6]. Each of them is introduced briefly

here in the slowest to the fastest order. The largest

chunk of available storage is contained in global

memory. Global memory is visible to all the threads and

it has the lowest bandwidth and the highest latency.

Fig. 1. Memory hierarchy for NVIDIA GPUs.

Proceedings of the Reactor Physics Asia 2023 (RPHA2023) Conference

Gyeongju, Korea, October 24-26, 2023

Therefore, while some threads in a thread block are

waiting for data retrieval from global memory, the

scheduler loads another warp to execute. This

effectively hides the memory latency. Consequently, the

number of warps should be large.

The scheduler can make use of a device-wide L2

cache to fetch the frequently accessed data. The next

level of memory is the L1 cache and shared memory.

These have extremely low latency and are SM-wide

(local to thread block) storage but this storage is very

limited in size. A GPU also furnishes thread-private

registers for storing local variables. These are limited in

number and when registers are full, variables are spilled

to the L1 cache.

The scheduler must choose active warps to execute,

considering the available resources like shared memory

and registers. As each SM possesses a finite quantity of

these resources, an excessive demand from individual

threads could lead to a reduction in the active warp

count. Consequently, the scheduler may struggle to

effectively conceal memory latency.

Hence, high performance on GPUs translates to high

occupancy and efficient memory management and data

transfer. A GPU card has limited memory and the data

transfer from CPU to GPU is via PCIe which can form

the bottleneck if the data transfers are not properly

managed. Parallelism on GPUs is achieved by Single

Instruction Multiple Threads (SIMT) processing. Hence,

the slowest thread determines the result from a warp of

threads. Thus, it is crucial to distribute the tasks evenly

among the threads. An even distribution will increase

occupancy and reduce thread divergence.

3. Performance Optimizations

3.1 Neutron Tracking

There are two methods for tracking neutrons within

the problem geometry. History-based neutron tracking

has been conventionally used for CPUs but for GPUs,

event-based tracking has been suggested. The

conventional history-based neutron tracking can be

detrimental to the GPU performance owing to the

variation in history lengths as shown in Fig. 2.

Fig. 2. Conventional history-based neutron tracking depicted

for 10 neutrons. The red areas show a waste of GPU resources.

To enhance the performance of the history-based

neutron tracking approach on GPUs, Profugus [7]

proposed a modified history-based tracking wherein the

history length is truncated to a specific number of

collisions. Afterward, the neutron population is sorted

based on the particle’s dead and alive status, and CUDA

function (kernel) to run on GPU is called with only

alive neutrons again. This continues until all the

neutrons are dead. The same modified history-based

tracking approach was adopted in PRAGMA. The only

change was that instead of counting only collision as an

interaction, surface crossing was also considered as an

interaction [5]. In GREAPMC, the conventional

history-based neutron tracking has been modified in the

same fashion as in PRAGMA.

3.2 Geometry Treatment

MCS employs Constructive Solid Geometry (CSG)

for modeling the problem. Since GREAPMC initially

targets PWRs, geometry modeling has been streamlined

to encompass square lattices and cylindrical rods. In

contrast to surface-oriented geometry construction, this

cell-based geometry modeling reduces the complexity,

thereby reducing the execution time of geometric

functions.

3.3 Particle Data

Maximizing the memory throughput can significantly

influence the code’s overall performance. Therefore,

ensuring memory coalescing is a vital consideration.

Coalescing is directly related to the arrangement of data

in contiguous memory locations. For example, consider

a scenario where threads within a warp need to access

the particle positions. If the position data is stored in

consecutive memory addresses, memory throughput

improves. Conversely, when memory accesses follow a

strided pattern, the memory throughput diminishes.

The particle data is most frequently accessed during

the execution of the transport loop. Therefore, unlike

MCS, the particle data in GREAPMC is arranged in a

Structure of Array (SOA) pattern. As a result, all the

data related to the position of particles is placed

contiguously, and so on for other data items.

3. Results and Discussion

This section verifies GREAPMC against MCS using a

two-dimensional pin-cell model from C5G7 [8] with

reflective boundary conditions. Both MCS and

GREAPMC are run with the same multi-group cross-

sections. The effective multiplication, volume, and

energy averaged flux tally, and fission reaction rate for

the pin cell are verified against MCS. Afterward, the

single-node performance of GREAPMC over MCS for

the two-dimensional C5G7 core problem is presented.

The specifications of the CPU and GPU nodes are given

in Table I. The GPU node consists of 2 GPU cards, but

only one card was used in the current work. Similarly,

the CPU contains 64 cores but here the problem was run

Proceedings of the Reactor Physics Asia 2023 (RPHA2023) Conference

Gyeongju, Korea, October 24-26, 2023

using a single core. Hence, the comparison is one CPU

core against one GPU card. The comparison is fair, as

the calculation of effective CPU cores takes into

account the number of CPU cores used for the

comparison as specified in Eq. (1) [7].
() ()Number of CPU Cores CPU run time

Effective CPU Cores =
GPU run time

 (1)

3.4 Pin-cell Model

Pin-cell model consists of two regions, a moderator

and a fuel-clad mixture as shown in Fig. 3.

Table I: Node Specifications

 Quantity Value

GPU

Model
NVIDIA GeForce RTX

3090

Base Clock 1695 MHz

Memory 23.7 GB

CPU

Model AMD EPYC 7452

Base Clock 2350 MHz

Memory 251 GB

Fig. 3. C5G7 pin-cell model consisting of two regions.

The results of the multiplication factor, reaction rates,

and flux tally are presented in Table II. Here 50 inactive,

250 active cycles with 5×106 histories per cycle.

Table II: Verification of GREAPMC

Quantity GREAPMC MCS

keff
1.32562 ±

1.628×10-5

1.32563 ±

1.701×10-5

Flux Tally
41.7672 ±

1.11×10-5

41.7467 ±

1.068×10-5

Fission

Reaction Rate

0.539789 ±

1.31×10-5

0.539910 ±

1.195×10-5

The results show that the global parameters calculated

by GREAPMC are in close agreement with MCS. The

reactivity difference comes out to be 0.56 ± 1.33 pcm.

Similarly, the absolute difference in the flux tally result

is 0.0205 ± 1.55×10-5, while in the fission reaction rate,

the absolute difference is 1.21×10-4 ± 1.77×10-5. The

standard deviation in flux is smaller than in fission

reaction rate as flux is tallied more often compared to

fission reaction rate. Currently, efforts are directed

toward the implementation of the ability to tally pin-by-

pin flux and power within GREAPMC. Fig. 4 shows the

core used here for computing the speedup of

GREAPMC. The figure shows only xy-view. The

boundary condition in the z-direction is also reflective.

The core consists of two types of assemblies in line

with the C5G7 benchmark. But here full core has been

modeled instead of a quarter core.

Fig. 4. Core model with reflective boundary conditions

Although the results are computed for multiple

numbers of histories per cycle, only the results for

5×106 histories per cycle are presented here. The

number of active and inactive cycles is the same as in

the pin cell case. Table III shows the results. For easy

comparison, the time has been normalized against the

time that GREAPMC takes to run the problem. Hence,

if GREAPMC takes 1 s to run the problem then MCS

will take 369 s. The speedup directly computed from

this normalization comes out to be 369.

Table III: Comparison of keff and normalized time

Quantity GREAPMC MCS

keff
1.18651 ±

2.01×10-5

1.18650 ±

2.00×10-5

Average time

(per cycle)
1 s 369 s

The reactivity difference for this case between

GREAPMC and MCS comes out to be 0.71 ± 2.01 pcm.

The speedup with the variation in the number of total

histories for the core problem is shown in Fig. 5. With

increasing the number of histories, the GPU shows an

increase in speedup. This shows that with an increase in

load, the GPU more effectively hides the memory

latency. The speedup seems to saturate as the total

number of histories increases. As the speedup directly

reflects the tracking rate. Therefore, the tracking rate

also saturates with an increase in the number of

histories.

Proceedings of the Reactor Physics Asia 2023 (RPHA2023) Conference

Gyeongju, Korea, October 24-26, 2023

3. Conclusions

In conclusion, the ongoing development of the GPU-

optimized Monte Carlo code, GREAPMC, at UNIST

holds immense promise in reactor simulations. The

preliminary performance evaluations show a remarkable

speedup compared to MCS. The target goals for the

GREAPMC code development are pin-by-pin tally

capability, optimization of the neutron tracking

approach, continuous energy treatment, and cycle

depletion capability.

Fig. 5. Speedup plot for the core model

The inclusion of continuous energy treatment ensures

greater accuracy in capturing complex reaction behavior.

Furthermore, the inclusion of cycle depletion capability

will elevate the versatility of GREAPMC, enabling the

investigation of long-term reactor behavior.

ACKNOWLEDGEMENTS

This research has been supported by project

L20S089000, funded by Korea Hydro & Nuclear Power

Co. Ltd.

REFERENCES

[1] H. Lee et al., "MCS – A Monte Carlo particle

transport code for large-scale power reactor analysis," Annals

of Nuclear Energy, vol. 139, p. 107276, 2020/05/01/ 2020,

doi: https://doi.org/10.1016/j.anucene.2019.107276.

[2] R. M. Bergmann and J. L. Vujić, "Algorithmic

choices in WARP – A framework for continuous energy

Monte Carlo neutron transport in general 3D geometries on

GPUs," Annals of Nuclear Energy, vol. 77, pp. 176-193,

2015/03/01/ 2015, doi:

https://doi.org/10.1016/j.anucene.2014.10.039.

[3] B. Molnar, G. Tolnai, and D. Legrady, "A GPU-

based direct Monte Carlo simulation of time dependence in

nuclear reactors," Annals of Nuclear Energy, vol. 132, pp. 46-

63, 2019/10/01/ 2019, doi:

https://doi.org/10.1016/j.anucene.2019.03.024.

[4] S. P. Hamilton and T. M. Evans, "Continuous-

energy Monte Carlo neutron transport on GPUs in the Shift

code," Annals of Nuclear Energy, vol. 128, pp. 236-247,

2019/06/01/ 2019, doi:

https://doi.org/10.1016/j.anucene.2019.01.012.

[5] N. Choi, K. M. Kim, and H. G. Joo, "Optimization

of neutron tracking algorithms for GPU-based continuous

energy Monte Carlo calculation," Annals of Nuclear Energy,

vol. 162, p. 108508, 2021/11/01/ 2021, doi:

https://doi.org/10.1016/j.anucene.2021.108508.

[6] NVIDIA. "CUDA C++ programming guide."

https://docs.nvidia.com/cuda/cuda-c-programming-

guide/index.html#memory-hierarchy (accessed 31 July, 2023).

[7] S. P. Hamilton, S. R. Slattery, and T. M. Evans,

"Multigroup Monte Carlo on GPUs: Comparison of history-

and event-based algorithms," Annals of Nuclear Energy, vol.

113, pp. 506-518, 2018/03/01/ 2018, doi:

https://doi.org/10.1016/j.anucene.2017.11.032.

[8] M. A. Smith, L. E. E.;, and N. B-C;, "Benchmark on

deterministic transport calculations without spatial

homogenisation: A 2-D/3-D MOX fuel assembly benchmark,"

in "NEA/NSC/DOC(2003)16," 2003.

