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1. Introduction 

 
Monte Carlo (MC) method is usually employed for 

high-fidelity particle transport problems where 

thousands of particles are simulated. MC codes can 

handle complex geometries and hence provide the most 

accurate representation of a nuclear reactor among the 

spectrum of available methods. The expected value of a 

physical quantity depends on the behavior of the 

particles that travel within the geometry of the problem. 

Hence, the computational intensiveness of the MC 

method to obtain an accurate solution is prohibitively 

large. Specifically, solving fuel depletion, reactor 

transients, and multi-physics problems in a reasonable 

time is still a challenge.  

The advancements in, and cost-effectiveness of, 

graphical processing units (GPUs), have led to a shift of 

an increasing number of applications to GPU 

architecture. In this context, the MC method can also 

achieve much higher floating-point operations per 

second (FLOPS) with the utilization of GPUs. 

MCS, developed at UNIST, is a high-fidelity neutron 

transport code that is highly optimized for CPU systems 

and hence shows very good scalability. It can efficiently 

utilize CPU-cluster systems employing both shared-

memory and distributed-memory parallelism [1]. 

Although a code like MCS can efficiently utilize the 

available resources, a large computer cluster is required 

to attain a more realistic simulation time. Not everyone 

can afford a large computer cluster. Hence, an 

increasing number of MC codes have either been ported 

or developed for the GPU architecture. WARP is the 

first continuous-energy MC code developed specifically 

for GPUs [2]. GUARDYAN is a time-dependent GPU-

based MC code that can perform nuclear reactor 

transient calculations [3]. Shift [4] and PRAGMA [5] 

are continuous energy MC codes with PRAGMA 

developed specifically for GPUs while Shift can 

execute on CPUs as well as GPUs. All of these codes 

employ different methods and algorithms to enhance 

the performance.  

In line with the requirements of reducing the 

simulation time, UNIST has commenced the 

development of a new GPU-optimized MC code 

GREAPMC (Gpu-optimzed REActor Physics Monte 

Carlo) in CUDA C++. To focus on the optimization of 

geometric and neutron tracking routines, the material 

treatment in GREAPMC has been simplified in the 

form of multigroup cross-sections. This paper presents 

algorithmic choices and modifications with reference to 

MCS, initial results, and future directions for the further 

development of the GPU-optimized code GREAPMC. 

 

2. Background 

 

2.1 GPU Architecture 

 

A GPU can execute thousands of threads concurrently, 

thus providing massive parallelization. In CUDA, 32 

threads are clustered together into a warp. The threads 

in a warp execute instructions in a lockstep fashion. A 

reduced workload on the warp or branching instructions 

where some threads have nothing to do or some threads 

take different execution paths reduces the performance 

of the code. Hence it is always recommended to lessen 

the number of branching instructions while developing 

a GPU code. A collection of warps forms a thread block. 

The computational hardware of NVIDIA GPUs is 

divided into Streaming Multiprocessors (SMs). Each 

thread block is executed on one SM. In an MC GPU 

code, a particle is assigned to one thread. Consequently, 

the number of threads can far exceed what the hardware 

can physically accommodate. A scheduler efficiently 

manages the loading and unloading of thread blocks 

onto SMs, adapting based on whether the threads within 

a thread block have executed their instruction or are 

awaiting data retrieval from memory. 

 

2.2 Memory Hierarchy 

 

A GPU consists of various types of memory, as 

shown in Fig. 1 [6]. Each of them is introduced briefly 

here in the slowest to the fastest order. The largest 

chunk of available storage is contained in global 

memory. Global memory is visible to all the threads and 

it has the lowest bandwidth and the highest latency.  

 

 
 

Fig. 1. Memory hierarchy for NVIDIA GPUs. 
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Therefore, while some threads in a thread block are 

waiting for data retrieval from global memory, the 

scheduler loads another warp to execute. This 

effectively hides the memory latency. Consequently, the 

number of warps should be large.  

The scheduler can make use of a device-wide L2 

cache to fetch the frequently accessed data. The next 

level of memory is the L1 cache and shared memory. 

These have extremely low latency and are SM-wide 

(local to thread block) storage but this storage is very 

limited in size. A GPU also furnishes thread-private 

registers for storing local variables. These are limited in 

number and when registers are full, variables are spilled 

to the L1 cache. 

The scheduler must choose active warps to execute, 

considering the available resources like shared memory 

and registers. As each SM possesses a finite quantity of 

these resources, an excessive demand from individual 

threads could lead to a reduction in the active warp 

count. Consequently, the scheduler may struggle to 

effectively conceal memory latency. 

Hence, high performance on GPUs translates to high 

occupancy and efficient memory management and data 

transfer. A GPU card has limited memory and the data 

transfer from CPU to GPU is via PCIe which can form 

the bottleneck if the data transfers are not properly 

managed. Parallelism on GPUs is achieved by Single 

Instruction Multiple Threads (SIMT) processing. Hence, 

the slowest thread determines the result from a warp of 

threads. Thus, it is crucial to distribute the tasks evenly 

among the threads. An even distribution will increase 

occupancy and reduce thread divergence.  

 

3. Performance Optimizations 

 

3.1 Neutron Tracking 

 

There are two methods for tracking neutrons within 

the problem geometry. History-based neutron tracking 

has been conventionally used for CPUs but for GPUs, 

event-based tracking has been suggested. The 

conventional history-based neutron tracking can be 

detrimental to the GPU performance owing to the 

variation in history lengths as shown in Fig. 2.  

 

 
 

Fig. 2. Conventional history-based neutron tracking depicted 

for 10 neutrons. The red areas show a waste of GPU resources. 

 

To enhance the performance of the history-based 

neutron tracking approach on GPUs, Profugus [7] 

proposed a modified history-based tracking wherein the 

history length is truncated to a specific number of 

collisions. Afterward, the neutron population is sorted 

based on the particle’s dead and alive status, and CUDA 

function (kernel) to run on GPU is called with only 

alive neutrons again. This continues until all the 

neutrons are dead. The same modified history-based 

tracking approach was adopted in PRAGMA. The only 

change was that instead of counting only collision as an 

interaction, surface crossing was also considered as an 

interaction [5]. In GREAPMC, the conventional 

history-based neutron tracking has been modified in the 

same fashion as in PRAGMA.  

 

3.2 Geometry Treatment 

 

MCS employs Constructive Solid Geometry (CSG) 

for modeling the problem. Since GREAPMC initially 

targets PWRs, geometry modeling has been streamlined 

to encompass square lattices and cylindrical rods. In 

contrast to surface-oriented geometry construction, this 

cell-based geometry modeling reduces the complexity, 

thereby reducing the execution time of geometric 

functions.  

 

3.3 Particle Data 

 

Maximizing the memory throughput can significantly 

influence the code’s overall performance. Therefore, 

ensuring memory coalescing is a vital consideration. 

Coalescing is directly related to the arrangement of data 

in contiguous memory locations. For example, consider 

a scenario where threads within a warp need to access 

the particle positions. If the position data is stored in 

consecutive memory addresses, memory throughput 

improves. Conversely, when memory accesses follow a 

strided pattern, the memory throughput diminishes.  

The particle data is most frequently accessed during 

the execution of the transport loop. Therefore, unlike 

MCS, the particle data in GREAPMC is arranged in a 

Structure of Array (SOA) pattern. As a result, all the 

data related to the position of particles is placed 

contiguously, and so on for other data items.  

 

3. Results and Discussion 

 

This section verifies GREAPMC against MCS using a 

two-dimensional pin-cell model from C5G7 [8] with 

reflective boundary conditions. Both MCS and 

GREAPMC are run with the same multi-group cross-

sections. The effective multiplication, volume, and 

energy averaged flux tally, and fission reaction rate for 

the pin cell are verified against MCS. Afterward, the 

single-node performance of GREAPMC over MCS for 

the two-dimensional C5G7 core problem is presented. 

The specifications of the CPU and GPU nodes are given 

in Table I. The GPU node consists of 2 GPU cards, but 

only one card was used in the current work. Similarly, 

the CPU contains 64 cores but here the problem was run 
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using a single core. Hence, the comparison is one CPU 

core against one GPU card. The comparison is fair, as 

the calculation of effective CPU cores takes into 

account the number of CPU cores used for the 

comparison as specified in Eq. (1) [7]. 
( ) ( )Number of CPU Cores CPU run time

Effective CPU Cores = 
GPU run time

  (1) 

 

3.4 Pin-cell Model 

 

Pin-cell model consists of two regions, a moderator 

and a fuel-clad mixture as shown in Fig. 3. 

  
Table I: Node Specifications 

 Quantity Value 

GPU 

Model 
NVIDIA GeForce RTX 

3090 

Base Clock 1695 MHz 

Memory 23.7 GB 

CPU 

Model AMD EPYC 7452 

Base Clock 2350 MHz 

Memory 251 GB 

 

 
 

Fig. 3. C5G7 pin-cell model consisting of two regions. 

 

The results of the multiplication factor, reaction rates, 

and flux tally are presented in Table II. Here 50 inactive, 

250 active cycles with 5×106 histories per cycle. 

 
Table II: Verification of GREAPMC 

Quantity GREAPMC MCS 

keff 
1.32562 ± 

1.628×10-5 

1.32563 ± 

1.701×10-5 

Flux Tally 
41.7672 ± 

1.11×10-5 

41.7467 ± 

1.068×10-5 

Fission 

Reaction Rate 

0.539789 ± 

1.31×10-5 

0.539910 ± 

1.195×10-5 

 

The results show that the global parameters calculated 

by GREAPMC are in close agreement with MCS. The 

reactivity difference comes out to be 0.56 ± 1.33 pcm. 

Similarly, the absolute difference in the flux tally result 

is 0.0205 ± 1.55×10-5, while in the fission reaction rate, 

the absolute difference is 1.21×10-4 ± 1.77×10-5. The 

standard deviation in flux is smaller than in fission 

reaction rate as flux is tallied more often compared to 

fission reaction rate. Currently, efforts are directed 

toward the implementation of the ability to tally pin-by-

pin flux and power within GREAPMC. Fig. 4 shows the 

core used here for computing the speedup of 

GREAPMC. The figure shows only xy-view. The 

boundary condition in the z-direction is also reflective. 

The core consists of two types of assemblies in line 

with the C5G7 benchmark. But here full core has been 

modeled instead of a quarter core. 

 

 
 

Fig. 4. Core model with reflective boundary conditions 

 

Although the results are computed for multiple 

numbers of histories per cycle, only the results for 

5×106 histories per cycle are presented here. The 

number of active and inactive cycles is the same as in 

the pin cell case. Table III shows the results. For easy 

comparison, the time has been normalized against the 

time that GREAPMC takes to run the problem. Hence, 

if GREAPMC takes 1 s to run the problem then MCS 

will take 369 s. The speedup directly computed from 

this normalization comes out to be 369. 

 
Table III: Comparison of keff and normalized time 

Quantity GREAPMC MCS 

keff 
1.18651 ± 

2.01×10-5 

1.18650 ± 

2.00×10-5 

Average time 

(per cycle) 
1 s 369 s 

 

The reactivity difference for this case between 

GREAPMC and MCS comes out to be 0.71 ± 2.01 pcm. 

The speedup with the variation in the number of total 

histories for the core problem is shown in Fig. 5. With 

increasing the number of histories, the GPU shows an 

increase in speedup. This shows that with an increase in 

load, the GPU more effectively hides the memory 

latency. The speedup seems to saturate as the total 

number of histories increases. As the speedup directly 

reflects the tracking rate. Therefore, the tracking rate 

also saturates with an increase in the number of 

histories. 
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3. Conclusions 

 

In conclusion, the ongoing development of the GPU-

optimized Monte Carlo code, GREAPMC, at UNIST 

holds immense promise in reactor simulations. The 

preliminary performance evaluations show a remarkable 

speedup compared to MCS. The target goals for the 

GREAPMC code development are pin-by-pin tally 

capability, optimization of the neutron tracking 

approach, continuous energy treatment, and cycle 

depletion capability. 

 

 
 

Fig. 5. Speedup plot for the core model 
 

The inclusion of continuous energy treatment ensures 

greater accuracy in capturing complex reaction behavior. 

Furthermore, the inclusion of cycle depletion capability 

will elevate the versatility of GREAPMC, enabling the 

investigation of long-term reactor behavior. 
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