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1. Introduction 

 

   There are typically two main groups of neutronics and 

thermal-hydraulics coupling methods that are widely 

researched over the world, the Picard iteration method [1] 

and the Newton iteration method [2].  

For Monte Carlo particle transport, almost all the 

studies on the neutronics and thermal-hydraulics 

coupling are using Picard iteration method, like MCNP 

5 and STAR-CD [3], Serpent 2 and SUBCHANFLOW 

[4], MC21 and CTF [5], RMC/CTF [6,7], etc. 

However, Picard iteration is only a method of first-

order convergence while the Newton iteration method 

can be of second-order convergence. Higher order 

convergence may lead to fewer iteration numbers and 

thus less time consumption. Therefore, Newton iteration 

between neutronics and thermal-hydraulics is worthy to 

be deeply studied. 

Newton method has been widely researched on 

coupling simulations with deterministic methods 

[8,9,10]. For Monte Carlo methods, representative works 

includes: Mylonakis et al. [11] implemented a standard 

JFNK procedure between Monte Carlo particle transport 

code and the thermal-hydraulics code in 2017. Finite 

differences were calculated to substitute the matrix-

vector product terms required in the GMERS procedure. 

To accelerate the simulations, Approximate Block 

Newton method was proposed to reduce the calculation 

burden; in the same year, Manuele Aufiero et al. [12,13] 

applied the Generalized Perturbation Theory (GPT) to 

obtain the sensitivity coefficients between the power 

distributions and the thermal-hydraulics parameter 

distributions. Combined with the calculations of the 

finite differences in the thermal-hydraulics module, the 

Jacobian matrix of the coupling iteration is completely 

built, and then directly used in a Newton iteration 

procedure. Those two implementations of Newton 

iteration methods can both realize second-order 

convergence, and the iteration numbers are significantly 

reduced. However, finite difference calculations are both 

required, which may account for a lot of time, especially 

when the target problems are getting larger. 

In this work, we have proposed an efficient neutronics 

and thermal-hydraulics coupling method based on the 

Monte Carlo perturbation theory. This method is a new 

implementation of the Newton iteration procedure, and 

the redundant finite difference calculations in the 

thermal-hydraulics module are avoided.  

 

 

 

2. Coupling Theory and Methods 

 

In this section, the coupling problems are represented 

with equations, and then Picard iteration and Newton 

iteration procedures will be introduced with formulas. 

 

2.1 Equations for the Coupling Problems 

 

For the neutronics module, what actually needs to be 

solved is the Boltzmann neutron transport equation, and 

its operator form is as follows: 

(𝐿 + 𝑅)𝜙 =
1

𝑘𝑒𝑓𝑓

𝐹𝜙 (1) 

where 𝐿 , 𝑅 , 𝐹  are leakage operator, removal operator 

and fission operator respectively, and 𝜙 is the neutron 

flux. The operators are related to their corresponding 

macro cross-sections, and those macro cross-sections are 

affected by thermal-hydraulics parameters like the 

temperature distributions of the fuel and coolant, and the 

density distribution of the coolant. Therefore, Eq. (1) can 

be expressed as 

Ψ(𝜃, 𝜙) = 0 (2) 

where 𝜃  represents the thermal-hydraulics parameters, 

and Ψ denotes the neutron transport equation. 

   For the thermal-hydraulics module, the equations to be 

solved are the mass, momentum, and energy 

conservation equations. As the heat source term in the 

energy conservation equation actually comes from heat 

production of neutron transport, mainly fission reactions, 

the three conservation equations can be expressed as: 

Θ(𝜃, 𝑃) = 0 (3) 

where Θ represents the thermal-hydraulics conservation 

equation and 𝑃 represents the thermal power distribution. 

The thermal power distribution is affected by the neutron 

flux distribution and the macro cross-sections of heat 

release reactions, like fission reactions. Therefore, Eq. (3) 

can be represented as: 

Θ(𝜃, 𝑃(𝜃, 𝜙)) = 0 (4) 

Further, if we rewrite the equations (2)(4) in the form 

of solutions, namely 

𝜙 = Ψ∗(𝜃) (5) 

𝜃 = Θ∗(𝜙) (6) 

then an iterative relation can be constructed: 

𝜙𝑛+1 = Ψ∗(Θ∗(𝜙𝑛)) (7) 

Eq. (7) is the representation of the iterative procedure of 

the neutronics and thermal-hydraulics coupling system. 
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2.2 Picard iteration and Newton iteration methods 

 

Eq. (7) can be directly used to represent the Picard 

iteration procedure, and the iteration operator can be 

written as 𝐺 in Eq. (8). 

𝜙𝑛+1 = Ψ∗(Θ∗(𝜙𝑛)) = 𝐺(𝜙𝑛) (8) 

There may be vibrations during the Picard iterations, so 

relaxation is generally required: 

𝜙𝑛+1
∗ = 𝑐𝜙𝑛+1 + (1 − 𝑐)𝜙𝑛 (9) 

where 𝑐  is the relaxation coefficient and 𝜙𝑛+1
∗  is the 

corrected neutron flux that will be used in the following 

iterations.  

Picard iteration method is first-order convergent, and 

a more efficient second-order convergent iterative 

method is to calculate the residual 𝑟 of Eq. (8) and then 

solve the residual equation (11) to update 𝜙 in Eq. (12): 

𝑟 = Ψ∗(Θ∗(𝜙𝑛)) − 𝜙𝑛 (10) 

𝐽𝐺𝛿𝜙 = −𝑟 (11) 

𝜙𝑛+1 = 𝜙𝑛 + 𝛿𝜙 (12) 

where 𝐽𝐺is the Jacobian matrix of the iterative operator 

𝐺. If the neutron flux 𝜙 is discretized into 𝑁 regions, the 

shape of Jacobian matrix 𝐽𝐺  should be 𝑁 × 𝑁 . The 

iterative process constructed by Eq. (10)(11)(12) is a 

typical Newton iteration method, where the residual 

equation (11) can be solved with Krylov subspace 

method or others. With partial derivatives in the Jacobian 

matrix, a better direction and size of the iterative update 

𝛿𝜙can be calculated, and thus has the potential to achieve 

second-order convergence. 

 

3. Coupling Method based on Perturbation Theory 

 

    In this section, we will introduce our proposed 

coupling method based on Monte Carlo perturbation 

theory. We may first give the original iteration processes 

of Newton method applied in Monte Carlo coupling 

simulations in Section 3.1, and then introduce the 

changes and innovations of the proposed method in 

Section 3.2. 

 

3.1 Newton method in Monte Carlo coupling simulations 

 

A typical and commonly used implementation of the 

Newton method is Jacobian -free Newton Krylov (JFNK) 

method. Mylonakis et al. [11] used the standard JFNK 

method to solve the neutronics and thermal-hydraulics 

coupling problem, and applied the Arnold method to 

solve the residual equation (11) on the Krylov subspace 

𝒦{𝑟, 𝐽𝐺𝑟, 𝐽𝐺
2𝑟, … , 𝐽𝐺

𝑁−1𝑟}. Since the Jacobian matrix 𝐽𝐺  is 

generally very large, and only 𝐽𝑣  form is used in the 

process, JFNK method only calculates the 𝐽𝑣  terms 

instead of the whole Jacobian matrix to save memory, 

and thus achieves "Jacobian-free". The 𝐽𝑣 terms can be 

approximated by finite differences: 

𝐽𝐺𝑣 ≈
𝐺(𝜙𝑛 + 𝜖𝑣) − 𝐺(𝜙𝑛)

𝜖
(13) 

where 𝜖 is a carefully selected value. In NITSOL 

software suite [14], 𝜖 is recommended to be set as: 

𝜖 =
√𝜖𝑚𝑎𝑐ℎ(1 + ‖𝜙𝑛‖)

‖𝑣‖
(14) 

where 𝜖𝑚𝑎𝑐ℎ is the floating-point calculation precision 

of the machine. 

In the approximation formula (13), an additional 

neutron transport and thermal-hydraulics calculation (i.e., 

𝐺(𝜙𝑛 + 𝜖𝑣)) is required for each 𝑣. Therefore, a single 

JFNK iteration may introduce 𝑁  times of neutron 

transport and thermal-hydraulics calculations, the total 

time consumption may be even larger than Picard 

iteration even though the iteration numbers are reduced. 

Manuele et al. [12,13] implemented the Newton 

method in a different way: they built the whole Jacobian 

matrix 𝐽𝐺  and then performed the residual equation 

solving on a subspace constructed by eigenvectors of the 

iterative fission matrix of the system. The Jacobian 

matrix 𝐽𝐺  can be decomposed as the product of two 

Jacobian matrices of the neutron transport and thermal-

hydraulics module respectively, that is: 
𝐽𝐺 = 𝐽Ψ∗𝐽Θ∗ =

[
 
 
 
 
 
 
 
𝜕𝜙1

𝜕𝜃1

𝜕𝜙1

𝜕𝜃2

 …
𝜕𝜙1

𝜕𝜃𝑀

𝜕𝜙2

𝜕𝜃1

𝜕𝜙2

𝜕𝜃2

…
𝜕𝜙2

𝜕𝜃𝑀

⋮ ⋮ ⋱ ⋮
𝜕𝜙𝑁

𝜕𝜃1

𝜕𝜙𝑁

𝜕𝜃2

…
𝜕𝜙𝑁

𝜕𝜃𝑀]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝜕𝜃1

𝜕𝜙1

𝜕𝜃1

𝜕𝜙2

 …
𝜕𝜃1

𝜕𝜙𝑁

𝜕𝜃2

𝜕𝜙1

𝜕𝜃2

𝜕𝜙2

…
𝜕𝜃2

𝜕𝜙𝑁

⋮ ⋮ ⋱ ⋮
𝜕𝜃𝑀

𝜕𝜙1

𝜕𝜃𝑀

𝜕𝜙2

…
𝜕𝜃𝑀

𝜕𝜙𝑁]
 
 
 
 
 
 
 

(15)
 

The Jacobian matrix of the neutron transport 𝐽Ψ∗ can be 

directly calculated with the source perturbation 

algorithm, while the thermal-hydraulics Jacobian matrix 

𝐽Θ∗ still needs to be approximated by finite differences 

𝐽Θ∗𝑣. The Krylov subspace is no longer used, instead, the 

subspace built from the eigenvectors of the iterative 

fission matrix is used to solve the residual equation. The 

statistical error of the first few eigenvectors can be 

relatively small, thus reducing the impact of Monte Carlo 

statistical uncertainty. However, a series of assumptions 

are made in this method, including that all the heat comes 

from fission reactions, thus there may be some 

methodological errors. In addition, this method still 

requires 𝑁  times of thermal-hydraulics calculations in 

each iteration step. Together with the time consumption 

on the iterative fission matrix, the time cost of one 

iteration is still too large. 

 

3.2 Coupling Method Based on Perturbation Theory 

 

To tackle the issues of the methods above, we 

designed a coupling method based on the Monte Carlo 

perturbation theory and eliminated the 𝑂(𝑁)  times of 

extra calculations. 

First, we used the differential operator method in 

Monte Carlo perturbation theory to solve the 

perturbation coefficients of power distribution to all the 

thermal-hydraulics parameters, that is, matrix 𝐽Ψ∗; then, 

instead of solving the thermal-hydraulics Jacobian 

matrix 𝐽Θ∗ , an internal iteration of thermal-hydraulics 

calculation is designed to obtain the distributions of the 
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corrected thermal-hydraulics parameters. The 

calculation workflow can be represented by the 

following equations: 
𝜙𝑛,0 = 𝜙𝑛 = Ψ∗(𝜃𝑛) (16) 

𝜃𝑛,1 = Θ∗(𝜙𝑛) (17) 

𝜙𝑛,1 = 𝜙𝑛 + 𝐽𝜙𝑛
(𝜃𝑛,1 − 𝜃𝑛,0) (18) 

... 

𝜃𝑛,𝑗+1 = Θ∗(𝜙𝑛,𝑗) (19) 

𝜙𝑛,𝑗+1 = 𝜙𝑛,𝑗 + 𝐽𝜙𝑛
(𝜃𝑛,𝑗+1 − 𝜃𝑛,𝑗) (20) 

... 

𝜃𝑛+1 = Θ∗(𝜙𝑛,𝑘) (21) 

where 𝑘 is the number of internal iterations, 𝐽𝜙𝑛
 

represents Jacobian matrix of neutron transport in the 𝑛-

th iteration.  

The internal iterations (19)(20) are actually calculating 

the intersection between the 𝑁-dimensional plane 𝜙 =

𝐽𝜙𝑛
(𝜃 − 𝜃𝑛,𝑗) + 𝜙𝑛,𝑗  and the thermal-hydraulics 

equation (6) plus the neutron flux normalization. 

Practically, the iteration process for the high-

dimensional plane intersection is very efficient, a 

constant number of iterations may converge the solution. 

This may reduce the number of thermal-hydraulics 

simulations from 𝑂(𝑁) to 𝑂(1). 

Details of the proposed method will be introduced in 

the following subsections. 

 

3.2.1 Overall Workflow and Convergence Criteria 

 

The entire workflow of the proposed coupling method 

is illustrated in Fig. 1. There are two iteration loops in the 

workflow: the internal loop in the right part of the figure 

is the intersection calculation mentioned in the last 

section, and the external loop is the coupling iteration. 

The external iteration loop in Fig. 1 is consistent with 

the Picard iteration process. If the convergence criteria in 

the internal iteration loop are set as constant true, and the 

calculation of 𝐽Φ  is removed, the whole process is a 

standard Picard iteration. Therefore, it is easy to upgrade 

from a Picard iteration to the proposed method - just add 

the calculation of  𝐽Φ and the internal iteration. 

For the internal iteration loop, the “refine the power 

distribution” step is the calculation represented by Eq. 

(20), where the neutron transport results of the last 

iteration 𝜙𝑛,𝑗 ,  Jacobian matrix of neutron transport 𝐽Ψ∗, 

and the difference between the two adjacent thermal-

hydraulics simulation results are combined to refine the 

power distribution (or neutron flux) under current 

thermal-hydraulics parameters. 

The key to the effectiveness of this process is that the 

intersection of the 𝑁 -dimensional plane 𝜙 = 𝐽𝜙𝑛
(𝜃 −

𝜃𝑛,𝑗) + 𝜙𝑛,𝑗, the thermal-hydraulics equation (6), and the 

normalization of the neutron flux can converge in a 

limited number of iterations. Due to the simplicity of the 

𝑁 -dimensional plane, the fast convergence of the 

intersection iteration can be reached even with Monte 

Carlo statistical error. 

 

Start
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T, ρ distributions

Neutron transport
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distribution
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Fig. 1. Workflow of the proposed Newton iterative coupling 

method based on Monte Carlo perturbation theory. 

 

In terms of the convergence criteria of the internal and 

external iterations, the convergence criterion of the 

internal iteration is measured by the 𝐿2  norm of the 

power distribution change between two adjacent 

iterations: if 

𝐿2

√𝑁
= √

1

𝑁
∑|

𝑝𝑛,𝑖+1 − 𝑝𝑛,𝑖

𝑝𝑛,𝑖

|

2𝑁

𝑖=1

< 𝜖𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 (22) 

stands, then the internal iteration has converged. The 

𝜖𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙  in Eq. (22) can be designed according to the 

order of the averaged relative deviation of the power 

distribution. In practice, a fixed number of iterations 

rather than the judgement can also be used as the criteria 

to avoid too many iterations. From our experience, the 

internal loop converges within 3 iterations. 

For external iterations, the convergence criteria can 

also be designed similar to Eq. (22), except that the 

𝜖𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙  is substituted by 𝜖𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 . Moreover, it can be 

noted that if the first step of the internal iteration already 

meets the convergence criterion, then there must be: 

‖𝐽𝜙𝑛
(𝜃𝑛,1 − 𝜃𝑛,0)‖2

< 𝜖𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 (23) 

There are two possible conditions that may lead to Eq. 

(23): 1). the thermal-hydraulics parameters 𝜃  have 

already converged; 2). the change of thermal parameters 

has little effect on the neutron transport module, that is, 
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𝐽𝜙𝑛

 is orthogonal to the change of 𝜃. Both reveals that 

the external iterations should be terminated. Therefore, 

the convergence criterion of the external iteration can be: 

𝐿2

√𝑁
= √

1

𝑁
∑ |

𝑝𝑛,1 − 𝑝𝑛

𝑝𝑛

|
2

𝑁

𝑖=1

< 𝜖𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 (24) 

Note that 𝜖𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙  rather than 𝜖𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙  is used, and that 

may reduce the number of hyper parameters of the 

proposed method. 

    The proposed method and the convergence criterion 

(23) have been proved to be correct and efficient in 

Section 4. The code changes from Picard iteration are 

limited and the independence of the two simulation 

modules are still maintained, which is convenient for 

maintenance and development in the future. 

Apart from the workflow and convergence criteria 

designs, the core problem of this method is to efficiently 

solve 𝐽𝜙𝑛
, which will be introduced in Section 3.2.2. 

 

3.2.2 Calculation of the neutron transport Jacobian 

matrix by differential operator method 

 

In this section, we may use power distribution 𝑃  to 

replace the neutron flux 𝜙 in all the equations. As 𝑃 and  

𝜙  are one-to-one correspondent, this replacement will 

not affect the correctness of the equations. After that, the 

equations (5)(6) will be rewritten as: 

𝑃 = Ψ∗(𝜃) (25) 

𝜃 = Θ∗(𝑃) (26) 

Then, the elements in the Jacobian matrix 𝐽Ψ∗ should 

be changed to  𝜕𝑃𝑖/𝜕𝜃𝑗, which can be regarded as the 

perturbation coefficients between power and thermal-

hydraulics parameters. Therefore, differential operator 

method can be used to solve those derivatives and build 

the complete Jacobian matrix 𝐽Ψ∗ . The differential 

operator method is briefly described as follows: 

The power tally during neutron transport is estimated 

by the following equation: 

𝑃 =
1

𝑁
∑ ∑𝑝𝑖,𝑗𝑓𝑖,𝑗

𝑗

𝑁

𝑖=1

(27) 

where 𝑝𝑖,𝑗is the probability of the 𝑗-th track of the 𝑖-th 

neutron, and 𝑓𝑖,𝑗is the power estimator. 𝑝𝑖,𝑗 can be further 

decomposed as: 

𝑝𝑖,𝑗 = 𝑆(𝑹0, 𝐸0, 𝜴0) ∏ 𝑟𝑚

𝑗

𝑚=1

(28) 

where 𝑆  is the probability that the parent neutron 

produces the 𝑖-th neutron in a specific phase (𝑹0, 𝐸0, 𝜴0), 

and 𝑟𝑚 is the probability of the 𝑚-th track on condition 

that the former 𝑚 − 1tracks have already appeared. 𝑟𝑚 

can be further decomposed into transport term 𝑇𝑚 and 

collision term 𝐶𝑚: 
𝑟𝑚 = 𝑇𝑚(𝑹𝑚−1 ⟶ 𝑹𝑚, 𝐸𝑚−1, 𝜴𝑚−1) ⋅

𝐶𝑚(𝑹𝑚, 𝐸𝑚−1 ⟶ 𝐸𝑚 , 𝜴𝑚−1 ⟶ 𝜴𝑚) (29)
 

Therefore, the derivatives of power over temperature 

are: 

𝜕𝑃

𝜕𝑇
=

1

𝑁
∑ ∑[

1

𝑝𝑖,𝑗𝑓𝑖,𝑗

𝜕(𝑝𝑖,𝑗𝑓𝑖,𝑗)

𝜕𝑇
] 𝑝𝑖,𝑗𝑓𝑖,𝑗

𝑗

𝑁

𝑖=1

=
1

𝑁
∑ ∑𝑤𝑖,𝑗𝑝𝑖,𝑗𝑓𝑖,𝑗

𝑗

𝑁

𝑖=1

(30)

 

Similarly, the derivatives of power over density are: 

𝜕𝑃

𝜕𝜌
=

1

𝑁
∑ ∑[

1

𝑝𝑖,𝑗𝑓𝑖,𝑗

𝜕(𝑝𝑖,𝑗𝑓𝑖,𝑗)

𝜕𝜌
] 𝑝𝑖,𝑗𝑓𝑖,𝑗

𝑗

𝑁

𝑖=1

=
1

𝑁
∑ ∑𝑤𝑖,𝑗𝑝𝑖,𝑗𝑓𝑖,𝑗

𝑗

𝑁

𝑖=1

(31)

 

where 𝑤𝑖,𝑗 is the weight of each track, which can be 

calculated with Eq. (32) below. Note that the specific 

values of the terms in Eq. (32) can be different when 

calculating different perturbation parameters. 

𝑤𝑖,𝑗 =
𝑝𝑖,𝑗

′

𝑝𝑖,𝑗

+
𝑓𝑖,𝑗

′

𝑓𝑖,𝑗

=
𝑆′

𝑆
+ ∑

𝑟𝑚
′

𝑟𝑚

𝑗

𝑚=1

+
𝑓𝑖,𝑗

′

𝑓𝑖,𝑗

=
𝑆′

𝑆
+

𝑇𝑚
′

𝑇𝑚

+
𝐶𝑚

′

𝐶𝑚

+
𝑓𝑖,𝑗

′

𝑓𝑖,𝑗

(32)

 

In this way, all the elements in the Jacobian matrix 𝐽Ψ∗ 

can be solved. For large-scale models or high-fidelity 

simulations, the size of the matrix may be large. To 

handle this, merging adjacent regions to reduce the 

number of derivatives can be considered to accelerate the 

calculations. 

 

3.2.3 Implementation in RMC/CTF Coupling System 

 

In recent years, the perturbation and sensitivity 

calculation capabilities have been continuously 

improved [15,16,17,18] in RMC [19], which makes it 

possible to conduct studies on efficient multi-physics 

coupling methods based on Newton method and 

perturbation theory. Therefore, we implemented the 

proposed method above in the coupling system of Monte 

Carlo neutron transport code RMC and thermal-

hydraulics sub-channel code CTF [20]. The 

implementation has been validated with practical cases 

in Section 4. 

 

4. Validation of the Proposed Method 

 

In this section, a PWR fuel pin is used to validate the 

correctness and effectiveness of the proposed method. 

The length of the fuel pin is 360 cm, and it is evenly split 

into 10 axial layers to analyze the axial power profile. 

The radial boundaries of the model are set as reflective, 

and the axial boundaries are vacuum. 

Model parameters and the calculation parameters are 

listed in Table I. The Newton iteration method based on 

perturbation theory is compared with the Picard iteration. 

The Picard iteration method is performed in two modes: 

without relaxation and with relaxation (𝑐 = 0.5). 
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Table 1 Verification model geometry, material and other 

parameters 

Table I:  Model parameters and calculation parameters. 

parameter Picard Newton 

No. Axial layer  

No. inactive cycles 

No. active cycles 

No. particles 

No. internal iterations 

10 

100 

400 

100,000 

- 

10 

100 

400 

100,000 

5 

 

Fig. 2 shows the calculation results of the three 

methods: Picard iteration without relaxation, Picard 

iteration with relaxation, and Newton iteration method 

based on Monte Carlo perturbation theory. All of them 

iterated from an assumed cosine power distribution (the 

black lines in the three subfigures) and converged to a 

curve with peaks tilting to the lower side. Those biases 

of peaks resulted from the non-uniformity of the 

moderator’s density along the axial direction – the 

moderation in the lower region was stronger and thus 

fission reaction rate became higher. 

Fig. 3 gives the changes of the 𝐿2  norms over 

iterations. There are totally 3 types of 𝐿2 norms in Fig. 3: 

1). 𝐿2-final (black lines) is the 𝐿2  norm of the relative 

differences between the current calculation results and 

the converged result of Picard iteration method with 

relaxation; 

2). 𝐿2-relative (red lines) is the 𝐿2 norm of the relative 

differences between two adjacent external iterations; 

3). 𝐿2-internal (blue line) is the 𝐿2 norm of the relative 

differences between the external power distribution and 

the corresponding first internal power distribution, which 

is Eq. (24). 

As the reference solution is unknown in the practical 

calculations, red lines rather than black lines should be 

used to judge convergence. If the convergence criterion 

is set as ϵ = 10−4 , then the required numbers of 

iterations for the three methods are 7, 6, and 4, 

respectively, which demonstrates the convergence 

efficiency of the proposed Newton method based on 

Monte Carlo perturbation theory. 

For the stability of the iterations, the oscillation ranges 

can be seen from the "thickness" of the overlapped 

curves in Fig. 2. Picard iteration without relaxation has 

the strongest oscillation, which can also be observed 

from the large shakes in Fig. 3(a). This instability has 

been tackled in the Picard iteration with relaxation 

method in Fig. 2(b) and Fig. 3(b). The Newton method 

based on the Monte Carlo perturbation theory has no 

relaxation, but still achieves a similar oscillation 

suppression phenomenon. From the blue line in Fig. 3(c), 

we can clearly observe the excellent convergence 

stability of the proposed method. 

Furthermore, the trend of 𝐿2 -internal in Fig. 3(c) is 

similar to that of 𝐿2 -relative, but the range is wider, 

which is more convenient to judge convergence. 

Therefore, 𝐿2-internal (Eq. (24)) is a better convergence 

indicator for the Newton method based on Monte Carlo 

perturbation theory. 
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(c) 

Fig. 2. Axial power profiles over iterations for the three 

methods: (a) Picard iteration without relaxation; (b) Picard 

iteration with relaxation; (c) Newton iteration based on Monte 

Carlo perturbation theory. 
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(c) 

Fig. 3. 𝐿2  norms over iterations for the three methods: (a) 

Picard iteration without relaxation; (b) Picard iteration with 

relaxation; (c) Newton iteration based on Monte Carlo 

perturbation theory. 

 

5. Conclusions 
 

This paper proposes a neutronics and thermal-

hydraulics coupling method based on the Monte Carlo 

perturbation theory. We use the differential operator 

method in Monte Carlo perturbation theory to calculate 

the neutron transport Jacobian matrix, and then establish 

an internal iteration loop to refine the distributions of the 

power and thermal-hydraulics parameters. This method 

realizes partial second-order convergence, and at the 

same time avoids the unbearable extra calculations that 

may rapidly expand with the problem scale. The 

proposed method was validated on a practical model and 

showed higher convergence efficiency and better 

convergence stability. However, Monte Carlo 

perturbation may increase the total calculation time, 

which would be even worse for large and high-fidelity 

problems. Therefore  in the future, this method will be 

extended to simulations of large-scale problems, and 

acceleration methods including block merging and 

diagonal approximation will be studied to further 

optimize the computational efficiency of this method. 
 

REFERENCES 
 

[1] Coddington E A, Levinson N. Theory of Ordinary 

Differential Equations[M]. McGraw-Hill, 1955. 

[2] Knoll D A, Keyes D E. Jacobian-free Newton–Krylov 

Methods: a Survey of Approaches and Applications[J]. Journal 

of Computational Physics, 2004 

[3] Seker V, Thomas J W, Downar T J. Reactor Simulation with 

Coupled Monte Carlo and Computational Fluid 

Dynamics[C]//Proc. Joint International Topical Meeting on 

Mathematics & Computation and Supercomputing in Nuclear 

Applications (M&C + SNA 2007). Monterey, CA (USA): 

American Nuclear Society. 

[4] Kelly Iii D J, Kelly A E, Aviles B N, et al. MC21/CTF and 

VERA Multiphysics Solutions to VERA Core Physics 

Benchmark Progression Problems 6 and 7[J]. Nuclear 

Engineering and Technology, 2017, 49(6): 1326-1. 

[5] Daeubler M, Ivanov A, Sjenitzer B L, et al. High-fidelity 

Coupled Monte Carlo Neutron Transport and Thermal-

hydraulic Simulations Using Serpent 2/SUBCHANFLOW[J]. 

Annals of Nuclear Energy, 2015, 83: 352-37. 

[6] Guo J, Liu S, Shang X, et al. Coupled Neutronics/Thermal-

hydraulics Analysis of a Full PWR Core Using RMC and 

CTF[J]. Annals of Nuclear Energy, 2017, 109:327-336. 

[7] Li K, Liu S, Guo J, et al. An Internal Coupling Method 

between Neutronics and Thermal-Hydraulics with RMC and 

CTF[J]. Annals of Nuclear Energy, 2023, 187:109793. 

[8] Zhang H. JFNK Method for Simultaneous Solution of 

HTGR Coupled System[D]. Beijing: Tsinghua University, 

2015. 

[9] Zhou X. JFNK Based on Nodal Expansion Method for 

Simultaneous Solution of Coupled Systems[D]. Beijing: 

Tsinghua University, 2016. 

[10] Zhang Y. Research on the Multiphysics transient 

simulations of the PWR core with Newton’s method[D]. 

Shaanxi: Xi’an Jiaotong University, 2019. 

[11] Mylonakis A G, Varvayanni M, Catsaros N. A Newton-

based Jacobian-free Approach for Neutronic-Monte 

Carlo/Thermal-hydraulic Static Coupled Analysis[J]. Annals of 

Nuclear Energy, 2017, 110: 709-725. 

[12] Kotlyar D, Aufiero M, Shwageraus E, et al. Iteration-free 

Coupled Monte Carlo with Thermal Hydraulic 

Method[C]//Proc. International Conference on Mathematics 

and Computational Methods Applied to Nuclear Science and 

Engineering 2017 (M&C 2017). Jeju, Republic of Korea: 

Korean Nuclear Society - KNS, 2017. 

[13] Aufiero M, Fratoni M. A New Approach to the 

Stabilization and Convergence Acceleration in Coupled Monte 

Carlo–CFD Calculations: The Newton Method via Monte 



Proceedings of the Reactor Physics Asia 2023 (RPHA2023) Conference 

Gyeongju, Korea, October 24-26, 2023 

 

 
Carlo Perturbation Theory[J]. Nuclear Engineering and 

Technology, 2017, 49(6): 1181-1188. 

[14] Pernice M, Walker H F. NITSOL: A Newton Iterative 

Solver for Nonlinear Systems[J]. SIAM Journal on Scientific 

Computing, 1998, 19(1): 30. 

[15] Qiu Y, Aufiero M, Wang K, et al. Development of 

Sensitivity Analysis Capabilities of Generalized Responses to 

Nuclear Data in Monte Carlo Code RMC[J]. Annals of Nuclear 

Energy, 2016, 97: 142-152. 

[16] Shi G, Guo Y, Jia C, et al. Improvement of Sensitivity and 

Uncertainty Analysis Capabilities of Generalized Response in 

Monte Carlo Code RMC[J]. Annals of Nuclear Energy, 2021, 

154:108099. 

[17] Li H, Yu G, Huang S, et al. Calculating the k-eigenvalue 

Sensitivity to Typical Geometric Perturbations with the 

Adjoint-weighted Method in the Continuous-energy Reactor 

Monte Carlo Code RMC[J]. Nuclear Science and Engineering, 

2019, 193(11): 1186-1218. 

[18] Shi G, Feng Z, Jia C, et al. Geometric Sensitivity Analysis 

of Generalized Response Function with RMC Code[J]. Annals 

of Nuclear Energy, 2020, 

[19] Wang K, Li Z, She D, et al. RMC–A Monte Carlo Code 

for Reactor Core Analysis[J]. Annals of Nuclear Energy, 2015, 

82: 121-129. 

[20] Salko R K, Avramova M N. COBRA-TF Subchannel 

Thermal-hydraulics Code (CTF) Theory Manual–Revision 

0[R]. Consortium for Advanced Simulation of Light Water 

Reactors, CASL-U-2015-0054, 2015. 


