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1. Introduction 

 

Efficient and accurate neutronics modeling is 

paramount to advancing novel nuclear systems. The 

complex geometry, diverse neutron spectrum, extensive 

burnup, and space kinetics pose difficult challenges to 

neutronics analysis tools. The Monte Carlo (MC) method 

excels in leveraging high-fidelity geometry, explicit 

anisotropic representation, and continuous energy (CE) 

cross-section libraries, thereby demonstrating 

exceptional accuracy. Nevertheless, the MC method 

often demands substantial computational resources, 

notably for tasks such as multiphysics coupling, fuel 

management optimization, depletion simulations, and 

transient analysis. 

In contrast, deterministic methods offer distinctly 

faster simulations by employing spatial discretization 

approximations, simplified angle representations, and 

energy structure reductions. These deterministic codes 

find extensive application in core analysis, particularly 

for multiphysics and depletion assessments. However, 

their efficacy depends significantly on the utilization of 

effective multigroup cross-sections (MGXS). 

Modeling the fast neutron spectrum, which 

predominantly resides within the keV and MeV range, 

necessitates a comprehensive treatment of anisotropic 

scattering, inelastic scattering, (n,2n) reactions, and the 

intricate phenomenon of unresolved resonance self-

shielding[1]. The fast spectrum exhibit a neutron mean-

free path that is approximately an order of magnitude 

longer, thereby amplifying the sensitivity to neutron 

leakage and even minor variations in core geometry[2]. 

The generation of MGXS using MC code is widely 

investigated and implemented[3,4]. This method 

integrates the resonance self-shielding and spatial 

homogenization under a CE representation and an almost 

arbitrary level of spatial detail. Therefore, there is a 

growing interest in generation of MGXS using MC 

method for fast reactor analysis. 

This paper presents a concise review of the generation 

of MGXS utilizing MC methods, along with their 

integration with both diffusion and transport core solvers. 

In Section 2.1, we outline the fundamental approach for 

generating MGXS using MC codes. In Section 2.2, we 

provide a summary of the key findings in the existing 

literature. Sections 2.3 and 2.4 delve into specific topics: 

Section 2.3 examines the superhomogénéisation 

equivalent techniques (SPH), while Section 2.4 explores 

the flux-moment homogenization techniques (MHT). 

Finally, in Section 3, we present our conclusions. 

 

2. Methods and Results 

 

In this section, the general method of MGXS 

generation using the MC method is presented, then the 

existing results are summarized, and finally, SPH and 

MHT techniques are discussed. 

 

2.1 General method 

 
The generation of MGXS was widely developed in 

MC method codes, for instance, SERPENT[3], MCNP6[5], 

McCARD[6], RMC[7], OpenMC[4], MCS[8,9] and MCX[10]. 

The flux-volume homogenization method, widely used 

in most MC codes, is presented in this section. 

 

2.1.1. General cross-sections 

 

n the OpenMC code, the macroscopic cross-section of 

nuclide 'i' within spatial region 'k' and energy range [Eg-

1, Eg], is defined as the quotient of the group-wise 
reaction rates ⟨Σ𝑥,𝑖 , 𝜓⟩𝑘,𝑔  and fluxes ⟨𝜓⟩𝑘,𝑔  tallied 

by the track-length estimators. 

Σ𝑥,𝑖,𝑘,𝑔 =
⟨Σ𝑥,𝑖 , 𝜙⟩

𝑘,𝑔

⟨𝜙⟩𝑘,𝑔
 (1) 

⟨Σ𝑥,𝑖 , 𝜙⟩
𝑘,𝑔

= ∫ 𝑑𝒓
𝒓∈𝑉𝑘

∫ 𝑑𝛀
4𝜋

∫ 𝑑𝐸Σ𝑥(𝒓, 𝐸)𝜓(𝒓, 𝐸, 𝛀)
𝐸𝑔−1

𝐸𝑔

(2) 

⟨𝜙⟩𝑘,𝑔 = ∫ 𝑑𝒓
𝒓∈𝑉𝑘

∫ 𝑑𝛀
4𝜋

∫ 𝑑𝐸𝜓(𝒓, 𝐸, 𝛀)
𝐸𝑔−1

𝐸𝑔

(3) 

Under this definition, Σ𝑡,𝑖,𝑘,𝑔 , Σ𝑠,𝑖,𝑘,𝑔 , 𝜈Σ𝑓,𝑖,𝑘,𝑔  and 

𝜅Σ𝑓,𝑖,𝑘,𝑔  are computed. In this work, the microscopic 

cross-section by nuclide is generated then by  

𝜎𝑥,𝑖,𝑘,𝑔 =
Σ𝑥,𝑖,𝑘,𝑔

𝑁𝑖,𝑘

(4) 

where 𝑁𝑖,𝑘 is the concentration of nuclide i in region k. 

Microscopic cross-sections are employed to facilitate 

perturbation and depletion calculations in subsequent 

analyses. However, it's important to note that utilizing 

microscopic cross-sections will lead to an augmented 

computational load in terms of tallying, memory 

utilization, and data storage requirements. 

 

2.1.2. Consistent scattering matrix 

 

In the work, the consistent scattering matrix is used, 

which is computed as the product of the scattering cross-

sections Σ𝑠,𝑖,𝑘,𝑔 tallied by the track-length estimator and 

the group-to-group probabilities 𝑃𝑠ℓ,𝑖,𝑘,𝑔′→𝑔 . The 

consistent formulation ensures that reaction rate balance 
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is exactly preserved as other cross-sections are computed 

using a track-length estimator.  

The scatter matrix at Legendre order ℓ is defined as: 
Σ𝑠ℓ,𝑖,𝑘𝑔′→𝑔 = Σ𝑠,𝑖,𝑘,𝑔 × 𝑃𝑠ℓ,𝑖,𝑘,𝑔′→𝑔 (5) 

where the scattering probability matrix is computed from 

analog tallies: 

𝑃𝑠ℓ,𝑖,𝑘,𝑔′→𝑔 =
⟨Σ𝑠ℓ,𝑖 , 𝜙⟩

𝑘,𝑔

⟨Σ𝑠0,𝑖 , 𝜙⟩
𝑘,𝑔

(6) 

where 𝑃ℓ(Ω ⋅ Ω′) is the Legendre polynomials at order ℓ. 

In the following, the cross-sections with scattering 

matrix at order ℓ is represented by the abbreviation Pℓ. 
 

2.1.3. Scattering multiplicity 

 
The scattering matrix is multiplied by the multiplicity 

matrix 𝜐𝑖,𝑘,𝑔′→𝑔  to incorporate the effect of neutron 

multiplication from (n,xn) reactions. 
Σ𝑠ℓ,𝑖,𝑘,𝑔′→𝑔 = 𝜐𝑖,𝑘,𝑔′→𝑔 × Σ𝑠,𝑖,𝑘,𝑔 × 𝑃𝑠ℓ,𝑖,𝑘,𝑔′→𝑔 (7) 

The multiplicity matrix is computed by: 

𝜐𝑖,𝑘,𝑔′→𝑔 =
⟨𝜐𝑖Σ𝑠,𝑖 , 𝜙⟩

𝑘,𝑔

⟨Σ𝑠,𝑖 , 𝜙⟩
𝑘,𝑔

(8) 

 

2.1.4. Transport correction 

 
The transport-corrected total cross-sections (Σ𝑡𝑟) and 

transport-corrected scattering matrix (Σ𝑠𝑡𝑟) are required 

for mitigating the isotropic scattering approximation. 

The TCP0 is used as the abbreviation for using Σ𝑡𝑟  and 

Σ𝑠𝑡𝑟 . The P0 transport correction is applied, and the TCP0 

cross-sections are computed as follows: 

Σ𝑡𝑟,𝑖,𝑘,𝑔 =
⟨Σ𝑡,𝑖 , 𝜙⟩

𝑘,𝑔
− ⟨Σ𝑠1,𝑖 , 𝜙⟩

𝑘,𝑔

⟨𝜙⟩𝑘,𝑔

(9) 

Σ𝑠𝑡𝑟,𝑔′→𝑔 =

⟨Σ𝑠,0,𝑔′→𝑔𝜙⟩ − 𝛿𝑔𝑔′ ∑ ⟨Σ𝑠1,𝑔′′→𝑔𝜙⟩
𝑔′′

⟨𝜙⟩
(10)

 

where δgg’ is the Kronecker delta function. 

The diffusion coefficients used in this work is defined 

as: 

𝐷𝑖,𝑘,𝑔 =
1

3Σ𝑡𝑟,𝑖,𝑘,𝑔

(11) 

For the rigorous and computationally efficient 

computation of diffusion coefficients and transport 

cross-sections in light water reactors, we introduce a 

novel approach termed the Cumulative Migration 

Method (CMM)[11–15]. This method effectively mitigates 

the sources of inaccuracy inherent in the widely 

employed "out-scatter" transport correction technique. 

 

2.2 Review of results 

 

The results of coupling the MGXS generated through 

the MC method and the multigroup deterministic/MC 

solver are summarized in Table I. These two-step 

sequences mainly include Serpent-DYN3D[16], Serpent-

VARIANT[17], MCS-RAST[8], MCS-MCS(MG)[8], 

Serpent-Griffin[18], OpenMC-TRIVAC[19], OpenMC-

OpenMC(MG)[20,21]. These results are obtained from 

different size fast reactors cooled by sodium or lead and 

fueled with UOX, MOX, metallic, carbide fuels, and 

nitride fuel. 

 

2.2.1 Diffusion solvers 

 
Utilizing the diffusion solver, the bias between the 

two-step approach and the reference MC method 

fluctuates within the range of -163 to 263 pcm. In a 

majority of outcomes, MGXS were derived from 2D/3D 

super-cell configurations, encompassing elaborate 

layouts of fuel and structural assemblies. The Monte 

Carlo methodology affords remarkable flexibility in 

selecting models for MGXS generation. The MET-1000 

core analysis, employing both the Serpent-Griffin and 

OpenMC schemes, adopts a comprehensive 3D whole-

core model. 

The integration with diffusion solvers has 

demonstrated strong predictive capabilities for core 

reactivity estimation. Nevertheless, a common 

observation in much of the literature is the significant 

overestimation of control rod worth attributed to this 

approach. The locally heterogeneous modeling of 

absorbers has enhanced accuracy in control rod 

worth[22,23], while this strategy might not be feasible for 

the majority of core solvers. Alternatively, another 

avenue to mitigate this bias is the employment of SPH 

techniques, as elaborated upon in Section 2.3. 

In the Serpent/Griffin scheme, a whole core SPH 

technique is used and reduces the overestimation to 0 

pcm which is an interesting research direction in 

generating MGXS from a 3D full-core model. This 

whole core SPH equivalent technique is also proved with 

the CEFR start-up test benchmark and with micro-

reactors[24]. The MC can generate the whole core reaction 

rate and MGXS at the same time, which enables to 

correct MGXS for conserving exactly the reaction rate at 

a specified state. This is an attractive feature in 

multiphysics modelling while the robustness of the SPH 

factors in perturbation should be further verified. 

 

2.2.2 Transport solvers 

 

When employing a transport solver or a multigroup 

MC solver, a notable tendency for reactivity 

overestimation becomes evident. For instance, within the 

Serpent/VARIANT scheme, a 2D MET-1000 core 

displays a substantial overestimation of 643 pcm. 

Similarly, utilizing the multigroup MC approach yields a 

1087 pcm overestimation in a 3D MET-1000 core with 

OpenMC, and a 1085 pcm overestimation with MCS. 

Adopting the OpenMC/Trivac setup with an SP5 solver 

exhibits an 880 pcm overestimation. 

It's important to highlight that both MC and SPN 

multigroup transport solvers manifest this pattern of 

overestimating core reactivity when MGXS are 

generated using the MC method based on the general 

approach illustrated in Section 2.1. This consistent 
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overestimation highlights the need for careful 

consideration and potentially more refined 

methodologies in MGXS generation. 

The application of flux-moment homogenization 

brings about a significant reduction in the overestimation 

of core reactivity, mitigating it from 1087 pcm to 374 

pcm for the MET-1000 scenario within the OpenMC-

OpenMC(MG) scheme. Further elaboration on this topic 

will be provided in Section 2.4. 

Table I: Reactivity in reference (units: pcm) 

XS code Core solver Core Difference(3) Reference 

Serpent DYN3D 

OECD/NEA 3600-MOX -128 [25] 

PHENIX (350 MWth, MOX) -162 [26] 

FFTF (400 MWth, MOX) -152 [27] 

SPX (3000MWth, MOX) -63 [28] 

Serpent PARCS OECD/NEA 3600-MOX -84 [25] 

Serpent VARIANT OECD/NEA MET-1000 (2D) +643(4) [17] 

MCS RAST-K 
OECD/NEA MET-1000 +41 [8] 

OECD/NEA 3600-MOX +105 [8] 

MCS MCS-MG(1) 
OECD/NEA MET-1000 +1085 [8] 

OECD/NEA 3600-MOX +444 [8] 

MCS RAST-F 

OECD/NEA MET-1000 -34 [9] 

OECD/NEA CAR-3600 +126 [9] 

CEFR (65 MWth, UOX) +58 [29] 

ANTS-100e (100 MWe, UN, LBE) +77 [30] 

Serpent Griffin VTR (300 MWth, UPuZr) 
+263 [18] 

0(5) [18] 

OpenMC OpenMC-MG(2) 
OECD/NEA MET-1000 

+1087 [31] 

+374(6) [31] 

SVBR (100 MWe, UOX, LBE) +255(7) [32] 

OpenMC 
OpenMC-MG 

CEFR (65 MWth, UOX) 
+1729(8) [20] 

TRIVAC -105(9)  

OpenMC Trivac OECD/NEA MET-1000 
+242(10) [19] 

+880(11) [19] 

Remarks: (1) Multigroup MC calculation with TCP0 MGXS; (2) Multigroup MC calculation with P5 MGXS; (3) Results 

are compared to the MC CE method if not specified; (4) Nodal transport solver with P5 scattering matrix; (5) With SPH 

in whole core regions; (6) With flux-moment homogenization techniques; (7) Reflector is simplified as LBE; (8) 

Compared to experiments results; (9) With SPH in whole core regions and compared to experiments results; (10) Diffuse 

solver with TCP0 MGXS; (11) Transport solver with P5 MGXS. 

 

2.3 SPH equivalent techniques 

The SPH equivalent techniques[33,34] are widely used 

to preserve the reaction rates of a reference 

heterogeneous model and a homogenous model. In 

[35,8,9,19,24], the SPH techniques are used by coupling 

the MC MGXS generation and the nodal diffusion 

solving to improve the accuracy of control rod modeling. 

The sketch of the SPH generation process used in this 

work is shown in Fig. 1: 

Step#1: Initial heterogeneous geometry models are 

used to generate reference heterogeneous flux and 

MGXS of the homogenized region using MC 

continuous-energy calculation. 

Step#2: MGXS generated in Step#1 are used in MC 

multigroup calculation of the corresponding case in 

homogenized geometry and obtained homogenized flux. 

Step#3: SPH factor for homogenized region r and 

energy group g is calculated as: 

𝜇𝑟,𝑔 =
𝜑𝑟,𝑔

ℎ𝑒𝑡𝑒

𝜑𝑟,𝑔
ℎ𝑜𝑚 𝑜

𝑁𝑔 (12) 

where 𝜑𝑟,𝑔
hete is total reference flux in the corresponding 

homogenized region, 𝜑𝑟,𝑔
ℎ𝑜𝑚𝑜 is homogenized flux in the 

homogenized region, Ng is the normalization factor 

calculated[36]: 

𝑁𝑔 =
∑ 𝜑𝑟,𝑔

𝑟𝑒𝑓
𝑟

∑ 𝜑𝑟,𝑔
ℎ𝑜𝑚𝑜

𝑟

(13) 

Step#4: Modify initial MGXS Σr,m,g
 by multiplying 

SPH factors. For homogenized space m and energy 

group g, the corrected cross-section Σr,m,g
Mod  is calculated 

as: 
𝛴𝑟,𝑚,𝑔

𝑀𝑜𝑑 = 𝜇𝑚,𝑔𝛴𝑟,𝑚,𝑔 (14) 

Step#5: Modified MGXS are applied in Step#2 and 

repeat Step#2 to Step#4 to obtain SPH factors of a new 

generation until SPH factors satisfy the convergence 

condition. 
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The SPH technique is characterized by a fixed-point 

iterative process that necessitates the generation of cross-

sections and flux solely once within the heterogeneous 

model. This particular attribute holds significant 

importance as it effectively alleviates the computational 

load. 

 

 

Fig. 1. Iteration scheme of SPH factor generation[19] 

In the context of the MET-1000, a comparison of the 

S-curves for control rods is presented in Fig. 2, 

contrasting results obtained from OpenMC-Trivac with 

and without the employment of SPH techniques[19]. The 

overestimation associated with the TCP0/Diffusion 

approach escalates from 3.8% to 13.5% upon the 

insertion of control rods. Upon incorporating SPH 

correction, the relative errors exhibited by the 

TCP0+SPH/Diffusion approach range from -7.5% to 

0.4%. Notably, the TCP0+SPH/Diffusion methodology 

displays exceptional performance when control rods are 

substantially inserted. However, it's important to 

acknowledge that this scheme is not as adaptable to cases 

involving slight control rod insertions, necessitating 

further investigation. 

 

 

Fig. 2. S-curve of control rods[19] 

Fig. 3 illustrates the substantial enhancement in the 

accuracy of power distribution prediction brought about 

by the utilization of SPH techniques. For the 

TCP0+SPH/Diffusion schemes, the maximum and 

minimum errors stand at 3.2% and -4.2%, respectively, 

across all control rod insertions. 

 

 

Fig. 3. Variation of relative maximal and minimal error 

with the insertion of control[19] 

 
2.4 Flux-moment homogenization techniques 

 

In most deterministic transport codes, MGXS are 

independent of the incident angle. In Reference [37] and 

Reference [38], the ‘consistent-P’ approximation[39] is 

generalized to 2D and 3D for fast reactor analysis and 

called the flux-moment homogenization technique 

(MHT). The MHT was implemented in OpenMC[31]. 

The concept of flux-moment homogenization relies on 

neutron conservation principles. The fundamental 

stationary Boltzmann neutron transport equation can be 

expressed as follows: 
𝐿(𝑟, 𝛺) + 𝑇(𝑟, 𝛺) = 𝑆(𝑟, 𝛺) + 𝐹(𝑟, 𝛺) (15) 

where the term 'L' signifies leakage, the term 'T' 

represents the total reaction rate, the term 'S' denotes the 

scattering source, and the term 'F' corresponds to the 

fission term. Developing the angular flux and transfer XS 

in spherical harmonics 𝑌ℓ,𝑚 in T and S gives: 

𝑇 = 𝛴𝑘,𝑡
𝐺 𝜓𝑘(𝛺) = ∑

2ℓ + 1

4𝜋
∑ 𝛴𝑘,𝑡

𝐺 𝜑𝑘,ℓ,𝑚
𝐺 𝑌ℓ,𝑚(𝛺)

ℓ

𝑚=−𝑙ℓ

(16) 

𝑆 = ∑ ∑
2𝑙 + 1

4𝜋
ℓ𝐺′

∑ 𝛴𝑘,𝑠,ℓ,𝑚
𝐺′→𝐺

ℓ

𝑚=−ℓ

𝜑𝑘,ℓ,𝑚
𝐺′

𝑌ℓ,𝑚(𝛺) (17) 

However, if the angle dependence of the total cross-

sections is considered, the exact equation is: 
𝐿(𝑟, 𝛺) + 𝑇̃(𝑟, 𝛺) = 𝑆(𝑟, 𝛺) + 𝐹(𝑟, 𝛺) (18) 

where the angle-dependency is also taken into account 

by a spherical harmonics expansion: 
𝑇̃ = 𝛴𝑘,𝑡

𝐺 (𝛺)𝜓𝑘(𝛺) =

∑
2ℓ + 1

4𝜋
∑ 𝛴𝑘,𝑡,ℓ,𝑚

𝐺 𝜑𝑘,ℓ,𝑚
𝐺 𝑌ℓ,𝑚(𝛺)

ℓ

𝑚=−ℓℓ

(19)
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To keep an isotropic total cross-section in simulation, 

the T term should be considered on the left side of the 

equation, leading to: 
𝐿 + 𝑇 = 𝑆 + 𝑇 − 𝑇̃ + 𝐹 (20) 

Notice that the flux terms in S, T and 𝑇̃ are the same and 

they can be combined: 

𝑆̂ = 𝑆 + 𝑇 − 𝑇̃ = ∑ ∑
2ℓ + 1

4𝜋
ℓ𝐺′

∑ (𝛴𝑘,𝑠,ℓ,𝑚
𝐺′→𝐺 + 𝛿𝐺,𝐺′(𝛴𝑘,𝑡

𝐺

ℓ

𝑚=−ℓ

− 𝛴𝑘,𝑡,ℓ,𝑚
𝐺 ))𝜑𝑘,ℓ,𝑚

𝐺 𝑌ℓ,𝑚(𝛺)                   (21) 

Equivalent scattering matrices can be obtained: 

𝛴̂𝑘,𝑠,ℓ,𝑚
𝐺′→𝐺 = 𝛴𝑘,𝑠,ℓ,𝑚

𝐺′→𝐺 + 𝛿𝐺𝐺′(𝛴𝑘,𝑡
𝐺 − 𝛴𝑘,𝑡,ℓ,𝑚

𝐺 ) (22) 

In doing so, we have to deal with spherical harmonic 

moments for the scattering matrices. The dataset form is 

still complex and with poor generality. To fit the 

isotropic form of XS data, Vidal et al. proposed a 

collapsing method based on the least square method to 

collapse spherical harmonic moments into Legendre 

moments[38]: 

𝛴̂𝑘,𝑠,ℓ
𝐺′→𝐺 = 𝛴𝑘,𝑠,ℓ

𝐺′→𝐺 + 𝛿𝐺𝐺′(𝛴𝑘,𝑡
𝐺 − 𝛴𝑘,𝑡,ℓ

𝐺 ) (23) 

where: 

𝛴𝑘,𝑡,ℓ
𝐺 =

∑ 𝜑𝑘,ℓ,𝑚
𝐺ℓ

−ℓ 𝑅𝑘,𝑡,ℓ,𝑚
𝐺

∑ 𝜑𝑘,ℓ,𝑚
𝐺 2ℓ

−ℓ

(24) 

where 𝑅𝑘,𝑡,ℓ,𝑚
𝐺  and 𝜑𝑘,ℓ,𝑚

𝐺  can be directly tallied in the 

MC code. 

The reference [38] refers to numerical divergence 

when MGXS with MHT is used in the deterministic 

method. A fix-up is used to set the corrected high-order 

scattering matrices to no more than zero-order scattering 

matrices to avoid divergence: 

𝑖𝑓 |𝛴̂𝑘,𝑠,ℓ
𝐺′→𝐺| > 𝛴𝑘,𝑠,0

𝐺′→𝐺 ,  𝑙𝑒𝑡 𝛴̂𝑘,𝑠,ℓ
𝐺′→𝐺 = 𝛴𝑘,𝑠,0

𝐺′→𝐺 ∙
𝛴̂𝑘,𝑠,ℓ

𝐺′→𝐺

|𝛴̂𝑘,𝑠,ℓ
𝐺′→𝐺|

 (25) 

The MHT changes the angle distribution of the 

scattering reaction to represent the anisotropy of the total 

cross-sections. The correction should be appropriate to 

all transport solvers.  

The outcomes achieved through MHT 

homogenization for MET-1000 core with 

OpenMC/OpenMC(MG) scheme are depicted in Fig. 4. 

The overall disparity of MC-MGXS without correction 

amounts to approximately 1192 pcm when employing 

Legendre order 3. This difference can be attributed to the 

angle-dependent nature of cross-sections, resulting in a 

bias of around 772 pcm. MHT substantially mitigates 

much of this effect, accounting for 698 pcm. The residual 

74 pcm come from an insufficient expansion order and 

the angle-dependence of cross-sections other than Σt. 

Increasing the scattering order from 3 to 7 leads to a 

reduction of approximately 120 pcm in reactivity bias, 

while spatial and energy homogenization introduces a 

bias of about 172 pcm. The remaining bias of 128 pcm 

remains unexplained for now; potential contributions 

include inaccuracies in anisotropic scattering 

representations. 

The deviations in power distribution are illustrated in 

Fig. 5. The analysis of the power distribution reveals a 

tendency in the multi-group transport results to 

overestimate power in peripheral assemblies and 

underestimate it in central assemblies. Utilizing MGXS 

without MHT yields notable maximum radial biases of 

4.02%/-4.10%, along with axial biases of 3.03%/-3.63%. 

The Root Mean Square Error (RMSE) for this 

configuration stands at 1.54%. 

Incorporating MHT into the MC-MGXS approach 

substantially ameliorates these biases. Radial biases are 

reduced to 2.76%/-2.39%, while axial biases are 

mitigated to 0.79%/-2.25%. As a result, the RMSE is 

effectively lowered to 0.76%. This correction leads to a 

reduction in both the overestimation of peripheral 

assemblies and the underestimation of central assemblies, 

confirming the capability of MC-MGXS with MHT to 

effectively counteract the bias introduced by the angle 

dependence of Σt. 

 

Fig. 4. Decomposition of the reactivity bias between CE 

and multigroup MC results[31] 

 

Fig. 5. Power distribution bias at all-rods-out (a: w/o 

MHT; b: w/i MHT)[31] 

 

3. Conclusions 

 

The utilization of the Monte Carlo (MC) method for 

generating multi-group cross sections (MGXS) offers the 

advantage of eliminating the resonance approximation 

and facilitating the treatment of intricate 2D/3D 

geometries. In the context of the advancing capabilities 

of high-performance computers, this method has become 

increasingly appealing. This article presents a 

comprehensive review of its application in the analysis 

of fast reactors, particularly through the integration of 

diffusion and transport solvers. The paper outlines the 

general methodology employed and subsequently 

provides a summary of results obtained across various 

types of fast reactors with the use of different 

computational codes. Moreover, the discussion extends 

to cover thesuperhomogénéisation equivalent techniques 
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(SPH) and the flux-moment homogenization techniques 

(MHT). Finally, in Section 3, we present our 

conclusions., both of which play significant roles in 

enhancing the accuracy of the presented approach. 

The available results show that the coupling with 

diffusion solver exhibits good accuracy in the prediction 

of the effective multiplication factor whole overtimes the 

absorbers’ effect. The SPH techniques improve its 

accuracy in predicting control rod worth. Remarkably, 

the synergistic application of SPH and a 3D whole-core 

MGXS generation model achieves the exact 

conservation of reaction rates under specified conditions. 

When coupled with a transport solver, utilizing scalar 

flux volume homogenization techniques tends to result 

in an overestimation of the effective multiplication factor. 

However, this overestimation can be mitigated by 

employing the MHT technique, which effectively 

addresses the issue by accounting for the anisotropic 

effect of total cross-sections within the scattering matrix. 

The statistical uncertainty of MGXS requires further 

quantification to ensure the reliability of the results. 

Additionally, it's imperative to assess the robustness of 

SPH factors under perturbations states. The validation of 

MHT techniques across a variety of reactor types is 

necessary. Furthermore, the application of MHT to 

transport-corrected cross-sections needs further studied. 

It's worth noting that this brief review of MGXS 

generated using the MC method lacks a comprehensive 

survey of their performance in areas such as power 

distribution, feedback coefficients, perturbated states, 

and computational efficiency. These aspects should also 

be explored for a more comprehensive understanding of 

the method's capabilities and limitations. 
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