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Abstract – The applicability of a Jacobian-Free Newton-Krylov (JFNK) method for use in coupled reactor 

problems is examined. The ability for JFNK to simultaneously solve coupled systems of equations offers the 

potential for significant computational speedup over traditional solver methods. Simplified 1D and infinite 

homogeneous medium problems were devised to test the effectiveness of JFNK on coupled problems. These 

problems demonstrated that updating the absorption cross section from within the JFNK solver can 

decrease computational times significantly. Additionally, a JFNK eigenvalue solver was fully implemented 

into the neutron transport code MPACT. Problems tested using this solver showed that JFNK offers, at 

worst, comparable performance as long as an appropriate preconditioner is used.     

 

I. INTRODUCTION 

 

The solution of a coupled multiphysics problem is most 

often solved using a fixed-point, or Picard, iteration in 

which each set of physics is solved separately, and the 

resulting outputs are passed between each solver. Generally, 

once two different codes are coupled into one, one set of 

physics is solved first while the other set of physics is 

solved only after convergence. These separate solvers treat 

one another as black boxes in that they only use information 

from the other as an input and do not share information 

between each other before convergence. In nuclear reactor 

applications, coupling neutronics to thermal-hydraulics 

(TH) is no exception. A typical workflow is as follows: first, 

the neutronics equations are solved to calculate the fluxes in 

the problem, which in turn are used to calculate power. 

Then a TH solver takes these powers and uses them to 

determine the temperatures throughout the problem. These 

temperatures are then passed back to the neutronics solver 

where they are used to calculate new cross sections. This 

cycle continues until both the neutronics and TH solutions 

are stable. While this fixed-point method is easiest to 

implement and solve, it suffers from a slow convergence 

rate. There also is no guarantee that the solution will 

converge at all. This is due to the fact that only the local 

convergence within each solver is known and tested. The 

overall global convergence is not actually known but is 

assumed from the local convergence of each solver. 

Therefore, it is possible under certain circumstances that 

global convergence is never reached, although each set of 

physics is locally converged. 

Alternatives to a Picard iteration scheme are available 

that may offer improvements. Newton-based iterative 

methods that utilize a Jacobian to provide more information 

have a quadratic convergence rate and are globally 

convergent [1]. Certain Newton-based methods avoid 

having to form the Jacobian, which is desirable when it is 

either expensive or impossible to compute. These methods 

are referred to as Jacobian-Free Newton-Krylov (JFNK) 

methods [2]. 

 

1. JFNK Methods 

 

The ability to accurately predict coupled system 

behavior in a reasonable amount of time is critical for both 

steady state and transient calculations. All research to date 

on coupled JFNK systems have been performed with either 

diffusion or nodal solvers, or were performed on the fine 

transport mesh with little performance improvement [1] [3] 

[4] [5] [6]. The unique contribution of this work is the fact 

that the nonlinear JFNK solver will be applied on the low-

order condensed Coarse Mesh Finite Difference (CMFD) 

equations to further accelerate the solution. In order to 

achieve improved performance, methods for updating the 

cross sections on the coarse mesh will need to be 

investigated to avoid having to perform the computationally 

expensive fine mesh calculations used to update the cross 

sections. This method can also be implemented to solve the 

critical boron search problem and transient problems, in 

addition to being a 𝑘-eigenvalue solver.  

The core of any JFNK solver is Newton’s Method. 

Newton’s method is an iterative method for finding the 

roots of a real-valued function, i.e., 𝑓(𝒙) = 0.  If the 

current root approximation is given by 𝒙𝑘, and the 

subsequent approximation is given by 𝒙𝑘+1, then the 

method can be derived from a Taylor series expansion of 

𝑓(𝒙𝑘+1) about 𝒙𝑘: 

 

𝑓(𝒙𝑘+1) = 𝑓(𝒙𝑘) + 𝑓′(𝒙𝑘)(𝒙𝑘+1 − 𝒙𝑘) + ⋯ .  (1) 
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Since it is desired that as 𝑘 gets large, 𝑓(𝒙𝑘+1) will 

approach zero, the right hand side of Equation 1 is set to 

zero and the higher order terms are ignored, leading to 

 

 0 = 𝑓(𝒙𝑘) + 𝑓′(𝒙𝑘)(𝒙𝑘+1 − 𝒙𝑘) .      (2) 

 

Solving for 𝒙𝑘+1 yields Newton’s method: 
      

𝒙𝑘+1 = 𝒙𝑘 −
𝑓(𝒙𝑘)

𝑓′(𝒙𝑘)
 .           (3) 

 

Provided the initial guess is sufficiently close to a root, 

Newton’s method has a quadratic convergence rate which is 

a desirable feature in numerical linear algebra. Newton’s 

method can also be extended to solve an 𝑚-dimensional 

system of nonlinear equations, 𝐹(𝒙) = 0, where 𝑥 is now 

a vector of length 𝑚. This version of Newton’s method has 

the same form as Equation 2, but is usually written as the 

linear system 

 

𝐽(𝒙𝑘)𝛿𝒙𝑘 = −𝐹(𝒙𝑘) ,           (4) 

 

where 𝛿𝒙𝑘 = 𝒙𝑘+1 − 𝒙𝑘 and 𝐽(𝒙𝑘) ≡ 𝐹′(𝒙𝑘) is the 

Jacobian matrix 

 

𝐽(𝒙𝑘) =

[
 
 
 
𝜕𝐹1(𝒙𝑘)

𝜕𝒙1
⋯

𝜕𝐹1(𝒙𝑘)

𝜕𝒙𝑚

⋮ ⋱ ⋮
𝜕𝐹𝑚(𝒙𝑘)

𝜕𝒙1
⋯

𝜕𝐹𝑚(𝒙𝑘)

𝜕𝒙𝑚 ]
 
 
 

 .      (5) 

 

Therefore the vector 𝛿𝒙𝑘 is the solution to Equation 4 and is 

added to the current root approximation, 𝒙𝑘, in order to 

obtain the approximation at the next step. 

A JFNK method solves the nonlinear system of 

equations in Equation 4 without explicitly forming the 

Jacobian. Instead, in certain Newton-Krylov methods, the 

explicit elements of the Jacobian, J , are not needed to be 

known; only the action of the matrix on a vector, 𝒗, is 

required. Therefore, to avoid forming the Jacobian entirely, 

a finite difference is used to approximate this matrix-vector 

product using 

 

     𝐽(𝒙)𝒗 ≈
𝐹(𝒙+𝜀𝒗)−𝐹(𝒙)

𝜀
           (6) 

 

where   is a small perturbation. This is the basis for JFNK 

methods, and the error in this approximation is proportional 

to  . While JFNK has the obvious advantage of applying 

the quadratically convergent Newton’s method on a 

nonlinear system of equations without the need to form or 

store the Jacobian, it does have a drawback: it is only 

feasible on large scale problems with the use of an effective 

preconditioner [2]. Therefore the study of preconditioners 

will be a critical part of this work. 

 

2. Preconditioning 

In order to improve the convergence of JFNK 

preconditioners are often used. Preconditioners help speed 

up the JFNK method by reducing the number of linear 

iterations needed to reach convergence. Through appropriate 

preconditioning, the convergence of JFNK can be greatly 

enhanced.  

While JFNK can use either right or left preconditioning, 

right preconditioning is most often used because left 

preconditioning changes the norm of the residual, which is 

how convergence of the linear solver is measured [2]. 

Therefore, only right preconditioning was examined in this 

work. Using right preconditioning, the Jacobian-matrix 

approximation from Equation 6 becomes  

 

𝐽(𝒙)𝑷−1𝒗 ≈
𝐹(𝒙+𝜀𝑷−1𝒗)−𝐹(𝒙)

𝜀
           (7) 

 

where 𝑷−1 is the inverse of the preconditioning matrix.  

While the usefulness of JFNK lies in its ability to not 

need an explicitly formed Jacobian, effective 

preconditioners typically require some knowledge of the 

Jacobian. However, the preconditioner can use a much 

simpler version of the Jacobian and can use approximations 

to make its formulation easier.  

 

II. DESCRIPTION OF THE ACTUAL WORK 

 

As a proof of concept, two simplified reactor problems 

were developed: a one-group, one-dimensional 

homogeneous slab problem, and a multigroup infinite 

homogeneous medium problem. The one-dimensional slab 

problem looks at the potential impact of implementing a 

JFNK nonlinear solver on a problem with spatial 

dependencies while the infinite homogeneous problem 

examines the impact on a problem with energy dependence. 

These problems were run in serial using a CMFD 

accelerated Method of Characteristics (MOC) code written 

by the author. The linear system of equations formed in 

JFNK was solved using a GMRES solver also written by the 

author.  

In addition, JFNK was implemented as an eigenvalue 

solver in MPACT [7]. MPACT is a MOC neutron transport 

code currently under development by the Consortium for 

Advanced Simulation of Light Water Reactors (CASL). 

This JFNK eigenvalue solver was tested on three simplified 

reactor problems: a 2D pincell, a 3D fuel rod, and a 7x7 

assembly problem.  

 

1. One-Dimensional, One-Group Homogeneous Slab 

 

The one-dimensional (1D), one-group homogeneous 

slab problem is a common toy problem in reactor analysis 
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from which important physics can be gleaned. This 

simplified problem allows for methods to be developed and 

tested without the added complexity and computational 

burden of a multidimensional heterogeneous problem with 

multiple energy groups. The slab is finite in the 𝑥 dimension 

with a width L , but is infinite in the 𝑦 and 𝑧 dimensions, 

thus removing their dependencies. The boundary conditions 

for this problem are those of a vacuum, meaning that there 

is no incident neutron flux on the edges of the problem. A 

depiction of this 1D slab problem is shown in Fig. 1.  

 

 
 

Fig. 1. 1D homogeneous slab problem 

 

For this problem, a simple 1D steady state heat 

conduction model was used for TH feedback. For this we 

assume a fuel pin geometry with a fixed surface temperature 

and constant thermal conductivity. The temperature 

dependence of the cross section for this problem is:  

 

,)()( 0

00
T

T
TT          (8) 

 

where 0T  and 0  are the reference temperature and 

corresponding cross section, respectively. 

 

When performing the temperature updates in JFNK, 

these calculations are performed using the coarse CMFD 

mesh. Therefore, the temperatures must first be condensed 

from the fine MOC mesh to the coarse CMFD mesh. This 

uses a straightforward average of the fine regions within a 

coarse mesh. When projecting the coarse temperature back 

onto the fine mesh, the temperature is assumed the same for 

every fine region within a coarse mesh. Fig. 2 shows the 

convergence of the coupled neutronics-TH problem when 

the temperature and cross section updates are performed in 

the MOC iteration compared to when they are done in the 

JFNK iterations. 

 

 
Fig. 2. Eigenvalue convergence between JFNK and standard 

Picard iteration schemes 

 

As seen in Fig. 2, performing the TH update within the 

JFNK iterations does not offer a significant speedup 

compared to the standard Picard iteration. This could be due 

to the fact that no preconditioner was used, or that this 

problem is too simple and easy to solve so the costly 

slowdown of using Picard is not apparent. Whether this is 

the case or not, the JFNK solver does not hurt the 

convergence in this problem, and now the method is more 

robust because the global residual is tested for convergence 

instead of each local residual. 

 

2. Infinite Homogeneous Medium  

 

While the 1D slab problem in the previous section had a 

spatial dependence because of its finite size, an infinite 

homogeneous medium problem has no spatial dependence. 

Instead, an energy dependence was incorporated through the 

use of a multigroup framework. A 47 group library was used 

for this problem. Since the problem is thought of as an 

infinite material with constant properties, the cross sections 

are uniform throughout the problem. Because there is no 

longer a spatial dependence, MOC-CMFD is no longer 

needed and instead is replaced with a cross section table 

lookup. The 47 group cross sections were generated from 

simple 2D pin cell calculations run at varying fuel 

temperatures from 565 K to 1500 K in five degree 

increments. Once the pin cell calculations were finished, the 

converged homogenized cross sections were written to a 

large file. This was then used as a table lookup to determine 

the cross sections in the infinite material for a given 

temperature. A linear interpolation was used to determine 

the cross section between data points.  The temperature 

feedback used in this problem was chosen using the solution 

of one of the 2D pin cell problems such that the problem 

would converge to a predetermined solution. Arbitrarily 

choosing the 1365 K case and using its eigenvalue leads to 

the TH feedback used: 
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effkKT  534.688565        (9) 

 

where effk  is the dominant eigenvalue. While it is not a 

robust method, Equation 9 ensures that as the eigenvalue 

increases or decreases, the temperature follows suit. It also 

has the added benefit of knowing what the solution should 

converge to upon completion, allowing for error checking. 

 

It is possible to accelerate the convergence of the 

temperature and multigroup fluxes if some information 

about the cross section dependence on temperature is used 

in the JFNK iterations. Currently, while Newton’s method 

within JFNK is iterating towards a solution, the cross 

sections are held constant. Even though the temperature is 

changing, the cross sections aren’t updated until after the 

JFNK solution has converged. In order to give the Newton’s 

method the ability to update the cross sections, the cross 

section derivative with respect to temperature, 𝑑Σ 𝑑𝑇⁄ , is 

calculated at the current temperature using a forward finite 

difference approximation. These derivatives are then passed 

into JFNK and are used to linearly extrapolate the cross 

sections as the temperature is converging. The comparison 

of the convergence of these two methods is shown in Fig. 3. 

 

 
Fig. 3 Convergence of table lookup scheme vs the addition 

of a linear update 

 

As seen in Fig. 3, the inclusion of a linear update of the 

cross sections in the Newton iteration is very effective. The 

linear update curve appears to have quadratic convergence 

while the table lookup only curve is linear. While this 

speedup appears to come without much effort, one must 

think of larger full-scale reactor problems. In this simple 

problem, there is only one material and therefore one 

temperature. Using this method on a full-core problem 

would be prohibitively expensive because one would have 

to store each cross sections derivative for every flat source 

region in the core. Therefore, an analysis was performed to 

determine how to achieve the most acceleration without the 

large memory requirements. 

 

First, to determine which of the cross sections had the 

largest impact on speedup, each was linearly updated 

individually, while the others were only updated outside of 

the JFNK iteration. The results from this test are given in 

Fig. 4. The curves from Fig. 3 were included in Fig. 4 

because they act as outer limits for this study. It is clear 

from Fig. 4 that updating 𝜒, 𝜈Σ𝑓, and Σ𝑠 has little, if any, 

effect on the convergence rate. Updating Σ𝑎 however, has a 

very significant impact on the problem convergence. 

Therefore, only the absorption cross section update will be 

considered for the remainder of this section. 

 

 
Fig. 4 Convergence plots for each cross section being 

linearly updated independently 

 

While removing the other linear cross section updates 

does relieve some of the memory burden, having to 

determine the absorption cross section derivative for every 

region in the core might still be too expensive. Therefore, a 

study was performed to determine how exact the absorption 

cross section derivatives need to be and what 

approximations could be made. The first approximation 

made is to remove the temperature dependence of the 

derivative and use an average value per group instead. This 

was done by calculating 𝑑Σ𝑎 𝑑𝑇⁄  for all temperatures for 

each group. An average was then calculated by summing all 

of the derivatives for a given group and then dividing by the 

number of derivatives summed. This approximation is 

referred to as the Average Groupwise Derivative 

approximation. The next approximation tested looked at 

removing the group dependence and only using a one-group 

temperature dependent derivative. The first step was to 

collapse the multigroup cross sections to a one-group cross 

section. Then 𝑑Σ𝑎 𝑑𝑇⁄  was calculated using a forward 

finite difference for a given temperature. This 

approximation is referred to as the One-Group Derivative 

approximation. The final simplification examined involves 

combining the two previous approximations to remove both 

the temperature and group dependencies on the derivative. 
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Like the One-Group Derivative approximation, the cross 

sections are initially collapsed to one-group. Then like the 

Average Groupwise Derivative approximation, these one-

group cross sections are used to calculate the derivatives 

using a forward finite difference, which are then averaged 

together. Therefore, 𝑑Σ𝑎 𝑑𝑇⁄  becomes simply a constant 

value. This method is called the Average One-Group 

Derivative approximation. Each of these different methods 

were implemented independently and their convergence 

plots are shown in Fig. 5. 

 

 
Fig. 5 Convergence plots for different absorption cross 

section derivative approximations 

 

As seen in Fig. 5, all possible approximations are 

improvements upon the method that only updates the cross 

sections after the fluxes have converged. As expected, using 

a constant value from the Average One-Group Derivative 

approximation performed the worst, but still performed 

better than using no approximation and leaving the cross 

sections constant during the JFNK routine. The Average 

Groupwise Derivative and the One-Group Derivative 

approximations both had similar convergence behavior, and 

performed better than the constant Average One-Group 

Derivative approximation. Calculating the Local Derivative 

for every absorption cross section performed the best, but 

might be limiting when used on a larger problem. Therefore, 

depending on computational requirements, more than one of 

these approximations might be feasible on largescale 

calculations and should be investigated.  

Finally it needs to be addressed how the cross section 

derivatives will be calculated in a real problem where the 

converged solution isn’t known beforehand. One possible 

method that will be investigated is similar to what was done 

with this infinite homogeneous problem. A simple 1D pin 

cell problem could be run on the fly each Newton iteration. 

The results of which could be used to calculate 

approximations of 𝑑Σ𝑎 𝑑𝑇⁄ . Another possible option is to 

formulate a derivative estimator in CMFD during the 

homogenization process which would then be passed into 

the JFNK routine. Finally, it will be investigated whether 

some predetermined constant derivative values are possible, 

avoiding any additional calculations.  

 

3. Eigenvalue Solver in MPACT 

After learning important lessons from the application of 

JFNK to the simplified problems described above, it was 

implemented as an eigenvalue solver in the MPACT 

neutronics code. The implementation of the JFNK and 

GMRES solvers were provided using the Portable, 

Extensible Toolkit for Scientific Computation, or PETSc 

[8].  

Like the 1D slab problem, MPACT solves the 

generalized eigenvalue problem given by 

 

     𝕄𝝓 =
1

𝑘𝑒𝑓𝑓
𝔽𝝓,       (10) 

where 𝝓 is the flux vector containing the scalar fluxes for 

each coarse mesh region in CMFD, 𝕄 is the migration 

matrix, 𝔽 is the fission matrix, and 𝑘𝑒𝑓𝑓 is the dominant 

eigenvalue.  

To test the effectiveness of using JFNK as an 

eigenvalue solver, three test problems were used: a 2D 

pincell in a square channel, a 3D fuel pin with 28 axial 

regions, and a 3D 7x7 assembly, also with 28 axial regions. 

The specific details of these problems are not necessary; 

they were simply chosen to test JFNK on systems of varying 

size. The pincell problem is 32x32, the 3D fuel pin is 

896x896, and the 3D assembly is 4480x4480.  

As a benchmark, these same problems were run using a 

default Power Iteration (PI) eigenvalue method performed 

on the CMFD mesh. At first JFNK was implemented 

without a preconditioner. These results are given in Table I.  

 

Table I. Unpreconditioned comparison of PI and JFNK 

eigenvalue solvers 

Problem 
    

Pincell 
 

# MOC Iterations k-eff Time 

 
PI 15 1.1702266 00:01.2 

 
JFNK 15 1.1702266 00:01.8 

3D Fuel Pin 
    

 
PI 15 1.1544792 00:21.3 

 
JFNK 15 1.1544990 02:38.4 

7x7 Assembly 
    

 
PI 10 1.1000484 00:43.5 

 
JFNK 20 1.1000817 08:36.3 

 

While the JFNK solver converges to the same 

eigenvalue as the PI method, its computation time is much 

greater for problems of a larger size. For the largest problem 

tested, the 7x7 assembly, it took twice as many transport 
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sweeps to achieve convergence, demonstrating the 

instability of the unpreconditioned system.  

To improve on these results, a preconditioner was used 

to speed up convergence. To test the ability of JFNK to 

function without knowing the true Jacobian, an approximate 

Jacobian of Equation 10 was selected to simply be 𝕄. 
Using 𝕄 = 𝑷, Equation 7 was used to precondition the 

system. These results are given in Table II. 

 

Table II. Preconditioned comparison of PI and JFNK 

eigenvalue solvers 

Problem 
    

Pincell 
 

# MOC Iterations k-eff Time 

 
PI 15 1.1702266 00:01.2 

 
JFNK 15 1.1702266 00:01.6 

3D Fuel Pin 
    

 
PI 15 1.1544792 00:21.3 

 
JFNK 15 1.1544848 00:24.1 

7x7 Assembly 
    

 
PI 10 1.1000484 00:43.5 

 
JFNK 9 1.1000523 00:42.5 

 

While the use of an approximate preconditioner sped up 

the convergence for all problems, its effect is most 

noticeable on the larger problems. In fact, the 7x7 assembly 

problem took one fewer transport sweep than was required 

by the PI solver. 

 

III. RESULTS  

 

In order to provide background on the proposed 

approach, a JFNK based nonlinear solver was successfully 

written and applied to two separate simple problems. It was 

found that for the 1D one-group homogeneous slab 

problem, JFNK offered no significant speedup to the 

convergence of the eigenvalue. This potentially could have 

been the result of the problem being too simple and easy to 

solve. Therefore the shortcomings of the standard Picard 

iteration did not become apparent. However, even though no 

speedup was achieved, the overall robustness of the 

convergence behavior was improved because JFNK solves 

for the global residual, rather than each local residual. 

However, when JFNK was applied to the infinite 

homogeneous multigroup problem a significant reduction in 

the number of transport iterations was observed. When all 

cross sections were updated linearly within the nonlinear 

Newton iteration, a speedup of 43% was see compared to 

leaving the cross sections constant as the temperature 

changes within the JFNK update. To avoid the 

computational expense of calculating and storing the cross 

section derivatives for every region of a large scale problem, 

alternative methods were tested that wouldn’t carry the 

same memory burden. It was found that updating only the 

absorption cross section and leaving all other constant 

carries the most improvement. Simplifications of this 

absorption update were performed and it was discovered 

that removing the temperature dependence by averaging the 

absorption cross section derivative over all temperatures 

was the second best method. This was followed closely by 

removing the group dependence and using just a one-group 

temperature dependent derivative. Finally, both the 

temperature and energy dependencies were removed and a 

single constant value was used for all updates. While this 

method was the worst of all those tested, it was still an 

improvement on the standard Picard iteration scheme. This 

shows promise that even if JFNK is used to update the cross 

sections with a constant value in the nonlinear Newton 

iterations, it would lead to a speedup over the standard 

method.   

When tested on three simple problems, the JFNK solver 

implemented in MPACT showed long computational times 

when used in an unpreconditioned manner. However, when 

an approximate to the Jacobian was selected to be the 

migration matrix, 𝕄, the JFNK solver performed 

comparably to the PI solver. In one problem, the 7x7 

assembly case, JFNK was slightly faster than PI and 

required one fewer transport sweep.  

 

IV. CONCLUSIONS 

When looking at all of the problems tested in this paper, 

an overall benefit to using JFNK for coupled problems 

becomes apparent. Other than unpreconditioned cases, 

JFNK performed, at worst, comparably to the methods that 

are currently in use in production transport codes. But when 

the speedup seen from the infinite homogeneous problem is 

taken into account, the potential for JFNK to outperform 

current methods is seen. Since, as an eigenvalue solver, 

JFNK is comparable to PI, the addition of the nonlinear 

cross section updates within JFNK should offer significant 

speedup. Therefore, the overall use of JFNK appears to offer 

benefits over that of the standard Picard iteration approach. 

While these preliminary results are promising, much 

work is still being done to fully implement JFNK into 

MPACT for coupled multiphysics problems. Appropriately 

updating the cross sections on the CMFD mesh from within 

JFNK is still an active area of research. In addition, 

selecting an appropriate block Jacobian for the coupled 

problem is also being investigated. Finally, to fully 

implement this method, JFNK will include a parallel 

capability to run large, full-scale reactor core problems on 

large computer systems.  
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