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Abstract - This paper evaluates the performance of neutronic/thermal-hydraulic coupling algorithms 

based on a practical HTR simulator TINTE. We compare the computational performance of OSSI method, 

Picard method and JFNK method over a range of transients. Numerical results indicate that the fully 

implicit coupling methods, Picard and JFNK, are more accurate and more stable which are suitable for the 

mild transient where longer time step could be utilized and higher computational performance could be 

achieved, while the time step of OSSI is always limited due to the accuracy and stability issue in this 

situation. However, the OSSI is recommended for the sharp transient where small time step must be utilized 

to resolve the dynamic process. In this situation, the advantage of its cheap computational cost per time 

step is dominant. Furthermore, the computational performance of fully implicit schemes, including linear 

preconditioning JFNK, nonlinear preconditioning JFNK and Picard, are assessed based on the simplified 

model and the last two methods are also compared on the practical HTR-PM model. The results show that 

the linear preconditioning JFNK is the best choice from the viewpoint of the computational efficiency, 

while extensive modifications are required to the existing physics codes. Nonlinear preconditioning JFNK 

is also attractive due to its “black box” coupling advantage. However, its computational performance is 

the worst in these three fully implicit schemes, because of its high computational cost at each Krylov 

iteration. The performance of Picard is worse than linear preconditioning JFNK due to its linear 

convergence rate. In short, we suggest that linear preconditioning JFNK should be a top option in the new 

developmental codes, while Picard method is suitable for coupling the existing codes. For an ideal 

practical code, both semi-implicit and fully implicit schemes should be developed to deal with different 

transient processes.     

 

Keywords: Jacobian-free Newton Krylov method, Picard method, Semi-implicit operator-splitting method, 

Accuracy, Stability   

 

 

I. INTRODUCTION 

 

In order to perform a complete transient calculation, the 

neutronics and thermal-hydraulics (N/TH) fields should be 

coupled with a stable, accurate and efficient method. 

Generally speaking, there are three algorithms to solve the 

N/TH coupling system, including Semi-Implicit Operator-

Splitting (OSSI) method, Picard method and Jacobian-free 

Newton-Krylov (JFNK) method. Each coupling algorithm 

has its own advantages and disadvantages. OSSI method is a 

kind of well-developed and optimized coupling method and 

has been widely used in industry application, such as the 

PWR simulator PARCS/TRACE and PARCS/RELAP [1] 

and the HTR simulator TINTE [2-5]. For this method, the 

large coupled problems are divided into several smaller 

problems at first, and then each individual physical field is 

sequentially solved. It should be noted that there is no iter-

ation between neutronics and thermal-hydraulics during the 

time step. As a result, some parameters are not converged 

during the time step in OSSI method. Furthermore, accuracy 

and stability issues are caused due to the additional errors 

derived from the lagged parameters [6]. As a result, time 

step is always limited because of the lagged parameters, 

resulting in larger total CPU time cost. Picard method, also 

known as simple fixed point iteration method, is the 

extension and improvement of OSSI method [7]. The basic 

idea of Picard method is adding an outer iteration between 

neutronics and thermal-hydraulics to make all parameters 

converged in a fully implicit manner. Due to its simplicity 

and convenience, some efforts have been made to apply this 

method to N/TH coupled safety analysis code, such as the 

practical HTR simulator PARCS/AGREE [8]. Although this 

approach offers a convenient framework to couple different 

physics codes with the minimal code modifica-tions, it also 

has several shortcomings. The main drawback is that the 

convergence rate of Picard method is only 1st order [9]. It 

means a number of outer iterations are required to achieve 

convergence. Additionally, the relaxation factors are always 
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required to achieve robust convergence which highly 

depends on the user experience. The third coupling 

approach is JFNK method, which is another fully implicit 

coupling scheme. Different from the former two coupling 

methods, in JFNK method, all the coupled equations are 

simultaneously solved in a tightly nonlinear coupled form. 

In theory, JFNK method is featured as its high convergence 

rate and robust convergence property without relaxation 

factors [9-10]. Due to these inherent advantages, JFNK 

method has been attracted wide attentions in the nuclear 

engineering field, including transient coupling problem [11-

17] and steady-state k-eigenvalue coupling problem [7,18-

22], and even pure thermal-hydraulic problem [23-25]. It 

should be noted that only transient coupling problem is 

investigated in this paper. Recently, many studies about 

solving the transient problem by JFNK method have been 

published. However, to date, most of the efforts focus on the 

simplified 1-dimensional transient problem [11-16], and 

only a few efforts have been made for the complex 

multidimensional transient application [6,17]. So the main 

disadvantage of JFNK method is that its computational 

performance has not been fully validated, especially for the 

complex practical engineering physical model. Furthermore, 

to the best of our knowledge, little efforts have been made 

for the comprehensive comparison among these three 

coupling algorithms. The question which algorithm is more 

recommended in a given situation has not been answered 

yet.    

In this paper, we develope the fully implicit coupling 

schemes, Picard method and JFNK method, based on HTR 

simulator TINTE which has been widely used in the HTR 

transient behavior analysis for safety. And then we investi-

gate the performance of Picard and JFNK solvers compared 

to OSSI on realistic complex coupling problems for model-

ing of modular pebble bed high-temperature gas-cooled 

reactors (HTRs). In order to make a relatively comprehen-

sive comparison, the computational performance is present-

ed and analyzed under different transient processes. And 

finally we give the recommended coupling algorithms under 

different situations. 

This paper is organized as follows. The outline of the 

N/TH coupling methods is described in section 2. And the 

accuracy and stability of semi-implicit operator-splitting 

scheme and fully implicit schemes (Picard and JFNK) are 

also analyzed in theory. The numerical results are presented 

and discussed in section 3. In this section, both simplified 

model and complex HTR-PM model are utilized. And 

different transient processes are carried out to access the 

computational performance of these three coupling algo-

rithms based on the HTR-PM model. The conclusions are 

presented in section 4. 

 

II. COUPLING ALGORITHMS 

 

For notational simplicity, in the remainder of this paper 

we will allow   to refer to the neutron distribution. And we 

will define T  as not only the solution of the solid media 

thermal diffusion equation, but also the solution to the fluid 

media equations. So the N/TH coupling system could be 

expressed as following.  

 

 

, 0

, 0

T

T T

f x x

f x x

 



 




 

Where ,
T

Tx x x
     

In this section, the outlines of OSSI, Picard and JFNK 

algorithm are proposed as following. 

 

1. Semi-Implicit Operator-Splitting 

 

In the early development of the N/TH coupling code, 

the semi-implicit coupling algorithm is widely employed 

due to the limited computational capability. For example, 

the HTR simulator TINTE employs this scheme to couple 

the neutronics and thermal-hydraulics. Under many years of 

academic and industrial efforts, OSSI method has been fully 

developed and optimized, and extensively used in nuclear 

safety analysis. The outline of this coupling scheme is 

depicted in Table I. In this scheme, the coupled system is 

divided into several physical fields and each individual 

physical field is solved sequentially. In order to reduce the 

computational cost, there is no iteration between neutronics 

and thermal-hydraulics during the time step. As a result, 

some parameters are not converged during the time step. 

Ref.[13] is referred OSSI as to inconsistent coupling 

method. 

 

Table 1. OSSI Coupling Scheme 

 

Algorithm 1 OSSI coupling scheme. 

Given 0 0, Tx x
 

Solve  0, 0new

Tf x x    for newx  

Solve  , 0new new

T Tf x x   for new

Tx  

The above calculation process can be rewritten as 

 0newx G x  

Prepare for the next time step calculation 

Set 0 0,new new

T Tx x x x    

 

2. Picard Method 

 

With the enhancement of computational capability, 

fully implicit coupling methods have been proposed and 

developed. In order to eliminate the inconsistent terms in 

OSSI scheme, a straightforward path is Picard method, 

which is also known as simple fixed point iteration method. 

The basic idea is to add an outer iteration between 

neutronics and thermal-hydraulics to make all parameters 
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converged during the time step. The outline of this coupling 

scheme is presented in Table II. The lagged term     in the 

equation                     could be updated by the outer itera-

tion. And when the outer iteration converges, all the 

physical quantities are consistent in time. However, it could 

be proved that the convergence rate of the outer iteration is 

only 1st order [9]. It always means a number of iterations 

are required to achieve convergence. Furthermore, in order 

to make the iteration process robust, the user-defined 

relaxation factors   are always needed. And the determina-

tion of the relaxation factor   highly depends on the user 

experience and several attempts are always needed. 
 

Table 2. Picard Coupling Scheme 

 

Algorithm 2 Picard coupling scheme. 

Given 0 0, Tx x
 

For m = 0, 1,... until converged do 

       Solve  1, 0m m

Tf x x 
   for 1mx

  

       Solve  1 +1, 0m m

T Tf x x
   for 1m

Tx   

        1 1 1m m mx x x        

        The above process can be rewritten as 

         1m mx G x   

End for 

Prepare for the next time step calculation 

Set 0 1 0 1,m m

T Tx x x x 
    

 

3. Jacobian-Free Newton-Krylov Method 

 

The JFNK method significantly differs from the former 

two methods. Unlike decoupling process in OSSI and Picard 

method, all the coupled equations in JFNK method are 

solved in a tightly nonlinear coupled form and all unknowns 

are updated simultaneously. The outline of JFNK coupling 

scheme is shown in Table III. The basic idea of JFNK 

method is that Newton method is employed to solve the 

nonlinear coupling equation. And the Krylov subspace 

iteration method is utilized to solve the linear equation 

derived from the Newton linearization. An important feature 

of JFNK is that a finite difference approximation is utilized 

instead of the analytical Jacobian matrix, because only 

matrix-vector production, not the Jacobian matrix itself, is 

used in Krylov iteration process. Compared with the linear 

convergence rate in Picard method, JFNK has super-linear 

convergence rate. It means fewer iterations are required for 

JFNK to reach convergence. Another advantage is that no 

user-defined relaxation factors are required to make the 

iteration converge. 

 

 

 

Table 3. JFNK Coupling Scheme 

 

Algorithm 3 JFNK coupling scheme. 

Given 0 0 0,
T

Tx x x
   

 

For n = 0, 1,... until converged do (Newton iteration) 

       Solve    n n nJ x x F x    for 
nx   

       by Krylov subspace iteration method 

       where the Jacobian matrix 

        
/ /

=
/ /

n

T T

f f T
J x

f f T

 



    
     

 

       For m = 0, 1,... until converged do  

       (Krylov subspace iteration) 

              At each Krylov iteration, the matrix-vector  

              production is approximated 

              
 
 

,
/ /

,

m m

Tm
f v T v

f x v
f T

  




  
    
  

 

       End for 

       
+1 +n n nx x x  

End for 

Prepare for the next time step calculation 

Set 
0 0= ,n n

T Tx x x x    

 

4. Accuracy and Stability Analysis 

 

Both Picard and JFNK are the fully implicit coupling 

algorithms, because all parameters are converged during the 

time step. As motivation for fully coupling algorithms, the 

accuracy and stability of semi-implicit algorithms and fully 

implicit algorithms are analyzed and compared in this 

section. For simplicity, we also adopt a simplified point 

coupled reaction system used in Ref.[6], as shown in Eq.(1). 

The absorption cross section is a function of temperature to 

consider the negative temperature effect. The coolant equa-

tions are not considered explicitly. It should be noted that 

the following analysis could be easily extended to the multi-

dimensional complete N/TH coupling problem. 

                 
 

 0

1
0

0

a f

f f

T v
t

T
e T T

t


 



 


    


     

 

                             (1) 

Without loss of generality, we employ first-order back-

ward Euler (BE) temporal discretization, as an example, for 

the neutronics equation. For the fully implicit coupling 

 1, 0m m

Tf x x 
 

m

Tx



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, 

Jeju, Korea, April 16-20, 2017, on USB (2017) 

algorithms, the absorption cross section is evaluated at 
1nt 
. 

And the discrete neutronics equation can be written as 

Eq.(2). While for the semi-implicit coupling algorithms, the 

absorption cross section is the lagged parameter which is 

evaluated at 
nt . As a result, the neutronics equation can be 

expressed as Eq.(3).  

            
1

1 1 11
0

n n
n n n

a fT v
t

 
 




  

   


                   (2) 

             
1

1 11
0

n n
n n n

a fT v
t

 
 




 

   


                     (3) 

Numerical accuracy analysis is made based on the simi-

lar method in Ref.[6]. The numerical error for the fully 

implicit coupling algorithms is shown as Eq.(4). And only 

truncation error, which is from the first-order backward 

Euler temporal discretization, makes a contribution to the 

numerical error. However, for the semi-implicit coupling 

algorithms, not only the truncation error but also an addi-

tional error make contribution to the total numerical error. 

This additional error is from the unconverged absorption 

cross section. Furthermore, when higher order temporal 

schemes are utilized, such as the third order implicit Runge-

Kutta scheme, the numerical error for the fully implicit 

coupling algorithms could be  3O t . While for the semi-

implicit coupling algorithms, the numerical error is only 

 O t  due to the first order additional error from the lagged 

cross section. We will show the numerical results about the 

accuracy issue caused by the additional error in section III.  

              
1 2

2

1

2

n

a f

t
T v

t v t

 
 




   

      

                     (4) 

     
1 2

2

1

2

n

a
a f

Truncation Error Additional Error

t T
T v t

t v t T t

 
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


    
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   (5) 

Numerical stability analysis is also made in this section. 

For the fully implicit algorithms, the semi-discrete scheme 

could be expressed by Eq.(6). According to the stable requ-

irement [26], all eigenvalues of the transition matrix should 

be non-positive when the transient process has been long 

enough. The eigenvalues of the fully implicit schemes are 

calculated and shown in Eq.(7). As the convective heat 

transfer coefficient is positive, the   is smaller than 0. 

According to the physical experience, a perturbed reactor 

system will return to the critical state after a long period of 

time due to the negative temperature effect. Therefore, the                                            

     equals to zero which means the critical state. As a result, 

the fully implicit algorithms are stable. However, for the 

semi-implicit algorithms, different from the fully implicit 

algorithms, there is an additional term in the effective 

absorption cross section in Eq.(8) and Eq.(9). And the semi-

discrete scheme and the transition matrix could be expressed 

by Eq.(10) and Eq.(11). The corresponding eigenfunction of 

the transition matrix is Eq.(12). And the maximum eigen-

value is calculated in Eq.(13) which relies on the size of 

time step. As a result, when the time step is large enough in 

Eq.(14) , this eigenvalue is larger than 0 (            is always 

larger than 0 due to the Doppler effect), which means the 

coupled system is unstable. In short, the fully implicit algo-

rithms are unconditionally stable. While the semi-implicit 

algorithm is only conditionally stable. It means when the 

time step is large enough, unstable phenomenon will occur 

for semi-implicit scheme. We will show the numerical 

results about the stability issue in section III. 

              
1 11 1

1

n nn n
f a

n

f f

transmation matrix

v

Tt Te

 


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

     
     

       

           (6) 

Where 
0=T T T  

                 1 2lim 0, lim 0f a
t t

v   
 

                  (7) 
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              (14) 

 

III. EXPERIMENTAL RESULTS 

 

In this section, the performance of the three different 

algorithms is compared, first for a simplified two-dimen-

sional model and then for a practical engineering coupled 

problem using HTR simulator TINTE. 

 

1. Two-Dimensional Simplified Problem 

 

A simplified two-dimensional homogeneous reactor 

model is adopted in this section. Six nonlinear equations are 

taken to describe the dynamic process in the nuclear reactor, 

including neutron diffusion equation, solid heat transfer 

1

2
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equation, and mass, momentum and energy equations for 

fluid. The coolant flows into the reactor from the bottom 

side and flow out from the top side. The Cartesian geometry 

is chosen with 3 meters in height and 2 meters in width. 

There are 100 meshes in both height direction and width 

direction. In order to simplify the examination of the 

numerical behavior of different algorithms, pilot code is 

utilized. 

 

A. Convergence Rate Analysis 

 

The fully implicit schemes are attractive due to its exce-

llent accuracy and stability, which permits larger time step 

to pursue high efficiency. However, a nonlinear equation 

system should be solved at each time step. Therefore, an 

effective solution is crucial for the fully implicit schemes. 

The convergence and computational performance of Picard 

and JFNK are compared in this subsection.  
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Fig. 1. Convergence process 
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Fig. 2. Convergence rate of JFNK 

 

Firstly, the convergence processes of this two algori-

thms are represented in Fig.1. For JFNK method, only a few 

iterations are needed to achieve convergence, due to its 

super-linear convergence rate, shown in Fig.2. The con-

vergence rate of JFNK in this case is 1.3481 which is 

consistent with the theory. For Picard method, about 60 

iterations are utilized because of its only linear convergence 

rate. In this case, the convergence rate of Picard is 0.9703, 

as shown in Fig.3, which agrees well with the theory pred-

iction. What’s more, damping parameter is always required 

to ensure the convergence of the Picard method which is 

also shown in Fig.1. The Picard iteration will diverge if the 

damping parameter is not used. 
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Fig. 3. Convergence rate of Picard 

   

Secondly, the computational performance of these two 

algorithms is compared. The total computational efficiency 

not only relies on the iteration number, but also depends on 

the computational cost per iteration. Preconditioning 

method is a key issue for the JFNK method. In fact, there 

are two families of preconditioning method, linear precondi-

tioning and nonlinear preconditioning, which are developed 

independently. Linear preconditioning JFNK employs the 

preconditioning technologies which have been widely used 

in linear equation problems. However, this preconditioning 

method likely requires extensive modifications to existing 

physics codes. Nonlinear preconditioning is another 

attractive choice because it could be implemented as “black 

box” coupling. Ref. [27] make a comparison between these 

preconditioning methods from the point of view of compu-

tational efficiency and convergence rate. And the main 

results could be summarized in Table 4. A numerical test is 

carried out to compare the computational performances 

among linear/nonlinear preconditioning JFNK and Picard. 

The results show that the convergence rate of these two 

preconditioning technologies is similar, because the only 

difference of the preconditioning system is that there is an 

additional term for nonlinear preconditioning, as shown in 

Table 4. However, the computational cost of nonlinear 

preconditioning is much larger than that of the linear 

preconditioning, as shown in Table 5. It is because the 

inverse of preconditioner should be calculated at each 

Krylov iteration in nonlinear precondi-tioning while the 

inverse in the linear one is just updated at each Newton 
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iteration. As a result, the computational performance of 

nonlinear preconditioning is even worse than Picard 

iteration. In short, for the fully implicit schemes, 

computational performance of linear preconditioning JFNK 

is the best due to its super-linear convergence rate. Picard 

method is worse than that of linear preconditioning JFNK 

because its convergence rate is only linear and many 

iterations are required to achieve convergence. Lastly, the 

nonlinear preconditioning JFNK is the worst of all, because 

of its high computational cost at each Krylov iteration.  

 

Table 5. Computational Performance Comparison 

 

Methods Newton_It Krylov_It CPU time (s) 

JFNK_NP* 4.00 17.19 1.8963 

JFNK_LP* 4.00 17.34 0.3428 

Picard —— —— 0.7521 

NP: Nonlinear Preconditioning 

LP: Linear Preconditioning 

 

B. Accuracy Analysis 

 

The accuracy and stability of semi-implicit and fully 

implicit schemes are discussed theoretically in section 2.4. 

In this subsection, several numerical tests are implemented 

to analyze the accuracy. And the stability analysis is made 

in the next subsection.  

A cold inlet transient is calculated to compare the 

accuracy among three different coupling algorithms. The 

inlet coolant temperature is reduced by 20 K during 0.5s. 
The neutron flux is represented in Fig.4. The algorithms 

OSSI, Picard and JFNK are carried out to compare the 

accuracy. The size of time step is set to be a fixed value 

0.01s. The reference solution is computed by JFNK with the 

fixed time-step size of 0.001s. All results of fully implicit 

scheme are overlapped, so only one is plotted in Fig.5. For 

this case, the positive reactivity is inserted due to the cold 

inlet temperature, so the neutron flux increases at first, and 

then reduces because of the too large introduced negative 

reaction. And finally the neutron flux reaches new balanced 

value. The local neutron profile near the first peak is 

enlarged as shown in Fig.5. It is clear that the OSSI results 

are larger than those of fully implicit schemes (JFNK and 

Picard). The computational performance and accuracy are 

shown in Table 6. The maximum relative error of OSSI is 

1.02%, which is twice larger than those of fully implicit 

schemes. It is because that there is an additional truncation 

error term                                    in OSSI compared with the 

Picard and JFNK, as shown in section 2.4. It should be 

noted that the computational cost of OSSI per time step is 

minimal, even smaller than the best fully implicit scheme 

linear preconditioning JFNK method. It is because in the 

OSSI the coupled is divided into several subfields by 

operator-splitting and each individual physical field is only 

sequentially solved once per time step. It is a possible 

situation that the smaller time step is employed for OSSI to 

ensure the accuracy, but its total computational cost is still 

better than that of Picard and JFNK due to its cheap cost per 

time step. In the next subsection, we will make a detailed 

efficiency comparison under the same accuracy based on the 

practical physical model. 
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Fig. 4. Neutron flux profile for cold inlet case 
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Fig. 5. Local profile for cold inlet case 

  

Table 6. Numerical Accuracy Comparison 

 

Methods Iteration Error CPU time (s) 

JFNK_NP 4.1 0.51% 1.9734 

JFNK_LP 4.1 0.51% 0.3937 

Picard 134.2 0.51% 0.8859 

OSSI —— 1.02% 0.2203 

 

C. Stability Analysis 

 

The stability of semi-implicit and fully implicit is veri-
fied by the numerical tests in this subsection. Here, the 

phrase “stable” is used to describe the phenomenon that if 

an equilibrium system is perturbed, the system will return to 

  / /at T T t    
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the original state after a long time. This system is called 

stable system. Otherwise, this system is unstable [26]. 

In this subsection, the neutron flux is disturbed by about 

+10% perturbation which makes the reactor system depart 

from the equilibrium state. According to the physical exp-

erience, the reactor system will return to the original state 

due to the negative temperature effect. The algorithms 

OSSI, Picard and JFNK are carried out to evaluate the 

stability under two different time step sizes. The medium 

time step size is set to be a fixed value 0.6s and the large 

time step size is 2.5s. The reference solution is computed by 

JFNK with the fixed time-step size of 0.01s. It should be 

noted that we focus on the stability evaluation in this 

subsection, and the accuracy is not considered here. All 

results of fully implicit schemes are overlapped, so only one 

is plotted. 

The numerical results at the medium step are presented 

in Fig.6. The semi-implicit coupling solution exhibits 

unphysical oscillations, because of the additional term in the 

effective absorption cross section. It could be interpreted as 

following. At the first time step (0.6s), the previous 

temperature is employed to calculate the cross section in the 

semi-implicit method. The negative feedback doesn't work 

at the first time step (The semi-implicit neutron flux 

decreases because the delay neutron precursor is from 

equilibrium state which couldn't support enough delay 

neutron). Therefore, the neutron flux of semi-implicit 

method at 0.6s is higher than that of fully implicit method, 

as shown in Fig.6a. As a result, the solid fuel temperature at 

0.6s is much larger than that of the fully implicit method, as 

shown in Fig.6b. This too large fuel temperature at 0.6s has 

two effects on the next time step, as shown in Eq.(9), which 

consists of two parts, physical component      and the 

additional component                                 . One effect is 

that the physical absorption cross section               is larger 

than the fully implicit results which introduce a large 

negative reactivity. And this reactivity makes the solid 

temperature decreases at 1.2s. The other effect is that the 

additional component makes negative reactivity further 

larger at 1.2s because the additional term is larger than 0 

(  
1.2

/ 0
t

T t


   ). Therefore, the neutron flux and solid 

temperature at 1.2s are much lower than the equilibrium 

state shown in Fig6. Again, this too low temperature will 

introduce large positive reactivity at 1.8s. Furthermore, the 

additional term could make this positive reactivity much 

larger because of  
1.8

/ 0
t

T t


   . As a result, the neutron 

flux and solid temperature at 1.8s are larger than the 

equilibrium state shown in Fig.6. This is why the unphysical 

oscillations occur. We could say that the additional term 

always makes a “positive feedback” contribution which 

makes a small quantity smaller, and a large quantity larger. 

Furthermore, this contribution is proportional to time step. 

When the time step is not too large, the physical absorption 

cross section component is still dominant. Even unphysical 

oscillations occur, the system still returns to the original 

equilibrium state due to the negative temperature effect. It 

means this system is still stable. However, when the time 

step is further enlarged, the system is far away from the 

equilibrium state over the time steps, as shown in Fig.7. It 

means that the semi-implicit scheme is unstable. However, 

the full implicit schemes are still stable when large time step 

is utilized. 

 

0 2 4 6 8 10 12
5.8

5.9

6

6.1

6.2

6.3

6.4

6.5

6.6

6.7
x 10

18

Time (s)

N
e

u
tr

o
n

 f
lu

x
 (

m
-2

s
-1

)

 

 
Reference

Fully implicit 0.6

Semi-implicit 0.6

 
(a) Neutron flux profile 

0 2 4 6 8 10 12
400

410

420

430

440

450

460

Time (s)

F
u

e
l 

te
m

p
e

ra
tu

re
 (

0
C

)

 

 
Fully implicit 0.6

Semi-implicit 0.6

 
(b) Solid fuel temperature profile 

Fig. 6. Neutron flux and fuel temperature at medium step 
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(b) Solid fuel temperature profile 

Fig. 7. Neutron flux and fuel temperature at large step 

 

In short, OSSI is conditionally stable which is limited 

by the size of the time step. While the fully implicit method 

is unconditionally stable. The numerical test results are 

consis-tent with the theory prediction in section 2.4. It 

should be noted that in the practical nuclear safety analysis, 

the unphysical oscillations should be removed because we 

couldn't obtain the real physical information. It means we 

should further refine the time step in the semi-implicit 

scheme to obtain an accurate result.  
 

2. HTR-PM Simulation by HTR Simulator TINTE 

 

A. Simulator TINTE and Physical Model 

 

TINTE is a well-established code for pebble bed HTR 

[2-5]. Complicated physical models, including the two 

energy groups neutronic module, thermal-hydraulic module, 

chemical reaction module and simplified automatic control 

module are employed in TINTE to calculate time-dependent 

neutron fluxes, solid pebble bed temperature and helium 

temperature in R-Z geometry. Furthermore, the TINTE code 

had been validated by experimental data from SANA 

experiment [28] and AVR reactor [29], and is widely used 

in the transient behavior and safety analysis of HTR, such as 

HTR-PM [30,31] in China and PBMR in South Africa [32].  

However, only OSSI coupling scheme is utilized in 

TINTE to couple the neutronic and thermal-hydraulic in 

which the system’s neutronic equations are first solved and 

then the thermal-hydraulics equations are solved. In this 

paper, the fully implicit coupling schemes, Picard method 

(TINTE-Picard) and JFNK method (TINTE-JFNK), are 

developed based on the original HTR simulator TINTE. It 

should be noted that only nonlinear preconditioning JFNK is 

developed at the current stage due to its “black box” coupl-

ing advantages. In this paper, we only focus on the multi-

physics coupling between neutronic kinetics and thermal-

hydraulics. The chemical reaction module in TINTE is not 

considered here. 

A practical High Temperature Reactor-Pebble-bed 

Modules (HTR-PM) model, rather than a simple model, is 

utilized to assess the performance of different coupling 

algorithms in this section. The HTR-PM is a demonstration 

plant and intends to be a series of commercial plants. The 

technical research for the HTR-PM began in 2001, and now 

the power plant is currently progressing well toward con-

necting to the grid at the end of 2017 [33]. And the cross-

section of a reactor module is shown in Fig.8. 

According to the structure layout of the HTR-PM 

reactor, a TINTE calculation model in R-Z geometry has 

been established based on some reasonable approximations 

presented in Fig.9a. Not only the reactor, but also the out 

loop is considered in this model. The out loop component 

includes a simplified stream generator, a helium circulator 

and a coaxial gas duct, as shown in Fig.9b. In this paper, 

only the equilibrium core is taken into account. The initial 

conditions of these transient processes select the normal 

operational state with a 100% rated thermal power. The 

steady-state dis-tributions of neutron fluxes, solid pebble 

bed temperature and helium temperature are shown in 

Fig.10, Fig.11 and Fig.12, respectively. 
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Fig. 8. TINTE calculation model 
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(b) Outer loop model  

Fig. 9. TINTE calculation model 
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Fig. 10. Thermal neutron distribution  
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Fig. 11. Solid temperature distribution  
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Fig. 12. Helium temperature distribution  

 

B. Code-to-code Verification 

 

In order to verify the computer codes developed in this 

paper, a code to code comparison is implemented in this 

subsection. A reduced power transient is utilized to verify 

the new developed codes TINTE-Picard and TINTE-JFNK. 

The transient processes are set as following. The total power 

is linearly decreased from full power to half power during 

the period between 300s and 600s. In order to keep the total 

energy balance, the mass flow through helium fan and heat 

load in the steam generator are also reduced to the half of 

the original normal value during the same time. The size of 

time step is set to be a fixed value 1s. 

Fig.13 shows the variations of the mean values of the 

thermal neutron flux, helium temperature and solid pebble 

bed temperature for this transient. From 0s to 300s, it is a 

null transient and the physical quantity distributions are the 

steady-state results. Over the next 300s, the mean value of 

thermal neutron flux drops from 3.21013 m-2s-1 to 1.6  

1013 m-2s-1 in a manner specified by the preset operation and 

then the neutron flux reaches a new balance state. During 

this transient process, the power generated by the neutron 

fission and the heat transfer by the thermal-hydraulic are 

always matched by adjusting the mass flow through helium 

circulator and the heat load in steam generator. Therefore, 

the solid pebble bed temperature and helium temperature are 

almost maintained as a constant throughout the entire 

transient. 

The mean relative errors of neutron flux for TINTE-

Picard and TINTE-JFNK are shown in Fig.14. During the 

period of rapid power change between 300s and 600s, the 

mean relative error grows up to the maximum. And then the 

mean relative error decreases as the rate of change in 

neutron flux decreases. However, the maximum relative 

error is only about 0.006% which is acceptable in a practical 

problem. 

The numerical experiments show that accurate results 

can be obtained by the new developed code TINTE-Picard 

and TINTE-JFNK, which provides the basis for the algori-

thm comparison. 
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Fig. 13. Variation of the mean value of physical quantities 
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Fig. 14. Mean relative error in reduced power transient case 

 

C. Mild Positive Reactivity Transient 

 

In this subsection, an inserted positive reactivity transi-

ent is employed to compare the numerical accuracy between 

semi-implicit coupling scheme and fully implicit coupling 

schemes. For this case, it is a null transient in the first 30s. 

And then 0.05% positive reactivity is linearly introduced 

within the next 40s. The thermal neutron flux is increased 

due to the inserted positive reactivity, as shown in Fig.15. 

And within the next fifty seconds, the power reaches a peak. 
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In this case, the reactivity is linear introduced over a rela-

tively long period (40s), therefore, there is enough time for 

ther-mal-hydraulic to counteract this external reactivity by 

nega-tive temperature effect. So the peak value of neutron 

flux is only about 115% of the steady-state value.   
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Fig. 15. Neutron flux profile with mild inserted reactivity 
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Fig. 16.  Mean relative error in mild reactivity case 

 

Table. 7 Accuracy Comparison in Slow Transient 

 

Method 
Time 

step 

Max 

relative 

error 

Total 

CPU 

time  

Speedup 

ratio 

OSSI 

(reference) 
2s —— —— —— 

OSSI 40s 10.9% —— —— 

OSSI 20s 2.90% 148.25 s 1 

Picard 40s 2.65% 38.52 s 3.85 

 JFNK 40s 2.82% 100.50 s 1.48 

 

The large time step is utilized to assess the numerical 

accuracy of three different coupling algorithms. The size of 

time step is set to be a fixed value 40s. The reference 

solution is computed by the original TINTE with a very 

small time step whose size is 2s. For the fully imp-licit 

coupling schemes (TINTE-Picard and TINTE-JFNK), the 

numerical error is only from the neutron truncation error 

which relies on the neutron flux change, as shown in Eq.(4). 

In this case, the dynamic process of neutron flux is mild, 

therefore, the neutron flux behavior could be resolved well 

even using large time step. The results show that the maxi-

mum values of mean relative error of TINTE-Picard and 

TINTE-JFNK are 2.65% and 2.82%, respectively, which is 

acceptable for practical problems. However, for the semi-

implicit coupling scheme (original TINTE), the numerical 

error consists of neutron truncation error, which is from the 

neutron equation discretization, and additional error derived 

from the lagged temperature feed-back in the cross sections, 

as shown in Eq.(5). Furthermore, the size of the additional 

error is proportional to the size of time step. As a result, this 

additional error makes a great contribution to the total 

numerical error because of the large time step. The 

numerical results show that the maximum value of mean 

relative error of TINTE is 10.9%, which is more than 3.8 

times as much as that of TINTE-Picard and TINTE-JFNK 

within the same time step, as shown in Fig.16 and Table 7. 

It means the contribution of this additional error term is 

almost three times larger than that of the trun-cation error. 

In order to obtain the same accuracy of TINTE-Picard and 

TINTE-JFNK, the smaller time step has to be utilized which 

is just a half of the original one, as shown in Fig.16. Smaller 

time step always means more computational cost because of 

the increased number of time steps. Therefore, the compu-

tational efficiency of TINTE-Picard and TINTE-JFNK is 

3.85 times and 1.48 times higher than that of TINTE, 

respectively. In this case, the performance of TINTE-Picard 

is superior to that of TINTE-JFNK, because the nonlinear 

preconditioning method is employed in the current TINTE-

JFNK. According to the numerical results in section 3.1 by a 

simplified model, the performance of linear preconditioning 

TINTE-JFNK has the potential to be superior to that of 

TINTE-Picard. 

 

D. Mild Periodical Positive Reactivity Transient 

 

In order to evaluate the numerical stability of different 

coupling algorithms, a periodic reactivity disturbance 

transient is utilized. This transient is designed by repeating 

the processes of mild inserted reactivity in subsection 3.2.C. 

In this case, the periodic change of external reactivity is 

shown in Fig.17 where the inserted reactivity is periodically 

changed and the maximum value of the external reactivity is 

0.05%. Fig.18 illustrates the neutron flux profile under this 

periodic varied reactivity. The periodic variation of the 

neutron flux is consistent with the inserted external reac-

tivity. 
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Fig. 17. External reactivity periodical change 
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Fig. 18. Neutron flux profile with periodical reactivity 
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Fig. 19. Mean relative error in reactivity periodical case 

 

In this case, the reference solution is computed by 

original TINTE with the fixed time-step size of 2s and the 

large time step (40s) is used to assess the numerical stability 

of the coupling algorithms. Similar to the previous test, the 

neutron flux changes gently in this case, therefore, the 

fullyimplicit coupling schemes (TINTE-Picard and TINTE-

JFNK) could employ large time step to achieve an accept-

able result, as shown in Fig.19 and Table 8. The maximum 

relative errors of TINTE-Picard and TINTE-JFNK are 

3.64% and 4.75%, respectively. However, for the semi-

implicit coupling scheme, as mentioned in subsection 3.1C, 

the additional term                           always makes a 

“positive feedback” contribution which makes a small quan-

tity smaller, and a large quantity larger, especially when 

large time is employed. The same unstable phenomenon 

occurs in the practical simulator TINTE. The error of 

TINTE grows up rapidly in the form of oscillations and the 

maximum relative error of TINTE is 12 larger than those of 

TINTE-JFNK and TINTE-Picard, as shown in Table 8. 

Furthermore, the unbounded error leads the physical 

variables to exceed the reasonable range and cause the 

simulation to bad stop. Therefore, a smaller time step has to 

be taken to satisfy the stability requirement for semi-implicit 

coupling scheme. In this case, the time step size is just a half 

of the original one. As a result, the computational efficiency 

of TINTE-Picard and TINTE-JFNK is 3.04 and 1.20 times 

higher than that of TINTE, respectively. As shown in the 

simplified case, a similar conclusion could be made here. 

The OSSI algorithm (TINTE) is only “conditionally stable” 

and the size of time step is limited due to the stability issue. 

However, the fully implicit coupling algorithms, such as 

Picard and JFNK, are “unconditionally stable” and the 

limitation of time step is cancelled from the perspective of 

the stability.  

 

Table. 8 Stability Comparison in Slow Transient 

 

Method 
Time 

step 

Max 

relative 

error 

Total 

CPU 

time  

Speedup 

ratio 

OSSI 

(reference) 
2s —— —— —— 

OSSI 40s 58.6% —— —— 

OSSI 20s 3.86% 264.25 s 1 

Picard 40s 3.64% 87.00 s 3.04 

 JFNK 40s 4.75% 220.03 s 1.20 

 

E. Sharp Positive Reactivity Transient 

 

In this subsection, a similar inserted positive reactivity 

transient is calculated. The only difference between this case 

and case in subsection 3.2.C is that the positive reactivity is 

linearly inserted within the 1s, not within the 40s. As a 

result, the dynamic process of thermal neutron flux is much 

more intense than that of the case in subsection 3.2.C, as 

shown in Fig.20. And the thermal neutron flux reaches the 

peak only within 4s, while it is 50s in the mild dynamic 

case. Furthermore, the peak value of neutron flux is also 

much higher than that of the mild dynamic case.  

  / /at T T t    
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Fig. 20. Neutron flux profile with sharp inserted reactivity 
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Fig. 21. Mean relative error in sharp reactivity case 

 

Table. 9 Accuracy Comparison in Fast Transient 

 

Method 
Time 

step 

Max relative 

error 

Total CPU 

time  

OSSI 

(reference) 
0.01s —— —— 

OSSI 0.5s 7.04% 45.56 s 

Picard 0.5s 7.07% 56.18 s 

 JFNK 0.5s 7.09% 155.90 s 

 

Different from the two former cases, only small time 

step could be utilized to obtain an accurate result in this 

case. The size of the time step is set to a fixed value 0.5s. 

And the reference solution is computed by original TINTE 

with the fixed time-step size of 0.01s. The numerical results 

are shown in Table 9. In this case, OSSI (TINTE) achieves 

the same accuracy under the same time step. It is because 

the effect of the additional error                                        

could be ignored when the time step is small. What’s more, 

since the equations in semi-implicit scheme are easier to 

solve, the total computational cost of OSSI is cheaper than 

that of fully implicit schemes under the same time step, as 

shown in Table 9. Therefore, the OSSI coupling scheme is 

recommended for the sharp dynamic processes. 

 

IV. CONCLUSIONS 

 

In this study, the comparisons of operator-splitting 

semi-implicit, Picard iteration and Jacobian-free Newton-

Krylov are performed. The accuracy and stability of diff-

erent coupling schemes are analyzed in theory and verified 

by the numerical tests. Different from most existing studies 

that focus on the simplified model under a single transient 

process, our study considers not only simplified model 

based on the pilot code, but also the complex engineering 

model based on the practical HTR reactor simulator TINTE. 

Furthermore, several transient processes are designed and 

implemented to determine the suitable range of each 

coupling scheme.  

Numerical results indicate that the fully implicit coupl-

ing methods, Picard and JFNK, are more accurate and more 

stable. And they are suitable for the mild transient where 

longer time steps could be utilized and higher computational 

performance could be achieved. In this situation, the time 

step of OSSI is always limited due to the accuracy and 

stability issue. While the OSSI is recommended for the 

sharp transient where small time step must be utilized to 

resolve the dynamic process. In this situation, the advantage 

of its cheap computational cost per time step is dominant. 

Therefore, for an ideal practical code, both semi-implicit 

and fully implicit schemes should be developed. And the 

user could choose the coupling method based on different 

situations.  

The computational performances of different fully 

implicit schemes, including linear preconditioning JFNK, 

nonlinear preconditioning JFNK and Picard, are assessed 

based on the simplified model and the latter two methods 

are also compared on the practical HTR-PM model. The 

results show that the super-linear convergence rate is 

achieved in JFNK while Picard has only linear convergence 

rate. The linear preconditioning JFNK is the best fully 

implicit scheme from the viewpoint of the computational 

efficiency. However, it may require extensive modifications 

to existing physics codes. Nonlinear preconditioning JFNK 

is another attractive choice because it could be implemented 

as “black box” coupling. However, its computational 

performance is the worst in these three fully implicit 

schemes, because of its high computational cost at each 

Krylov iteration. The performance of Picard is better than 

nonlinear preconditioning. In short, linear preconditioning 

JFNK should be a top option in the new developmental 

codes. While Picard method is suitable for the existing 

codes coupling.    
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Table 4 Comparison Between Linear and Nonlinear Preconditioning 

 

 Nonlinear preconditioning Linear preconditioning relationship 

Nonlinear 

equations 
      1 0F x x M x N x x q           0F x M x x N x x q     same 

solution 

Linear equations  J x F x         1 1

0 0M x J x M x F x    —— 

 Preconditioned 

matrix of linear 

equations 

    

   

     

1

1

1 1

additional term

J I M x N x x q
x

I M x N x x
x

M x N x x M x q
x x





 


    


    

 
          

 

       

   

1 1

0 0

1

0

M x J M x M x N x x q
x

I M x N x x
x

 




    


    

 
Additional 

term 

Computational 

formula 
       1 1M x v F x v M x F x

Jv
 



   
   

       1 1

0 01

0

M x F x v M x F x
M x Jv





 

  


  

Computational 

cost 

Calculate the inverse of  +M x v  at 

each Krylov step 

Calculate the inverse of  0M x  at each 

time step or Newton step 
 

 




