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Abstract - This paper provides a detailed description of the Godiva benchmark problem suitable for multi-
physics code verification. Multigroup transport weak forms for general curvilinear coordinates are derived
using SAAF (self-adjoint angular flux) formulation. A new scheme based on spherical harmonics expansion for
evaluating the angular derivative terms using the SN method are presented and tested. A one-dimensional
spherical coordinate system is used by MAMMOTH for modeling the Godiva benchmark. Strongly-coupled
multiphysics simulation mode of MAMMOTH is exercised and numerical results are given.

I. INTRODUCTION

MAMMOTH is a MOOSE [1]-based nuclear reactor
physics application developed at Idaho National Laboratory
(INL). It performs tasks in a multiphysics environment rang-
ing from detailed fuel-resolved analysis to full core reactor
analysis by coupling other MOOSE-based applications includ-
ing the radiation transport application Rattlesnake [2], the
fuel performance application BISON [3] and the nuclear re-
actor system safety analysis application RELAP-7 [4], etc.
MAMMOTH provides the linkage between various physics
and radiation transport through multigroup cross sections. It
can evaluate densities of stationary, diffusive or convective
heavy metals and fission products. Verification and validation
(V&V) of MAMMOTH is required in addition to the V&V of
each individual dependent application. One way of doing this
is by solving a set of well-defined benchmark problems.

The coupling through data transfer among participating
applications has been demonstrated in previous work [5, 6,
7, 8]. In this pattern, all physics are modeled separately and
the driving application is responsible for transferring the data
to and from the other applications and converging them in
a Picard iteration. All physics are solved independently one
at a time. This coupling pattern is suitable for weakly cou-
pled physics with significantly different time scales. On the
other hand, MAMMOTH also allows strongly coupled mul-
tiphysics simulations with all physics residing in the same
nonlinear system. All physics can be solved simultaneously
in this coupling pattern. This paper exercises MAMMOTH
with the Godiva benchmark problem in the strongly coupled
multiphysics simulation mode.

Godiva [9, 10] is an unshielded bare spherical U-235
metal assembly originally situated at LANL in 1950s. The
metal fuel assembly contains three sections fit together to
form a sphere during an experiment. It has a critical mass
of 54kg of uranium enriched to about 90% U-235 with a ra-
dius of 8.0725 cm. Two 7/16-inch-diameter uranium control
rods with minimum reactivity insertion of 0.01 cents are used
for controlling the assembly. The assembly becomes prompt
super-critical initially by inserting the missing U-235 ’button’

into the sphere. The power quickly rises up from 1 watt to
several gigawatts in a fraction of a millisecond. The power
causes thermal expansion, increasing the neutron leakage and
consequently making the assembly sub-critical, bringing its
power down to a few megawatts.This quick thermal expansion
causes the sphere to vibrate. Various researchers [11, 12] have
used the Godiva benchmark to test their multiphysics calcu-
lations. Hence, it provides a perfect multiphysics benchmark
problem for coupling neutronics and thermo-mechanics.

We first describe the Godiva benchmark abstracted from
the experiment in detail in Section 2. We then present the neu-
tron transport equation in the weak form with one-dimensional
(1D) spherical coordinates used in Rattlesnake and the em-
ployed time integration scheme for solid mechanics. The
numerical results along with the MAMMOTH settings are
presented in Section 4. Finally, conclusions are drawn with
regard to the multiphysics coupling.

II. DESCRIPTION OF THE GODIVA BENCHMARK
PROBLEM

We first write down the governing equations with the
examination of all the assumptions for the Godiva benchmark
problem. Equations of conservation of momentum for solid-
mechanics defined on the reference (un-deformed) solution
domainD0 are:

ρ0
∂2u(X, t)
∂t2 = −~∇X · σ(u,T ) + f(X, t), (1a)

with the boundary condition

u(X, t) = g(X, t), X ∈ Γd, (1b)

σ · ~n = t(X, t), X ∈ Γn, (1c)

and the initial condition

u(X, t = 0) = u0(X), X ∈ D0, (1d)

∂u
∂t

(X, t = 0) = v0(X), X ∈ D0. (1e)
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X is the independent variable for the position vectors of the
material particles in the reference configuration, t is the in-
dependent variable for time. ~n is the outward unit normal
vector on the boundary. We adopt the Lagrangian description
in Eq. (1). u(X, t) is the displacement, f is the body force,
g(X, t) is the prescribed displacement on boundary Γd, and
t(X, t) is the prescribed traction on boundary Γn. We assume
Γd and Γn are non-overlapping and their union covers the en-
tire boundary ∂D0. u0(X) is the initial displacement, which
on boundary Γd should be equal to g(X, t) at time zero. v0(X)
is the initial velocity. We apply small strain theory for relating
the stress and displacement where the displacement is assumed
to be much smaller than any relevant dimension of the body, so
that its geometry and the constitutive properties of the material
(such as density and stiffness) at each point of space can be
assumed to be unchanged by the deformation. The nominal
stress tensor σ is directly related with the symmetric strain
tensor ε and the thermal expansion for isotropic materials

σ = λ tr(ε)I + 2µε − (3λ + 2µ)α(T − T0)I, (1f)

where λ and µ are Lamé constants and can be evaluated from
Young’s modulus E and Poisson’s ratio η,

λ =
νE

(1 + η)(1 − 2η)
, (1g)

µ =
E

2(1 + η)
, (1h)

and α is the thermal expansion coefficient. The subscript X is
used to denote that the divergence operation is defined on the
reference domain. Subscript x will appear later for denoting
the operations on the deformed domain. T is the temperature
and T0 is the strain free temperature or reference temperature.
tr(·) represents a trace operation on a tensor and I is the identity
tensor. The strain tensor is evaluated from the displacement
with the strain-displacement equations

ε =
1
2

(
~∇Xu + ~∇T

Xu
)
. (1i)

ρ0 is the original density without displacement at the reference
temperature.

The thermal conduction equation for temperature is de-
fined on the deformed domainD

ρcp
∂T (x, t)
∂t

= −~∇x · k~∇xT + P(x, t), (2a)

P(x, t) ≡
G∑

g=1

ρ

ρ0
κΣ f ,gΦg(x, t), (2b)

where P is the energy deposition from neutron reactions, κΣ f ,g
is the energy deposition cross sections and G is the number
of energy groups. These cross sections are proportional to the
current mass density. We assume all energy is from neutron
induced fission and deposited locally. cp is the heat capacity;
k is the thermal conductivity. We apply the heat flux boundary
condition

k~∇xT (x, t) · ~n = hb(T − T0), x ∈ ∂D (2c)

and set the initial temperature to be uniform

T (x, t = 0) = T0, x ∈ D. (2d)

We assume that the mechanical energy is small compared with
the total heat generated by neutron reaction so its contribution
to heat conduction can be neglected. ρ is the time-dependent
current density on the deformed domain,

ρ(t) =
ρ0

det(~∇Xu(t) + I)
, (3)

where det(·) is the determinant of a tensor.
The multigroup neutron transport equation is also defined

on the deformed domain D with the two-dimensional unit
sphere S as the angular domain,

∂

∂t

(
Ψg

vg

)
= ~Ω · ~∇xΨg +

ρ

ρ0
Σt,gΨg(x, ~Ω, t)

−

G∑
g′=1

∫
S

ρ

ρ0
Σs,g′→g(~Ω · ~Ω′)Ψg(~Ω′)dΩ′

−δ
χg,p

4π
(1 −

I∑
i=1

βi)f −
χg,i

4π

I∑
i=1

λiCi, g = 1, · · · ,G (4a)

Φg(x) ≡
∫
S

ΨgdΩ, g = 1, · · · ,G (4b)

f(x, t) ≡
G∑

g′=1

ρ

ρ0
νΣ f ,g′Φg (4c)

∂Ci

∂t
=βif − λiCi(x, t), i = 1, · · · , I, (4d)

with vacuum boundary condition

Ψg(x, ~Ω, t) = 0, x ∈ D, and ~Ω · ~n < 0. (4e)

~Ω is the independent angular variable for neutron direction of
motion, Ψg is the g-th group angular flux, Ci is the concentra-
tion of the i-th delayed neutron precursor (DNP), Φg is the g-th
group scalar flux, f is the fission-neutron production rate. Σt,g,
Σs,g′→g and Σ f ,g′ are the total, differential scattering and fission
cross sections respectively, that are affected by the local den-
sity change by the factor ρ

ρ0
. vg is the averaged neutron velocity

of g-th group, ν is the averaged number of neutrons emitted
per fission. χg,p is the prompt fission spectrum, while χg,i is
the spectrum of the i-th DNP. λi is the decay constant of the
i-th DNP, βi is the fraction of the i-th delayed neutrons of all
fission induced neutrons. We assume that the body movement
speed ∂u/∂t is negligibly small with respect to the neutron
velocities, so we can define the neutron transport equation
simply on the displaced field. The Doppler feedback effect can
be neglected and the macroscopic cross sections are assumed
constant, i.e. spectrum for generating these cross sections
are fixed, during the transient. We also neglect the thermal
expansion effect on the DNP concentrations in Eq. (4d). The
initial condition of the multigroup neutron transport equation
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is obtained by solving a k-eigenvalue problem on the reference
domainD0,

~Ω · ~∇XΨg+Σt,gΨg =

G∑
g′=1

∫
S

Σs,g′→g(~Ω · ~Ω′)Ψg(~Ω′)dΩ′

+
1
k
χg

4π
f, g = 1, · · · ,G; (4f)

χg ≡χg,p(1 −
I∑

i=1

βi) +

I∑
i=1

χg,iβi, (4g)

Ci(~r, t = 0) =
βif

kλi
, i = 1, · · · , I, (4h)

where all cross sections are evaluated at the beginning of
the transient. k is the fundamental eigenvalue. The flux is
normalized such that the power is equal to a certain value
denoted by P0. We can find the adjoint solution Ψ∗g of this
k-eigenvalue problem, which will be used for evaluating the
total effective DNP fraction:

βeff ≡

(∑I
i=1 βi

∑G
g=1 χg,iΦ

∗
g,

∑G
g′=1 νΣ f ,g′Φg′

)
D0(∑G

g=1 χgΦ∗g,
∑G

g′=1 νΣ f ,g′Φg′
)
D0

, (4i)

as a measure of the reactivity insertion. The transient is initi-
ated by a given reactivity insertion with δ as

δ = γ
βeff

k
. (5)

The Godiva benchmark can be modeled using 1D spher-
ical coordinates with radii ranging from 0 to R. The initial
outer radius R0 together with some other input parameters are
listed in Table I. The body force f, displacement of the center

TABLE I: Inputs.

Name Value Unit
Radius (R0) 8.7407 cm
Young’s modulus (E) 2.08×1012 g/cm/s2

Poisson’s ratio (η) 0.23 unitless
Thermal expansion coefficient (α) 1.39×10−5 1/K
Initial density (ρ0) 18.74 g/cm3

Heat capacity (cp) 0.1177 J/g/K
Thermal conductivity (k) 0.275 W/cm/K
Reference temperature (T0) 293.6 K
Reactivity insertion γ 1.05 $
Initial total power P0 1 W

of the sphere u(r = 0, t), traction at the outer sphere t(R0, t)
and the initial displacement u0(r) are all set to zero. The leak-
age of heat from the sphere is small, so we assume it to be
zero by setting hb = 0. It is noted that changing the reference
temperature does not affect the calculation. Multigroup cross
sections were generated with Serpent [13] with 93.5% U-235
enrichment at the reference state with a temperature 293.6K.
The energy group boundary with eight groups in Table II are
adapted from COMBINE [14]. DNP data, including the frac-
tion, decay constant, are generated with Meulekamp’s method.
All delayed groups have the same delayed neutron spectrum.

TABLE II: Energy boundary for Serpent tallies.

Group index g Upper bound Lower bound
1 16.9MeV 2.87MeV
2 2.87MeV 1.35MeV
3 1.35MeV 0.821MeV
4 0.821MeV 0.388MeV
5 0.388MeV 0.111MeV
6 0.111MeV 15.0keV
7 15.0keV 3.36keV
8 3.36keV 0.001eV

The obtained eigenvalue is 0.994912 ± 5.1pcm. Because the
cross sections are homogenized over the entire sphere, it is
expected that the eigenvalue k from Rattlesnake, the transport
solver called by MAMMOTH, will be slightly different from
this reference value. Multigroup macroscopic cross sections
and DNP data are provided in Table III and Table IV.

III. METHODS

The weak form for Eq. (1) with a homogeneous boundary
condition and zero external load is

bs(u∗,u) = (u∗, ρ0ü)D0
+ (∇Xu∗,σ)D0

= 0. (6)

We did not apply the Rayleigh damping in this calculation.
The weak form for Eq. (2) with zero heat flux on the boundary
is

bt(T ∗,T ) =
(
T ∗, ρcpṪ

)
D

+ (∇xT ∗, k∇xT )D − (T ∗, P)D = 0.
(7)

We use the continuous finite element method (CFEM) for dis-
cretizing the weak forms Eq. (6) and Eq. (7). Superscript ∗
is used to denote the test functions. These forms can be trans-
ferred to spherical coordinates straightforwardly by applying
the differential element 4πr2 in the definition of the inner prod-
uct (·, ·). We are going to use SAAF-SN (self-adjoint angular
flux, discrete ordinates) with CFEM for discretizing the multi-
group transport equation. The weak form for the multigroup
transport equation in 1D spherical coordinate is more involved
due to the streaming. Because the weak form, to the best of
the authors’ knowledge, has not been reported in literature, we
derive it in the first subsection of this section. It is noted that
the derivation applies to general curvilinear coordinates. The
time integration scheme for solid-mechanics will also briefly
discussed in the second subsection. We solve the equations
with the Lagrangian mesh, i.e. we set up two meshes, one is
the reference mesh, another is the displaced mesh modified
from the reference mesh with the current displacement u. Ele-
ment quadrature points remain coincident with material points
in this way. Thus, variables or their time derivatives evaluated
on the coincident quadrature points of the reference and the
displaced mesh are the same. Contribution of terms to the
residual and Jacobian are assembled into the system with the
selection of one of the two meshes. We use the PJFNK solver
to solve the coupled system with the block-diagonal matrix
except the off-diagonal matrices for angular fluxes from the
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TABLE III: Multigroup macroscopic cross sections.
PPPPPPType

g
1 2 3 4 5 6 7 8

Σt,g (1/cm) 0.367450 0.342842 0.326579 0.379136 0.486052 0.608836 0.757914 0.959055
νΣ f ,g (1/cm) 0.164414 0.153788 0.135015 0.127025 0.144942 0.189544 0.322009 0.638574
κΣ f ,g (J/cm) 1.78775E-12 1.87762E-12 1.71939E-12 1.65049E-12 1.90041E-12 2.52369E-12 4.28227E-12 8.48906E-12

χg,p 2.38740E-01 3.53431E-01 1.75297E-01 1.46300E-01 7.22222E-02 1.33037E-02 6.31710E-04 7.46555E-05
vg (cm/s) 2.78673E+09 1.91548E+09 1.41405E+09 1.04132E+09 6.61301E+08 3.43040E+08 1.33985E+08 5.41897E+07
χg,1·6 3.49934E-04 4.36339E-02 1.36892E-01 3.50812E-01 3.49868E-01 1.06490E-01 9.98797E-03 1.96588E-03

g′

1 2.22648E-01
2 1.95370E-02 1.99476E-01
3 2.10732E-02 2.42596E-02 2.06087E-01

Σs,0,g→g′ 4 2.94706E-02 3.33968E-02 3.59861E-02 2.87050E-01
(1/cm) 5 1.81941E-02 2.11189E-02 2.19285E-02 3.03808E-02 4.03632E-01

6 3.11190E-03 3.47807E-03 4.15951E-03 3.45022E-03 1.10754E-02 5.05712E-01
7 1.36708E-04 1.52122E-04 1.77450E-04 1.08876E-04 1.83546E-04 1.04971E-03 5.75747E-01
8 2.42681E-05 2.75950E-05 3.17398E-05 1.89209E-05 1.19789E-05 4.92712E-05 5.96135E-04 5.74718E-01
1 1.66664E-01
2 8.29032E-04 1.12303E-01
3 2.69536E-04 4.13057E-04 9.26913E-02

Σs,1,g→g′ 4 2.25935E-04 1.85691E-04 5.02009E-04 1.02220E-01
(1/cm) 5 4.09453E-05 2.04983E-05 4.82467E-05 5.78684E-05 8.71538E-02

6 -4.01827E-06 -1.80321E-06 -3.24884E-06 -8.06327E-06 -2.14750E-04 4.48213E-02
7 -1.27406E-07 -5.57798E-08 -7.12065E-07 -6.41959E-07 1.29444E-06 -8.38584E-05 9.37723E-03
8 2.35053E-06 1.58656E-06 1.83790E-06 5.45410E-07 -3.08191E-07 -8.85951E-08 -2.06829E-04 2.76586E-03
1 1.33702E-01
2 9.67644E-05 7.99193E-02
3 9.47327E-05 -1.10916E-04 4.91432E-02

Σs,2,g→g′ 4 1.56181E-04 1.03313E-04 -2.52529E-04 3.77909E-02
(1/cm) 5 8.39613E-05 6.21568E-05 9.99613E-05 -1.91458E-04 1.81973E-02

6 1.30830E-05 1.23796E-05 1.68551E-05 1.93257E-05 -9.20864E-05 3.39616E-03
7 7.93967E-07 2.49931E-07 6.24739E-07 5.08715E-07 2.61141E-08 -2.38672E-06 1.10208E-04
8 2.08141E-07 3.21020E-07 3.56209E-07 1.20735E-07 4.46787E-08 -8.04760E-08 1.81423E-07 2.12044E-04
1 1.07243E-01
2 7.31226E-05 6.30333E-02
3 2.30256E-05 5.84943E-05 3.33670E-02

Σs,3,g→g′ 4 1.01128E-05 2.48752E-05 -3.37336E-05 1.43273E-02
(1/cm) 5 3.67997E-06 1.04181E-05 6.98853E-07 -8.01657E-05 2.84272E-03

6 2.21223E-07 9.62818E-07 1.75419E-06 -1.82636E-06 -1.28080E-05 6.78219E-05
7 4.94397E-07 -2.14445E-07 -3.07215E-07 9.92446E-09 -3.21352E-07 -1.75764E-07 -4.48921E-05
8 1.25894E-07 5.71855E-08 -4.84467E-08 2.71818E-08 4.50893E-08 2.71803E-07 6.88755E-06 9.35099E-04
1 8.51221E-02
2 1.19693E-04 4.38491E-02
3 -2.09279E-05 -1.61544E-05 1.36964E-02

Σs,4,g→g′ 4 -1.22633E-05 -1.06642E-05 -4.03557E-05 3.32472E-03
(1/cm) 5 -3.55973E-06 4.29501E-07 3.24775E-06 -8.50891E-06 2.21346E-04

6 -2.99110E-07 -7.70798E-07 -7.38745E-07 3.44704E-08 -1.22655E-06 -2.59621E-04
7 -3.54124E-07 -1.10112E-08 -3.87219E-07 6.67530E-08 -1.97758E-07 1.17313E-06 -5.09103E-05
8 -2.96991E-08 7.35283E-08 8.79001E-09 -5.45025E-08 8.85128E-09 3.29318E-08 -3.66186E-06 1.17183E-03

TABLE IV: DNP data.
Type 1 2 3 4 5 6
βi 0.000243519 0.00121692 0.00117171 0.00261101 0.00110058 0.000462663

λi (1/s) 0.0133394 0.0327156 0.120832 0.303363 0.851952 2.86128
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streaming term on the curvilinear coordinate being the pre-
conditioning matrix. The row and column block index of the
matrix correspond to the primal variables. The preconditioning
system is solved with SuperLU_DIST [15].

1. Weak form for the transport equation in curvilinear co-
ordinates

The derivation of weak forms for the curvilinear coordi-
nates relies on the observation of the differences of the follow-
ing three operators: the streaming operator ∂~ΩΨ, the operator
with divergence ~∇· (~ΩΨ) and the operator with gradient ~Ω ·~∇Ψ.
In Cartesian coordinates, all of them are identical, which ex-
plains why ~Ω · ~∇Ψ is typically used to denote the streaming
operator. We introduce this new notation ∂~ΩΨ to emphasize
the partial derivative of the angular flux along the streaming
direction. We define two new operators for the difference of
these operators:

E[Ψ] ≡∂~ΩΨ − ~∇ · (~ΩΨ), (8)

E2[Ψ] ≡~∇ · (~ΩΨ) − ~Ω · ~∇Ψ, (9)

and summarize them in Table V. It is noted that E2 does

TABLE V: Streaming operator in curvilinear coordinates.

Coordinate
type E[Ψ] E2[Ψ]

Cartesian 0 0

Spherical
1
r
∂
∂µ

[(
1−µ2

)
Ψ
]
−

cos θ
r sin θ

∂
∂ω (Ψ
√

1−µ2 sinω)

( 2µ
r +

√
1 − µ2 cosω cos θ

r sin θ

)
Ψ

Cylindrical − 1
r
∂
∂ω (Ψ

√
1 − µ2 sinω)

√
1−µ2 cosω

r Ψ

not include the angular derivatives. In spherical coordinates
(r, θ, φ) in space, which are the symbols for the radial, zenith
and azimuth angle coordinates, the angular polar angle ϕ ∈
[0, π] is with respect to the unit vector êr. We typically use
the cosine of the polar angle µ = cosϕ as the polar variable.
And the azimuthal angle ω is measured in the plane of êθ, êφ
unit vectors starting from êθ. In cylindrical coordinates (r, φ, z)
in space, which are the symbols for the radial, azimuth angle
and z coordinates, the angular polar angle ϕ ∈ [0, π] is with
respect to the unit vector êz. µ = cosϕ and the azimuthal angle
ω is measured in the plane of êr, êφ unit vectors starting from
êr. In 1D R-spherical coordinate, the ω-derivative in E and
the term in E2 involving cosω are zero. The derivation of the
weak form uses the divergence theorem along with integration
by parts:(

Ψ∗, ∂~ΩΨ
)
D

= 〈Ψ∗,Ψ〉∂D −
(
~Ω · ~∇Ψ∗,Ψ

)
D

+ (Ψ∗, E[Ψ])D , (10)

where

(a, b)D ≡
∫
D

a(x)b(x)v dx, (11)

〈a, b〉∂D ≡
∫
∂D

a(x)b(x)v~Ω · ~n ds. (12)

a and b are two generic functions defined over the solution
domain D or the boundary ∂D. v is the differential element

applied to curvilinear coordinates. It is one for Cartesian
coordinate, 4πr2 for 1D R-spherical coordinate.

We will derive the SAAF weak form for curvilinear co-
ordinates. To simplify the notation, we consider the mono-
energetic steady-state transport equation with an isotropic scat-
tering source 1

4πΣs
∫

4π Ψ dΩ, a fixed extraneous source Q and
vacuum boundaries. We also do not include the void treatment.
It is noted that all of these simplifications can be removed in
the complete weak form without fundamental difficulty. Fol-
lowing the same derivation of SAAF weak form in [16], we
end up with the following bilinear and linear forms:

b(Ψ∗,Ψ) ≡
(

1
Σt

~Ω · ~∇Ψ∗, ~Ω · ~∇Ψ

)
+ (ψ∗,ΣtΨ) + 〈Ψ∗,Ψ〉+ +(

1
Σt

~Ω · ~∇Ψ∗ + Ψ∗, E[Ψ]
)

+

(
1
Σt

~Ω · ~∇Ψ∗, E2[Ψ]
)

−

(
1
Σt

~Ω · ~∇Ψ∗ + Ψ∗,
1

4π
Σs

∫
4π

Ψ dΩ

)
(13)

l(Ψ∗) ≡
(

1
Σt

~Ω · ~∇Ψ∗ + Ψ∗,Q
)
. (14)

The two underlined terms in addition to the Cartesian bilinear
form are due to the streaming in curvilinear coordinate. Few
notations used in the above forms are defined as

(a, b) ≡
∫
D

∫
4π

a(x)b(x)v dΩ dx, (15)

〈a, b〉+ ≡
∫
∂D

∫
~Ω·~n>0

a(x)b(x)v
∣∣∣∣~Ω · ~n∣∣∣∣ dΩ ds, (16)

〈a, b〉− ≡
∫
∂D

∫
~Ω·~n<0

a(x)b(x)v
∣∣∣∣~Ω · ~n∣∣∣∣ dΩ ds. (17)

In 1D R-spherical coordinate, the extra terms can be spelled
out as(

1
σt
µ
∂

∂r
Ψ∗ + Ψ∗,

1
r
∂

∂µ
[(1 − µ2)Ψ]

)
+

(
1
σt
µ
∂

∂r
Ψ∗,

2
r
µΨ

)
.

These terms can be discretized angularly with SN given an
angular quadrature {µm,wm,m = 1, · · · ,M} as

M∑
m=1

wm

(
1
σt
µm

∂

∂r
Ψ∗m + Ψ∗m,

1
r

∂

∂µ
[(1 − µ2)Ψ]

∣∣∣∣∣
µ=µm

)
D

+

M∑
m=1

wm

(
1
σt
µm

∂

∂r
Ψ∗m,

2
r
µmΨm

)
D

, (18)

where Ψm = Ψ(µm). The µ-derivative can be evaluated with
the following generic formulation:

∂

∂µ
[(1 − µ2)Ψ]

∣∣∣∣∣
µ−µm

=

M∑
n=1

βm,nΨn. (19)

We first follow the similar procedure in Ref. [17] to obtain
these βs. We let

∂

∂µ
(1 − µ2)Ψ

∣∣∣∣∣
µ=µm

= 2
αm+1/2Ψm+1/2 − αm−1/2Ψm−1/2

wm
, (20)
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and obtain the constraints,

αM+1/2 = α1/2 = 0, (21)
αm+1/2 = αm−1/2 − wmµm,m = 1, · · · ,M. (22)

We also include the same approximation

Ψm+1/2 = 2Ψm − Ψm−1/2,m = 1, · · · ,M. (23)

We need a dummy direction with µ = −1 for ψ1/2 indexed as
m = 0 later to start solving the angular fluxes sequentially from
m = 1 to M. Eq. (19) on this dummy direction is simply equal
to 2ψ. We call this direction dummy because its angular flux
does not contribute the evaluation of the angular flux moments.
It is desired to add another dummy direction µ = 1 denoted
with m = M + 1 for the adjoint calculation. We propose the
following equation

ΨM+1 = 2ΨM+1 − (2ΨM − ΨM−1/2). (24)

to artificially bring in the coupling from the directions of
m = 0, · · · ,M for this additional dummy direction. Finally,
we obtain

βm,n =



(−1)m 2
wm

(αm+1/2 + αm−1/2), n = 0, 0 < m ≤ M;

(−1)n+m 4
wm

(αm+1/2 + αm−1/2), 0 < n < m, 0 < m ≤ M;
4

wm
αm+1/2, n = m, 0 < m ≤ M;

−2µ0 n = m = 0;

0 n > m; 0 ≤ m ≤ M

2, n = 0,m = M + 1;

(−1)n4, 0 < n ≤ M; m = M + 1

−4 n = m = M + 1.

. (25)

We can prove
m∑

n=0

βm,n = −2µm. (26)

So Eq. (18) is indeed equal to zero when applying the P0 pro-
jection, i.e. assuming angular fluxes and their tests are angular
independent with Ψ∗m = Φ∗,Ψm = Φ. The matrix formed by
the βs is lower triangular. Because this scheme enables the
sequential solving of angular fluxes once the source is known,
we label it as the sweeping scheme. The mathematical adjoint,
i.e. the transpose of the extra streaming terms, can be derived
following the similar procedure in [18]. The solution from the
mathematical adjoint equation is required for evaluating the
βeff.

We will also present another new way of evaluating the
µ-derivative and show the superior angular convergence of
this treatment with numerical results. From the discrete an-
gular fluxes Ψm,m = 1, · · · ,M, we evaluate the angular flux
moments up to order M − 1 with

Φ` =

M∑
m=1

wmP`(µm)Ψm, ` = 0, · · · ,M − 1, (27)

where P` is the `-th order of Legendre polynomial. Then we
can construct the continuous angular flux

Ψ(µ) =

M−1∑
`=0

2` + 1
2

P`(µ)
M∑

m=1

wmP`(µm)Ψm, (28)

which allows us to evaluate ∂
∂µ

[(1 − µ2)Ψ]
∣∣∣∣
µ=µm

as

M−1∑
`=0

2` + 1
2

((` − 1)µmP`(µm) − (l + 1)P`+1(µm))
M∑

n=1

wnP`(µn)Ψn, (29)

i.e.

βm,n =

M−1∑
`=0

2` + 1
2

((` − 1)µmP`(µm) − (l + 1)P`+1(µm)) wnP`(µn). (30)

We can prove that the same property Eq. (26) holds for these
βs. Because µm = −µM+1−m,wm = wM+1−m,m = 1, · · · ,M/2,
we have

βM+1−m,M+1−n = −βm,n, (31)

which appears to be an appealing feature for adjoint calcula-
tions. With this treatment, β matrix is no longer lower triangu-
lar, meaning that we do not have an angular sweep to invert
the streaming-collision operator. However, this is not neces-
sarily considered a disadvantage with the deployed PJFNK
solver. Plus this scheme does not require dummy directions.
This scheme can also be used for evaluating the ω-derivative,
∂
∂ω

(Ψ
√

1 − µ2 sinω), with SN. Because this scheme involves
the spherical harmonics (Legendre in 1D) expansion of the
angular flux, we label it as the PN scheme for evaluating the
angular derivatives.

2. Time integration for solid-mechanics

Because significant numerical dispersion can occur in
the time integration (hyperbolic nature of the dynamics equa-
tion) for solid-mechanics, the Newmark time integration is
employed. In Newmark time integration, the current acceler-
ation and velocity are written in terms of the displacement,
velocity and acceleration at the previous time step and the
current displacement:

ü =
u − uold

na∆t2 −
u̇old

na∆t
+

na −
1
2

na
üold, (32)

u̇ = u̇old + (1 − nv)∆tüold + nv∆tü, (33)

where na and nv are the Newmark time integration parameters.
The equation can be substituted into the bilinear form to obtain
a linear system of equations from which u at the current time
step can be evaluated. This formulation bypasses the time
integration schemes applied in the other physics, i.e. thermal
conduction and neutron transport.

The Hilber-Hughes-Taylor (HHT) time integration
scheme is built upon Newmark time integration. A HHT
parameter nHHT greater than or equal to 0 and less than or
equal to 1 is introduced to alter the bilinear and linear form
into:

b(u,u∗) = (ρü,u∗)D +
(
(1 + nHHT)σ − σold,∇Xu∗

)
D
. (34)

There are a total of three parameters affecting the time inte-
gration (two for Newmark integration and one for the HHT
scheme). na and nv are typically required parameters, while
nHHT defaults to zero. Implementation details can be found at
MOOSE Wiki page [19].
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IV. NUMERICAL RESULTS

We first investigated the angular convergence of two
schemes of evaluating µ-derivative with the initial eigenvalue
problem. A mesh with 40 uniform elements was used. First
order Lagrange shape functions in space were used through-
out this study. The convergence of k-effective with respect
to the SN order was plotted in Fig. 1a. k-effective obtained
with S48 PN scheme was used as the reference. The number
of directions in the angular quadrature is two times the SN
order. It is clear that the PN scheme for evaluating the angular
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Fig. 1: Convergence study with the initial eigenvalue problem.

derivatives with the same SN order gives a k-effective with
much smaller error than the sweeping scheme. Thus, we used
PN scheme in all our later calculations. We also did a quick
convergence study on the mesh size and SN order with the
initial eigenvalue problem. The results are shown in Fig. 1b.

The reference solution was obtained with S48 and 640 uniform
elements. Because 40 elements with S16 can already make
the error in k-effective less than 1pcm, we used this combi-
nation in our transient calculations. The initial k-effective is
0.99571, 80 pcm different from the k-effective from Serpent.
The evaluated beta effective is 688.0, 7.4pcm different from
the Serpent value 680.6. The initial flux distribution along the
radial direction is plotted in Fig. 2. The fluxes of the most
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Fig. 2: Initial fluxes.

thermal groups are fairly low in magnitude but the highest in
importance.

The Newmark parameters were set as na = 0.25 and
nv = 0.5. In this particular calculation, we applied the HHT
parameter nHHT to 0. A backward Euler scheme was applied
to thermal conduction and neutron transport. The time step
size was chosen to be 1 × 10−7 seconds. The end time was set
to 0.001 seconds. The total number of time steps was 10,000.
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The total run time was 2.9hr using 8 cores of a 2.7 GHz
12-Core Intel Xeon E5 CPU. On average, each time step took
about 1.05 seconds. Several quantities of interest (QoI), listed
in Table VI, were plotted with time in Fig. 3, Fig. 4, Fig. 5
and Fig. 6. The peak power is 2.729GW at 0.3272ms.

TABLE VI: Transient quantities of interest.

Name Unit Equation

Total power W
∫ R

0 P(r, t)4πr2 dr

Neutron leakage ratio unitless 4πR2 ∑
µm>0 wmµmΨg,m(r=R,t)∫ R
0 f(r,t)4πr2 dr

Outer displacement cm u(r = R, t)
Outer velocity cm/s ∂u(r,t)

∂t

∣∣∣
r=R

Outer acceleration cm/s2 ∂2u(r,t)
∂t2

∣∣∣∣
r=R

Average stress g/cm/s2
∫ R

0 σ(r,t)4πr2 dr
4
3 πR3

Elastic energy ratio unitless
∫ R

0
1
2σ(r,t)ε(r,t)4πr2 dr∫ t

0

∫ R
0 P(r,t′)4πr2 dr dt′

Average temperature K
∫ R

0 T (r,t)4πr2 dr
4
3 πR3

The neutron leakage ratio does not change much with respect
to its absolute value. The displacement is relatively small
compared with the radius of the sphere. The ratio between
elastic energy and the total thermal energy is relatively small,
less than 1.4 × 10−4. All of these results justify the initial
approximations made in the model. Averaged temperature at
0.5 millisecond is 319.0K. The quickly accumulated thermal
power causes the sphere to expand and eventually vibrate at a
frequency of about 16 kHz around a radius extended by 0.003
centimeters higher from the initial radius 8.7407cm. The
power reaches its first peak then drops due to loss of criticality
caused by the thermal expansion. The trailing power around 1
MW is caused by the delayed neutrons.

V. CONCLUSIONS

This paper details the Godiva benchmark problem for cou-
pled neutronics and thermo-mechanics simulations. The weak
form for the curvilinear coordinates including 1D R-spherical
coordinate is derived. A PN scheme is proposed for evaluating
the µ-derivative and numerical results are presented to show
its superior convergence over the classic sweeping scheme.
We solved this benchmark problem with MAMMOTH in a
strongly coupled manner. Results of several quantities of in-
terest during the transient are presented. It will be interesting
to investigate the impact of a large initial reactivity insertion,
where the small strain theory assumed in this paper may be
invalid. Results up to seconds could be added in the future.
We also expect the CPU time to be reduced substantially with
the improved quasi-static (IQS) method.
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