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Abstract - For large-scale applications of the continuous thermal-mechanical model in AREVA NP’s fuel
rod code GALILEOTM, embedded systems of non-linear equations must be solved many times over with high
dependability and efficiency. This paper presents a compact overview of the non-linear equations to be solved,
followed by a description of the developed Broyden solver setup that proved adequate for optimizing robustness
and computational efficiency. This final setup includes self-regulating mechanisms such as adaptive restarts
and adaptive underrelaxation. The purpose of this paper is to emphasize and demonstrate the importance
of such embedded mechanisms in non-linear solver implementations. Verifications of the achieved solver
properties, in terms of comparisons with simpler setups that lack adaptive measures, are presented in terms of
associated observations on solver behavior for different test cases.

I. INTRODUCTION

AREVA NP’s fuel performance code GALILEOTM [1]
accurately predicts the fuel rod thermal-mechanical behavior
in nominal and off-nominal conditions for all AREVA NP rod
designs [2] [1]. The GALILEOTM fuel rod model is based on
a classical 1.5-dimensional approach similar to other modern
fuel rod codes [3] [4]. As outlined in [5], the quasi-static
mechanical problem is solved in terms of a finite element
model for the fuel rod. This classical approach enables to
take full methodology benefits from similar known finite
element concepts [6] [7] [8] [9]. Particularly, the fuel cracking
behavior is modeled through use of an anisotropic elastic
damage model [10].

Sophisticated computational modeling of the fuel pellet’s
non-linear mechanical behavior can lead to non-trivial numer-
ical challenges. This is mainly due to the requirement that
the embedded solution processes must mutually consistently
address the time evolution of several different coupled
physical phenomena, such as viscoplasticity, stress-dependent
swelling and cracking. As this must all be arranged in a
computationally mutually consistent, multi-physics-coupled
way, a well-designed non-linear coupled iterative solution
process is needed for enabling this in an efficient and
numerically stable manner.

Within this context, a specific need for a quasi-Newton
solver arises when exact mutual consistence must be achieved
between global equilibrium (formulated in terms of the
finite element model) and local non-linear behavior of each
element, whereas the determination of an explicit Jacobian
(=multi-dimensional, multi-physics coupling gradient) for
all coupled multi-physics system equations is either far too
expensive computationally or infeasible for other reasons.

It is this particular need that is fulfilled in GALILEOTM

by the specific Broyden solver implementation described in
this article.

II. NON-LINEAR EQUATIONS TO BE SOLVED
IN GALILEOTM’S CONTINUOUS THERMO-
MECHANICAL MODEL

One of the central equations of relevance in
GALILEOTM’s continuous thermal-mechanical model,
to be solved several times over for each time step as part of
the time integration process, is the stiffness equation [1]:

K̂ u = b (1)

Through the availability of the stiffness matrix K̂, this
equation relates the array u of segment-wise displacements
in fuel rod segments (per time step, as a function of burnup
and due to influence of several thermo-mechanical processes)
to a stress-determined source array b. The typical K̂-matrix
structure is displayed in Figs.1-3. For each time step, the
non-linearity of this equation arises due to the property
that, through implicit operations embedded in the time step
integrator, the source array b co-depends on the solution, such
that b = b[u], i.e. b is a multi-dimensional function of the
displacement array u.

Hence, when u is updated (and thereby perturbed with re-
spect to the previous estimation) during the non-linear solution
process, this unavoidably leads to a perturbation in the source
term as well: u→ u′ = u + δu =⇒ b→ b′ = b + δb. Due
to this, the non-linear solution process will include a dynamic
interplay between solution updates u′ = u + δu and source
updates b′ = b + δb, until a mutually consistent convergence
(characterized by successively smaller adjustments δu and δb)
towards the exact, asymptotic solution u

∞
and the exact source

b[u
∞

] is achieved. Formulated alternatively, the objective is
thus to solve the non-linear equation

K̂ (u + δu) = b[u + δu] (2)
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When considering a localized linearization (around a
local estimation for u) of b[u + δu]:

b[u + δu] � b[u] +
∂b
∂u

δu (3)

it would obviously be extremely helpful to have the multi-
dimensional gradient matrix ∂b

∂u available in an explicit,
tractable form. Unfortunately, this is not the case. In the
GALILEOTM code, the perturbation δb[δu], that results from
the change δu, follows as a result of an implicit chain of
operations embedded in the time integration approach.
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Fig.1. Structure of element values in a sample stiffness matrix
K̂.
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Fig.2. Surface plot of structure of element values in a sample
stiffness matrix K̂.

It is especially for solving such systems, that include
also implicit operators, that the Broyden approach [11]
[12] as non-linear solution algorithm presents practical
advantages. The Broyden approach does not require the

explicit availability of multi-dimensional gradient matrices:
it requires only the black box capability of computing the
perturbation δb[δu] that results from a change δu.

In that sense, the Broyden approach is the multi-
dimensional equivalent of the more widely known secant
approach [12] for zero-dimensional non-linear equations.
Between Broyden steps, for each successively updated source
vector b′, the updated displacement array solution u′ is solved
directly from

K̂ u′ = b′ (4)

5

10

15

20

25

30
5 10 15 20 25 30

 

j−index

 

i−
in

d
e

x

0

0.5

1

1.5

2

2.5

3

x 10
4

Fig.3. Logarithmic zoom on absolute values in off-diagonal
structure outside of the tridiagonal band (latter is larger than

105) of the sample stiffness matrix K̂.
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Fig.4. Surface plot of the inverse matrix K̂−1.

such that u′ can be written symbolically as:

u′ = K̂−1 b′ (5)
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Figs.1-4 present graphical illustrations of what the
stiffness matrix K̂ and its inverse K̂−1 typically look like
(with the explicit K̂−1 having been obtained through use of a
separate routine based on the use of BiCGStab). For K̂ itself,
it is visible clearly that it is extremely sparse in terms of most
of its matrix elements being equal to zero.

Within the context of solving the stiffness equations
K̂ u′ = b′ (Eq.(1)) many times over (and obviously also with
varying K̂), GALILEOTM does not explicitly compute and
store the inverse K̂−1 of the stiffness matrices K̂. Instead,
an LU-decomposition [12] is formed for each new K̂, such
that K̂ = L̂Û, with L̂ a lower-diagonal matrix and Û an
upper-diagonal matrix. This LU-decomposition needs to be
newly determined once per time integration step. After that, it
remains constant throughout the entire subsequent non-linear
solution process for that individual time step.

Once L̂ and Û are available, the displacement array u can
be solved from K̂ u = L̂Û u = b in two steps. First, the
intermediate array y is solved from:

L̂ y = b (6)

followed by solution of the displacement array u from:

Û u = y (7)

These steps boil down to relatively inexpensive, direct
Gaussian elimination procedures. Within this context, it is
interesting to note that L̂ and Û are just as sparse as the
stiffness matrix K̂ itself. Due to this, most multiplications
per matrix-vector operation are actually non-contributing
multiplications with zero.

It is noted as well that, following its determination
at each individual time integration step, an available LU-
decomposition is applied several times in succession during
the Broyden solution process. This clearly constituted a
potential for measurable reduction of the associated compu-
tational effort. Hence, as an additional code modification, a
dedicated compressed LU-decomposition representation was
programmed that avoided premultiplication with the many
zeroes that are typically present in the LU-decomposed form
of the stiffness-matrix.

Additionally, it was identified that the previous setup
of the computational process of establishing the LU-
decomposition could be optimized for the sparse matrix
context in GALILEOTM. The first version of our LU-routine,
that was obtained through download from a public web
library, treated the inputted matrices as dense in spite of
those being extremely sparse. Due to this, by far most of
the process-internal multiplications (in the computation of

process-relevant vector outer products) were, again, multipli-
cations among zero-valued matrix elements. In a fully dense
treatment, the process of determining the LU-decomposition
comprises O(n3/3) multiplicative operations. Thus, it paid off
to create an application-tailored, ’sparse’ LU-decomposition
routine version that, in a structured way, automatically
excludes a priori the many multiplications with zeroes.

The combinations of these measures enabled lean,
computationally cheap operations for solving the successive
stiffness equations.

III. NONLINEARITY BY CO-DEPENDENCE OF
SOURCE UPON SOLUTION

One needs to realize that, during the non-linear iterative
solution process, the source b′ is associated with a previous
estimation u for the displacement array. Writing u′ = u + δu,
the ideal choice for δu would be the one that anticipates its
future influence on the source vector b′. Under the influence
of δu, the latter will change to a further perturbed source term
b′′ with

b′′ � b′ +
∂b
∂u

δu (8)

Hence the ideal choice for δu would be the one that fulfils

(
1̂ − K̂−1 ∂b

∂u

)
δu + r = 0 (9)

with r being, at that point of the iterative solution process, the
residual of the overall (non-linear) equation as associated with
the previous updated estimation u and the source vector b[u]
associated with u:

r = u − K̂−1 b[u] (10)

If the operator ∂b
∂u would be known and be given explicitly,

Eq.(9) would boil down to a Newton equation [12] for the
successive updates δu:

Ĵ δu + r = 0 (11)

with the Jacobian being:

Ĵ = 1̂ − K̂−1 ∂b
∂u

(12)
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such that the ideal δu (whether solved exactly or approx-
imately as improved update from Eq.(9)) can be written
symbolically as:

δu = − Ĵ−1 r (13)

Successive updates for the displacement array would hence be
defined as:

u(n+1) = u(n) + δu(n)

= u(n) − Ĵ−1 r(n)

= u(n) − Ĵ−1
(

u(n) − K̂−1 b[u(n)]
)

= u(n) −
(

1̂ − K̂−1 ∂b
∂u

)−1
r(n)

(14)

However, in GALILEOTM the operator ∂b
∂u is not available

in explicit form, due to which either J̃ = 1̂ is to be used
as a (very) poor approximation to the Jacobian, or a more
intelligent algorithm (such as Broyden’s) is applied that
somehow does manage to establish a better approximation
of Ĵ in terms of being somewhere between J̃ = 1̂ and the
unknown exact Jacobian Ĵ = 1̂ − K̂−1 ∂b

∂u .

IV. CONVERGENCE ANALYSIS

For providing a theoretical framework for convergence
analysis, we now legitimately assume the existence of an
exact, asymptotic, fully converged solution u

∞
, and rewrite

u(n) as variation u
∞

+ δu(n) around u
∞

. Obviously, upon full
convergence of the non-linear iterative solution process, we
obtain δu(n) → 0 and u(n) → u

∞
for some sufficiently large

value of n. We can now rewrite Eq.(14) as:

u
∞

+ δu(n+1) = u
∞

+ δu(n)

− Ĵ−1
(

u
∞

+ δu(n) − K̂−1 b[u
∞

+ δu(n)]
)

� u
∞

+ δu(n)

− Ĵ−1
(
u
∞

+ δu(n) − K̂−1
(
b[u
∞

] +
∂b
∂u

)
δu(n)

)
(15)

Since obviously the exact, fully converged solution u
∞

will
exactly fulfil the equality u

∞
= K̂−1b[u

∞
], Eq.(15) boils

down to the following equation for relating the new solution
adjustment δu(n+1) to the previous solution adjustment δu(n):

δu(n+1) = δu(n) − Ĵ−1
(
δu(n) − K̂−1 ∂b

∂u δu
(n)

)
=

(
1̂ − Ĵ−1

(
1̂ − K̂−1 ∂b

∂u

) )
δu(n)

(16)

With the error decay operator Θ̂ defined as:

Θ̂ = 1̂ − Ĵ−1
(

1̂ − K̂−1 ∂b
∂u

)
(17)

we obtain the simply error decay expression:

δu(n+1) = Θ̂ δu(n) (18)

If the operator Θ̂ generally imposes sign changes per
individual array element δu(n)

i , the error decay will be of
an oscillatory nature regardless of whether convergence
is progressing or stagnating. That this is indeed the case
has been confirmed for numerical observations concerning
both well-converging and not-so-well-converging scenarios.
Obviously, convergence is enabled only if the operator norm
‖ Θ̂ ‖ is smaller than 1.

Clearly, if the Jacobian would exactly fulfil the desired
property Ĵ−1 =

(
1̂ − K̂−1 ∂b

∂u

)−1
, then Θ̂ would be the null

operator 0̂ and the iterative solution process according to
Eq.(14) would converge practically immediately (typically
not fully immediately due to some remaining inaccuracy in
the linearization b[u

∞
+ δu(n)] � b[u

∞
] +

∂b
∂u δu

(n), but very
fast nonetheless).

As pointed out in the previous section, the operator
∂b
∂u is not available in explicit form, due to which either
J̃ = 1̂ is to be used as poor approximation to the Jacobian,
or a more intelligent algorithm (such as Broyden’s) is
to be applied that somehow does manage to establish a
better approximation of Ĵ in terms of being somewhere be-
tween J̃ = 1̂ and the unknown exact Jacobian Ĵ = 1̂ − K̂−1 ∂b

∂u .

This means that the convergence efficiency of the
Broyden algorithm is positioned somewhere between the
(usually poor) convergence efficiency of a simple Jacobi
approach (i.e. with J̃ = 1̂) and the theoretically ideal
immediate convergence as enabled by the theoretically ideal
property Ĵ = 1̂ − K̂−1 ∂b

∂u . This efficiency positioning has, in
any case, been confirmed for the self-regulated, adaptively
restarted variant of the Broyden algorithm that is presented in
the next section.
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V. BROYDEN APPROACH FOR HANDLING INVISI-
BLE NONLINEARITY IN THE ITERATIVE SOLU-
TION PROCESS

The Broyden algorithm [11] [12] starts with the best
practical initial guess for the Jacobian, which here is J̃ = 1̂.
Given an initial guess uinit for the displacement array u, δuinit
then follows from:

δuinit = − rinit = K̂−1 b(uinit) − uinit (19)

after which the displacement array is updated as u′ = u + δu,
from which the updated source can be computed as b′ = b[u′].
Subsequently, a new equation residual r′ = K̂−1 b′[u′] − u′
can be computed. According to Broyden’s approach, a
meaningful update of the approximated Jacobian can now
follow from the possibility of determining a δĴ that fulfils the
secant condition

(
Ĵ + δĴ

)
δu = δr = r′ − r = r′[u + δu] − r[u] (20)

Simultaneously, one also needs to fulfil the property that this
Jacobian update will operate exclusively along the direction
of δu, due to this being the direction along which this part of
the multi-gradient information could be sampled. This latter
property is fulfilled if

δĴ q = 0 ∀ q ⊥ u : qTδu = 0 (21)

The Broyden solution that fulfils both Eqs.(20),(21) is the
following outer product:

δĴ =
(
δr − Ĵ δu

) δuT

δuT δu
(22)

such that the successive approximations for the Jacobian,
along previously covered update directions during the solution
process, follow from:

Ĵ′ = Ĵ +
(
δr − Ĵ δu

) δuT

δuT δu
(23)

Providing indices n for the successive updates, we obtain:

Ĵn+1 = Ĵn +
(
δrn − Ĵn δun

) δuT
n

δuT
n δun

(24)

In order to avoid the (iterative) solution effort for solving
(11), it is possible to apply the Sherman-Morrison [Burden
2011] formula for direct determination and successive updates
of the inverse of the approximated Jacobian:

Ĵ−1
n+1 = Ĵ−1

n +
(
δun − Ĵ−1

n δrn

) δuT
n Ĵ−1

n

δuT
n Ĵ−1

n δrn

(25)

This approach enables the solution of the successive un
through combined use of Eqs.(13),(25). In practical imple-
mentations, it may be convenient to utilize the property

δuT
n Ĵ−1

n =

((
Ĵ−1

n

)T
δun

)T
(26)

with
(
Ĵ−1

n

)T
the transpose of Ĵ−1

n , such that Eq.(25) can be
rearranged as:

Ĵ−1
n+1 = Ĵ−1

n +
(
δun − Ĵ−1

n δrn

) ((
Ĵ−1

n

)T
δun

)T

((
Ĵ−1

n

)T
δun

)T
δrn

(27)

This is how the updates of the inverse Jacobian were
programmed. The update process

u(n+1) = u(n) − Ĵ−1
n+1 r(n) (28)

can now be expected to enable a convergence efficiency that is
positioned somewhere between the convergence efficiency
of a simple Jacobi approach (i.e. with J̃ = 1̂) and the
theoretically ideal immediate convergence as enabled by the
theoretically ideal property Ĵ−1 =

(
1̂ − K̂−1 ∂b

∂u

)−1
.

In order to monitor convergence of the overall solution
process, a single estimator was established for the achieved
relative solution accuracy that is unbiased by the overall
magnitude level of the solution. This estimator additionally
enables a well-balanced, neutral convergence criterion εn+1
to be used for deciding whether the solution process can be
truncated or not:

εn+1 = maxi

 |u(n+1)
i − u(n)

i |

1
N

∑N
i |u

(n)
i |

 (29)

Here, N denotes the length of the solution array (with the
matrix K̂ being of dimension N x N) and i denotes the array
index for the iterand u.
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VI. SELF-REGULATING BROYDEN SEQUENCES:
ADAPTIVE SEQUENCE TRUNCATIONS,
RESTARTS AND UNDERRELAXATIONS

During development and testing of the Broyden solver, it
quickly proved necessary to include a restart capability. This
was especially true in case the Broyden process had not yet
provided a converged result after, say, 10 steps. Obviously,
this also depends on the numerical distance between the initial
solution guess and the final solution.

Since the Broyden process basically builds local,
linearized multi-dimensional gradient information, it makes
sense to repeat this around a successively improved initial
guess (as delivered by an earlier pursued Broyden sequence)
that gets closer and closer to the final solution. As argued
in [13], such restarts may then lead to globally improved
convergence behavior and, in this way, enable run time
savings as well. Similar experiences have been made for other
kinds of applications in other Broyden implementation studies
[14] [15] [16].

Building further upon this idea, in constructing the
new Broyden solver for the thermo-mechanical loop in
GALILEOTM, a self-regulating, adaptive restart mechanism
was programmed. This includes adaptive thresholds ttrunc for
deciding when, based on tracking the residual decay from
the start of the Broyden sequence, the residual has decayed
sufficiently, such that a sequence restart makes sense.

This means that, at the start of each Broyden sequence,
one computes and stores the value of the initial maximum
relative residual |rinit| associated with the initial solution uinit of
that sequence. During the sequence, one then systematically
computes the maximum relative residuals |rn| associated
with the next, Broyden-computed solution iterands un. The
criterion for truncating the current Broyden sequence, and
starting a new one, is:

|rn| < ttrunc |rinit| =⇒ restart (30)

The truncation parameter ttrunc was set to be 0.1 initially,
and is increased gradually (up to 0.3, for enforcing shorter
sequences) if no convergence has been established after
10 Broyden sequences. Other adaptive measures were
implemented, such as the following one that triggers a restart
if, after 3 Broyden steps, it is observed that the residual goes
up instead of down:

n > 3 and |rn+1| > |rn| =⇒ restart (31)

Furthermore, maximum sequence lengths were defined
according to how many restarted sequences have been pursued
already, and initially the following adaptive underrelaxations

of solution updates were applied:

un+1 = un + α δun+1 (32)

in which the underrelaxation factors α were lowered gradually
and mildly as the number of already pursued Broyden
sequences increased. Actually, later developments in response
to some yet remaining convergence issues led to a modified
adaptive underrelaxation approach that resulted in a full
replacement of the approach expressed in Eq.(32). This is
discussed later on in this paper.

VII. VERIFICATIONS

Verifications of the achieved improvements were
provided in terms of observed solver property differences for
several test cases. For all cases, and in an absolutely similar
manner, the following improvements were easily observable:

• By comparison with unlimited Broyden sequences (no
restarts, as featured in the previous Broyden solver), it
was confirmed for all cases that substantially fewer time
steps feature non-convergence problems (cf. Fig.5)

• By comparison with unlimited Broyden sequences, it
was confirmed for all cases that most of the iterations
converged two up to three times as fast due to the use of
self-regulating, adaptive Broyden sequences (cf. Fig.6)

Nonetheless, in spite of the availability of the improved
Broyden solver, all verification computations had also shown
remaining issues of convergence stagnation with varying
degrees of severity.

This becomes visible in Figs. 5 and 6 in terms of the
remaining upward spikes. Here, the Broyden solver was
unable to achieve a final convergence accuracy comparable to
what was achievable for by far most of the other time steps.

In Fig.6, such occurrences are visible for the version
featuring unlimited Broyden sequences (no restarts) by the
truncation limit of 300 Broyden steps having been reached,
without convergence having been achieved for those cases.
These occurrences are not visible in the same manner for the
new Broyden solver, since the new Broyden solver avoids
unlimited continuations of stagnating Broyden sequences.

Although the achieved levels of relative convergence accu-
racy did seem reasonably adequate for allowing continuation
of the computation, the unpredictability of these convergence
stagnation occurrences remained a source of robustness con-
cern. Due to this, this problem was investigated and, fortu-
nately, it could be resolved by a modified underrelaxation
setup that actually proved rather easy to implement.
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VIII. ANALYSIS AND RESOLUTION OF OCCA-
SIONAL CONVERGENCE STAGNATION SCE-
NARIOS

During pursued in-depth analysis studies of the previously
observed convergence stagnation problems, it became clear
that the Broyden update process entered non-converging
and indefinitely self-repeating limit cycles. The latter were
characterized by rather substantial non-decaying oscillations
in updates on the Broyden-approximated inverse of the
Jacobian.
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As is typical for secant approaches, this kind of behavior
usually introduced itself as soon as a reasonable accuracy
of the solution had been achieved already, that however was
definitely not yet commensurate with the tolerance-imposed
required level of final convergence accuracy. The additional
occurrences of sudden very small values of the denominator

in the multi-dimensional gradient inverse update, that are not
uncommon in any progressed secant procedure, then gave
rise to drastically amplified manifestations of unintended
deviations in the Broyden-approximated inverse of the
Jacobian. The latter then affected solution updates in a
significant and clearly unintended way, such that rather
quickly the Broyden update process entered a unintended,
non-converging, indefinitely self-repeating limit cycle that
prevented the required full convergence of the solution.

It turned out to be possible to cure these convergence
stagnations by imposing a new, modified underrelaxation
setup. Due to knowing the potential merit of adaptive
underrelaxation in other areas, a simple damping measure was
in fact programmed already (cf. Eq.(32)) as part of the earlier
improvement package for GALILEOTM’s Broyden solver.
Unfortunately, this particular damping implementation did not
enable a resolution of the previously remaining convergence
stagnation problems.

The basic insight on why the previous adaptive
underrelaxation measure, as set in a multi-dimensional
Broyden solution process, did not resolve the problem is
the following: it merely moderated, along exactly the same
multi-dimensional direction of solution adjustment, the
magnitudes of the successive solution adjustments, while
afterwards not influencing (in terms of a stabilizing damping
effect) the update in the Broyden-approximated inverse
of the Jacobian. Hence, the above-mentioned mechanism
of repeated non-decaying oscillatory disturbances in the
Jacobian inverse approximation was not changed by this
particular underrelaxation measure. And thus the convergence
stagnation problems remained, in spite of the underrelaxation
measure according to Eq.(32) being activated.

In order to resolve this, a new and different adaptive
underrelaxation setup, that the above-mentioned recent insight
led to, was realized. Upon its activation (as auto-triggered in
case of detected convergence stagnation), this enabled the
needed damping effect on both Jacobian inverse approxima-
tion and (thereby also) the solution updates.

As will become clear from the derivation pursued in
the next section, the decisive difference with the previously
applied adaptive underrelaxation approach is that activated
damping operations are now channeled through the Jacobian
inverse updates, thereby directly calming down oscillations in

the multi-dimensional gradient updates Ĵ−1
n . As an indirect

beneficial result of that, this then also leads to damping of the
oscillatory updates in the solution iterands u(n). In this way,
the convergence behavior is typically still of an oscillatory
nature, but the damping measure nonetheless enforces the
necessary magnitude decay of the error in the successive

Jacobian approximations Ĵ−1
n and in the solution iterands u(n).

Consequently, for all investigated cases, this approach proved
effective as resolution measure for getting rid of all previously
observed convergence stagnations.
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IX. A NEW ADAPTIVE UNDERRELAXATION SETUP
AT RESIDUAL FUNCTION EVALUATIONAL
LEVEL

This resolution measure was derived from a rearrange-
ment of the non-linear stiffness equations that eventually
turned out to enable the needed preconditioning effect.
Based on recent related investigations, the latter can be
bent in a parametrized way (while nonetheless remaining
fully equivalent to the original equations), such that its
eigenspectral properties can become substantially more
agreeable.

The associated new damping parameter α can be
determined in a fully automated, adaptive way. From a certain
perspective, it thereby acts as a self-regulating lever for
automatically enforcing numerical stability of the non-linear
solution process. In the new setup, we imposed the following
rearrangement of Eq.(5), with 0 < α ≤ 1, and emphasize that
an exact solution of this rearranged equation is also an exact
solution of Eq.(5):

u′ = α K̂−1 b′[u] + (1 − α) u (33)

Hence it would be legitimate to pursue the non-linear
solution process based on Eq.(33) instead of based on Eq.(5),
if this would enable advantages for computational stability or
computational efficiency (or both). Compared with Eq.(10),
we then obtain the following expression for the residual to be
applied in determining the successive Broyden updates for the
inverse Jacobian:

rα = u
′

α − u = α
(

K̂−1 b′[u] − u
)

= α r (34)

after which the displacement array is updated as u′ = u + δu,
from which the newly updated source can be computed
as b′′ = b′[u′]. Subsequently, the new equation residual
r
′

α = αK̂−1b′(u′) − αu′ can be computed. According to
Broyden’s approach, a meaningful (and accordingly damped)
update of the approximated Jacobian can now follow from the
possibility of determining a δĴα that fulfils the secant condition

(
Ĵα + δĴα

)
δu = δrα = r

′

α− rα = r
′

α[u +δu]− rα[u] = α r (35)

while also fulfilling the property that this Jacobian update
will operate exclusively along the direction of δu, due to this
being the direction along which this part of the multi-gradient
information could be sampled. Following exactly the same
derivations as pursued earlier in this paper for the Broyden
process, we arrive at:

Ĵ−1
α ; n+1 = Ĵ−1

α ; n +
1
α

(
δun − α Ĵ−1

α ; n δrn

) ((
Ĵ−1
α ; n

)T
δun

)T

((
Ĵ−1
α ; n

)T
δun

)T
δrn

(36)

This is how the updates of the inverse Jacobian were
programmed. The update process

u(n+1) = u(n) − Ĵ−1
α ; n+1 r(n)

α = u(n) − α Ĵ−1
α ; n+1 r(n) (37)

can now be expected to enable, in a damped manner (if
0 < α < 1), a convergence behavior that is thus auto-steered to
be a good trade-off between run time minimization and com-
putational stability. If no convergence problems are detected,
then obviously α = 1 per default (and initial) value setting, and
then this modified Broyden scheme remains unchanged com-
pared to the original one. However, if convergence problems
do occur and are detected accordingly, then α can be lowered
gradually as a function of the number of pursued Broyden
steps (i.e. 0 < α < 1 with gradually lowered values for α),
until the overall solution process has come to full convergence.

This modified underrelaxation approach has enabled the
resolution of all previously remaining convergence problems.
It is emphasized that, per pursued Broyden sequence (i.e.
between adaptively triggered restarts) the value for α needs
to remain fixed, since the accumulated multi-dimensional
gradient information must pertain to a fixed α-dependent
expression for the equation residual. Hence the value for α
can be changed / lowered only upon initiating a new, restarted
Broyden sequence.

X. MORE VERIFICATIONS

Verifications of the achieved resolution of previously
remaining convergence stagnations have been pursued for
some known test cases. As can be seen in Fig.7, these
remaining nonconvergences disappeared.

It must be admitted and emphasized, however, that, for
these (fortunately few) time steps for which the undamped
restarted Broyden sequences did not converge, a solution con-
verged up to 10−8 is obtained at a rather high computational
price to be paid for that. This is illustrated in Figs.8 and 9
that show comparisons (for the first and second occurring
convergence stagnations in the concerned test case) between
error decay curves when activating the modified damping
measure (slow error decay but converged solution obtained)
vs. when not using this damping measure (stagnating error
decay and no convergence).
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Fig.7. Illustration of resolution of previously remaining
convergence stagnations.
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Fig.8. Illustration of convergence curves under different
conditions, 1st non-convergence in the time integration

sequence.
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error decay, but full convergence reached

Fig.9. Illustration of convergence curves under different
conditions, 2nd non-convergence in the time integration

sequence.

As one can see in Figs.8 and 9, a solution converged
up to 10−7 is obtained much earlier and hence at much
lower computational cost. The upward spikes in the
red curves in Fig.7 mark triggered modifications in the
damping factor α. In Fig.8, the fully uncomplicated Broy-
den convergence curve (with no damping needed at all)
for the time step prior to the first "problem time step" is shown.

It is emphasized that, per such run, perhaps between
10 and 20 such time steps were included (out of typically
several hundreds up to several thousands of time steps) for
which convergence stagnations manifest themselves, and
for which hence the modified adaptive damping measure
according to Eq.(33) is auto-triggered and deployed. Due to
this, the overall computational price attached to the presently
implemented stabilization measure is eventually modest and
acceptable.

Possibly, the pursuit of more methodology R&D
could enable a further improved resolution approach for
computationally challenging time steps, that also give rise to
lower additional computational burdens compared to what
is typically happening when adaptive damping is deployed.
Until then, the current adaptive damping measure is a practical
and acceptable alternative for making sure that all individual
non-linear solution processes, connected with all individual
integration time steps in a GALILEOTM run, are driven to full
and equal convergence accuracy.

XI. CONCLUSIONS

For large-scale routine applications of the continuous
thermo-mechanical model in AREVA NP’s fuel rod code
GALILEOTM, embedded systems of non-linear equations
need to be solved many times over with high dependability
and high computational efficiency. Within this context, a
dedicated Broyden solver routine was developed for this
particular purpose.

This paper presented a compact overview of the non-
linear equations to be solved in GALILEOTM’s continuous
thermo-mechanical model, followed by a description of
the final Broyden solver setup that proved adequate for
optimizing robustness and computational efficiency. This final
setup includes self-regulating mechanisms such as adaptive
restarts and adaptive underrelaxation. These stability- and
efficiency-enhancing mechanisms proved imperative for
ensuring overall robustness and efficiency of the Broyden
solver.

Verifications of the achieved solver properties, in terms of
comparisons with simpler setups that lack adaptive measures,
were presented in terms of associated observations on solver
behavior.

GALILEOTM is a trademark or a registered trademark of
AREVA NP in the U.S.A. or other countries.
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