
M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

A quadratic depletion coupling scheme with adaptive stepsize control in CASMO5

Joshua Hykes and Rodolfo Ferrer

Studsvik Scandpower, Inc., 1070 Riverwalk Dr. Suite 150, Idaho Falls, ID
joshua.hykes@studsvik.com, rodolfo.ferrer@studsvik.com

Abstract - Building on recent advances in depletion coupling algorithms, we examine the adaptive time step
P2FC2 method, a higher-order predictor-corrector coupling scheme to solve the neutron transport-Bateman
system. P2FC2 approximates the transition matrix A(t) as a quadratic polynomial in time, interpolating the
polynomial through the values at previous time steps. The quadratic expansion provides a good fit for the
observed shape of various elements of A(t) for most of the depletion (with the exception of the first few depletion
steps during the initial accumulation of fission product poisons). The P2FC2 method is combined with an
adaptive time step algorithm that controls the local truncation error of the computed nuclide number densities.
The error estimators are based on the difference between the predictor and corrector number densities. For the
error estimators examined, the predicted error is mostly within a factor of ten of the true local error, which is
sufficient accuracy to perform step size adjustment. The P2FC2 method with fixed time steps shows substantial
reduction in the nuclide number density and eigenvalue errors. Adding the adaptive time step algorithm reduces
the number of statepoints needed by about 20% (with the particular error goals specified here). However, this
reduction is counteracted by an increase in runtime of the burnup calculation, which in CASMO5 is a small but
non-negligible fraction of the total runtime. While most of this work is concerned with coupling schemes with
one flux solution per time step, a method with two flux solutions per step, FP2FC2, is briefly considered as well,
and shown to have slightly better accuracy, although with double the number of computationally-expensive
transport solves.

I. INTRODUCTION

We are currently evaluating the use of a quadratic de-
pletion coupling scheme with adaptive stepsize control in
CASMO5. This builds on recent work on depletion methods.
Ref. [1] shows the potential for accuracy improvements with
linear and quadratic interpolation of the transition matrix, in
contrast with the conventional approach of assuming it con-
stant during the solution of the Bateman equations.

Addressing the issue of proper stepsize selection in
Ref. [2], Walter and Manera demonstrate adaptive stepsize
control for 2D lattice depletion calculations. As they note,
traditionally lattice physics depletions have been performed
with pre-determined depletion schedules. This is the approach
taken in CASMO5 [3] (ignoring the conditional step refine-
ment that is applied based on the presence of gadolinium
burnable absorber). These depletion schedules were tuned to
produce accurate solutions for representative lattices. Some-
times the schedules have differed based on characteristics of
the lattice, such as having different schedules for PWRs and
BWRs. The disadvantage of the schedule is that the steps must
be sufficiently fine for the limiting lattice case, but likely this
will result in more detail (and effort) than is needed for many
lattices.

Combining ideas in Refs. [1] and [2], we have imple-
mented a quadratic adaptive stepsize algorithm into a devel-
opmental version of CASMO5. This paper describes our ex-
periences with the method, especially where they differ from
these previous works. A major difference is that CASMO5
tracks the fuel and burnable absorber depletion separately [4].

Thus, we have focused this work on the depletion of cases free
of gadolinium burnable absorber, since gadolinium triggers a
refined stepsize schedule.

II. THEORY

1. Depletion algorithms

The Bateman isotopic depletion equation is

d
dt
~n(t) = A(t)~n(t) (1)

where ~n(t) is the vector of nuclide number densities in a par-
ticular fuel region and A(t) is a matrix whose element Ai j

specifies the probability of transition of nuclide j to nuclide i
due to neutron capture, fission, decay, etc. Conventionally, the
transition matrix A(t) is assumed to be a constant A0 during
a single transport-depletion step. CASMO5 currently uses a
predictor-corrector (PC) algorithm for the coupling of neu-
tron transport and isotopic depletion, which we shall denote
P0FC0L. The algorithm is:

P0 Starting with the final number densities from the previous
step ~n f

i−1, compute the predictor number densities ~np
i for

time i using one-group fluxes ~φi−1 and cross sections ~σi−1
from the previous time i − 1.

F Compute the one-group fluxes ~φi and cross sections ~σi

for time i using the predictor number densities ~np
i for time

i.
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Fig. 1: Shape of Ai j(t) for U-238(n,γ)U-239 transition.
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Fig. 2: Shape of Ai j(t) for Pu-239(n,γ)Pu-240 transition.

C0 With initial condition ~n f
i−1, compute the corrector number

densities ~nc
i for time i using one-group fluxes ~φi and cross

sections ~σi from the current time i.

L Compute the final number densities ~n f
i = (~np

i + ~nc
i )/2

The mnemonics are P for predictor, C for corrector, F for
flux transport calculation, and L for local extrapolation. The
subscripts on P and C represent the order of the polynomial
approximation of the transition matrix A(t) with respect to time.
The notation is a modification of the PECLE notation used
to identify predictor-corrector methods for solving numerical
ODEs [5, chapter 4]. In this default P0FC0L scheme, only one
flux calculation is performed per statepoint. In the notation of
Ref. [6], CASMO5 uses the Ce/BE method.

Ref. [1] describes a LE/QI depletion coupling scheme that
approximates A(t) as linear for the predictor step and quadratic
for the corrector. This would be FP1FC2 in the present notation.
A quadratic function in t seems to be a good representation of
the behavior of the transition matrix A(t); see Figures 1–4.
We have implemented a similar scheme in CASMO5, namely
P2FC2, where each element Ai j(t) in the transition matrix A(t)
is approximated as

Ai j(t) = Ai j,2t2 + Ai j,1t + Ai j,0 . (2)

Before each P2 and C2 step, the coefficients in Eq. 2 are up-
dated so that the polynomial interpolates the last three values
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Fig. 3: Shape of Ai j(t) for Pu-242(n,γ)Pu-243 transition.
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Fig. 4: Shape of Ai j(t) for U-235 to I-135 fission yield.
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of A(t). This algorithm is similar to the existing CASMO5
algorithm, especially in that it uses one flux transport solve per
step. The differences from the existing CASMO5 algorithm
are the quadratic polynomial approximation of A(t) and the
lack of the averaging final step.

Since P2FC2 relies on previous steps to form the inter-
polant of A(t), a different method is necessary for the first
steps. In the results below, we have used the P0FC1 method
for the first two steps. Unless a very fine first step is used, the
initial accumulation of fission products creates a kink in A(t),
making interpolation or extrapolation between steps inaccu-
rate [7]. Therefore, we use P0FC1 for the first two steps.

By default, CASMO5 performs one flux calculation per
statepoint. For comparison, we have included limited results
below for the FP2FC2 method. This method is similar to
P2FC2, but each predictor step is preceded by a flux calcu-
lation.

A. Flux normalization

As demonstrated in Ref. [8], significant accuracy gains
can be realized by renormalizing the flux to match the spec-
ified power throughout the step. (Contrary to the statement
in Ref. [8], CASMO has performed flux renormalization to
maintain constant power during a depletion step since at least
CASMO-3 v4.4 [9, 10]. A CASMO4 developer coauthored
Ref. [11], which describes a related normalization method in
section 6.3.12.) With the traditional piecewise constant A0 ap-
proximation, CASMO5 computes the integrated fission energy
at step i by multiplying the constant one-group fission cross
sections σ f ,i jk, the energy release per fission κi jk, the time step
length ∆t, the one-group flux φik, the region volume Vk, and
the average nuclide number densities n̄i jk,

Ei = gi ∆ti
∑

j,k

n̄i jk σ f ,i jk Vk φik κi jk , (3)

where the nuclides are indexed by j and the fuel regions by
k. The desired energy per step is met by applying fixed point
iteration on the flux normalization parameter g, repeating the
depletion of the heavy nuclides until the normalization param-
eter converges within the tolerance criterion. For the current
depletion coupling scheme P0FC0L, fixed point iteration con-
verges in just a few iterations (usually within one or two itera-
tions, almost always within 5). However for certain steps in
P2FC2, we observed that simple fixed point iteration required
more than 20 iterations to converge. A damped fixed point
iteration resolved this difficulty,

gl+1 = ωg∗l+1 + (1 − ω)gl . (4)

We used ω = 0.7.
Since A(t) is not constant in P2FC2, we cannot compute

the integrated fissions using the average number density,

f j = ∆t n̄ j σ f , j φ . (5)

Instead, we integrate the time-varying quantities as

f j =

∫
dt n j(t) σ f , j(t) φ(t) . (6)

The time-dependent fission cross section is approximated us-
ing a similar quadratic interpolation as for A(t). The integrals
are computed using a numerical ODE solver, as described
next.

B. Numerically integrating the ODEs

To solve the Bateman equations with a time-dependent
A(t), we have used DVODE [12], a numerical ODE solver
for stiff (and non-stiff) systems. See Refs. [13, 14, 15, 16] for
previous applications of ODE solvers to solve the Bateman
equations. At present, we have decided to use DVODE to avoid
the substeps that would be necessary with CASMO5’s default
CRAM solver, as suggested in Ref. [6]. DVODE is performing
internal substeps, but beyond updating the derivative function
and Jacobian routines, the interface to DVODE is the same as
for the constant A0 case.

In addition to solving for the final nuclide number densi-
ties at each step, DVODE also computes the integrated fissions,
which are necessary to deplete at a constant power. These
integrated quantities are computed simultaneously with the
number densities by expanding the system of equations as
described in Ref. [17]. The system of equations is thus

d
dt

[
~n
~f

]
=

[
A(t) 0
Σ f (t) 0

] [
~n
~f

]
, (7)

where ~f is the vector of the integrated fissions. Σ f (t) is a
diagonal matrix with entries corresponding to the one-group
microscopic fission cross sections times flux, using a similar
quadratic interpolation as for A(t).

C. Timing considerations

Ref. [16] provides several techniques to substantially re-
duce the runtime of DVODE for solving the Bateman equa-
tions. In review, for stiff problems the methods in DVODE
require the Jacobian. Although it can be computed using a
finite-difference formula, DVODE’s authors suggest providing
it explicitly if possible. The Jacobian of Eq. 7 is the matrix on
the right-hand side. This full, dense matrix can be provided to
DVODE to achieve accurate results, but the calculation time
is long. Fortunately, the authors of DVODE recommend that
an approximate Jacobian is often sufficient, potentially with
many less non-zero entries. In addition to the suggestions in
Ref. [16], we have experimented with zeroing various blocks
of the full Jacobian and have achieved significant efficiency
gains. Our shortest runtimes were achieved by passing the
Jacobian as a tridiagonal matrix. This ignores the integrated
fission block Σ f (t), the fission product yield block in A(t),
and also many of the decay and neutron-induced transitions.
(While these entries are approximated as zero in the Jacobian,
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they are still accounted for because they are included in the
evaluation of the derivative function ẏ = f (t, y).)

For the 320 nuclide system (both actinides and fission
products) we consider here, CRAM-14 for one composition
requires approximately 0.003 s. With a variable A(t), the
DVODE solver takes about 0.015 s. (These timings were per-
formed in serial on a 2.8 GHz AMD Opteron 6348.) Our
DVODE performance is comparable to the 0.02 s time for a
200-nuclide, constant A0 system reported in Ref. [16].

In contrast to the Monte Carlo transport code considered
in Ref. [7], in CASMO5 the burnup calculation consumes a
small but non-negligible portion of the runtime in a typical
depletion calculation. For example, from a set of 900 single-
assembly test cases, 85% of cases spent between 0 and 12%
of the runtime in the burnup calculation. Further, 37% of the
cases fell between 4.8 and 12%. The median usage was 5.2%.
This timing was conducted using CASMO5’s default CRAM
solver for the solution of the Bateman equations.

For the default P0FC0L coupling scheme, a 5% usage for
the burnup calculation is quite satisfactory. However, when us-
ing a higher-order method (such as P2FC2), a one-step CRAM
solution cannot capture the variation of A(t) throughout the
step. Thus, Ref. [6] uses a substep approach, where several
CRAM substeps are taken within each step, adjusting the con-
stant A0 matrix to correspond to the average value of A(t) in
each substep. There are two disadvantages to this approach.
First, the substepping introduces another source of truncation
error, which can be limited by increasing the number of sub-
steps. Ref. [6] used five substeps for the quadratic corrector
step. Second, since the runtime in the burnup solver is roughly
proportional to the number of linear system solves (required
by CRAM), we expect the runtime of N substeps of CRAM to
be N times longer than the runtime of single-step CRAM. If
the average single-step CRAM burnup calculation uses 5% of
the total runtime, we would expect a 5 substep CRAM solution
to add 20% to the total runtime.

In the current P2FC2 implementation, we have used the
DVODE solver instead of CRAM. Currently the DVODE
solver is 2.3–5.0 (depending on the case or computer) times
slower than the single-step CRAM solver, which implies that
it is competitive with five-substep CRAM. While both the
CRAM and DVODE (plus accompanying routines) solvers
have been optimized for runtime, further optimizations for
both solvers are surely possible. Thus, the runtime figures
here are not intended as a final verdict, but rather evidence
that DVODE has the potential to be competitive with substep
CRAM.

In the results that follow, we used an absolute tolerance
of 10−30 atoms/barn-cm and a relative tolerance of 10−7 in the
DVODE Bateman solver. These tolerances are different than
those used for the coupled transport-depletion solver.

2. Error estimators

Before defining the error estimators, it is helpful to draw
the distinction between local and global truncation error. The
local truncation error at time i is the error incurred for one step
of the numerical method,

~ε local
i =

∣∣∣~n approx
i − ~n exact

i

∣∣∣ , (8)

where both solutions on the right are computed from the same
values at the previous step, ~ni−1. The global truncation error
is similar, but instead of starting with the same values for the
previous step, they use the same values at the initial condition.
At the first step, the local and global truncation errors are
the same. Thereafter they diverge. Control of the local error
should limit the global error, but the exact correspondence
between the two is not straightforward. We seek an estimate
of the local truncation error.

As observed in Ref. [2], the predictor-corrector method
is amenable to computing an error estimator since lower-
accuracy and higher-accuracy solutions are available. The
error estimator used in Ref. [2] was the one-group neutron
flux difference between predictor and final values. However,
since CASMO5 performs only one flux calculation per time
step, this is not a viable option in CASMO5. Instead, we use a
similar estimator based on the nuclide number densities. The
P0FC0L estimator at step i is

~εi =
∣∣∣∣~n f

i − ~n
p
i

∣∣∣∣ (9)

Note that this is an estimate of the error in the low-order,
predictor number densities, not the corrector or final number
densities. For the P2FC2 method, a similar estimator can be
formed, by using the corrector number densities ~nc in place of
~n f .

3. Adaptive stepsize algorithm

We implemented the “elementary adaptive stepsize al-
gorithm” from Ref. [2] rather than the control-theory based
algorithm. This algorithm is designed to reduce the local trun-
cation error such that

ε j ≤ τa + τrn
f
i, j, j = 1, . . . , n j nuclides. (10)

The update formula for the stepsize we used was

hi+1 = hi max
[
min

(
γx1/(k+1), ρ2

)
, ρ1

]
(11)

x = min
j

τa + τrn
f
i, j

ε j
(12)
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where

j = the nuclide index,
k = the order of the predictor method (1, 3),
τa = the absolute error tolerance (2e-7 atoms/(barn·cm)),
τr = the relative error tolerance (2e-4, 5e-5),
γ = a safety factor (0.9, 0.8),
ρ1 = lower multiplicative limit on stepsize change (0.1),
ρ2 = upper multiplicative limit on stepsize change (5.0, 1.2).

The values in parenthesis are the values used in the results sec-
tion below. Where two values are listed, the first is for P0FC0L
and the second is for P2FC2. The parameters are chosen con-
servatively for P2FC2 to prevent a breakdown in the quadratic
interpolation caused by rapidly changing step sizes. The error
tolerances were chosen to roughly match the eigenvalue error
in the current CASMO5 depletion schedule.

If x > 1, the error is below the specified tolerance spec-
ified in Eq. 10 and the step is accepted. Otherwise, the step
is rejected and repeated with a reduced step length. Whether
the stepsize is accepted or rejected, the stepsize is changed
according to Eq. 12. The safety factor γ < 1 limits the number
of failed steps by shortening each step.

Since the error estimator is for the predictor number den-
sities ~np

i , it would be more consistent to carry forward the
predictor number densities rather than the final number densi-
ties ~n f

i . However, we expect the final number densities ~n f
i to

be more accurate and thus use them instead.

A. Memory storage considerations

For P0FC0L, the A0 matrix is formed at each step and
then deallocated at the end of the step. The main additional
storage burden for P2FC2 is the coefficients of the quadratic
polynomial for A(t) for each depletion region, so that we need
to store three sets of matrices of the size of A0 per region.
Sparse matrix storage can reduce the size needed to store each
A. For the adaptive time stepping algorithm, we also store an
old copy of A(t) so that it can be restored if a step needs to
be repeated, which means that we need six sets of matrices
with the same size and sparsity of A0 per region. For the 2D
single-assembly calculations in CASMO5 performed in this
study, the additional storage (using mostly banded-diagonal
sparse matrix format) required approximately 50 MB, which
is about 20% of the default memory usage. However, for a
large multi-assembly or 3D configuration (or if thousands of
nuclides are tracked instead of the hundreds that CASMO5
tracks), the additional storage might become prohibitive.

III. RESULTS

1. Error estimators

To gain confidence that the adaptive step size algorithm
will work, we first need to verify that the error estimators
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Fig. 5: Accuracy of P0FC0L error estimator.

are accurate. Thus, we have compared the accuracies of the
P0FC0L and P2FC2 error estimators for two steps in a pincell
depletion calculation. The step were from 0.5 to 1 and 15 to
17.5 MWd/kgU. Figures 5 and 6 show the ratio of the estimated
to true local error. The desired result is that all points would
equal 1.0, that is, that the predictions are perfect.

For both estimators, the majority of the points are within
the range (0.1, 10), where the error estimators are accurate
within a factor of 10. The estimators perform better at the
later depletion step, especially for the P2FC2 estimator. This
is presumably because the kinks that appear in ~n(t) and A(t)
early in the depletion have smoothed out by 15 MWd/kgU.

Note that inaccuracies for lower number-density nuclides
are not a difficulty because of the absolute error tolerance
included in the adaptive stepsize algorithm (τa).

2. Adaptive stepsize, quadratic-expansion depletion calcu-
lations

A PWR and two BWR lattice depletions are presented
here to evaluate the performance of the methods under consid-
eration: scheduled and adaptive versions of both P0FC0L and
P2FC2.
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Fig. 6: Accuracy of P2FC2 error estimator.
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Fig. 7: Eigenvalue and eigenvalue error for 17×17 PWR lattice
depletion.

A. 17×17 PWR

The first case is a 17×17 PWR lattice with a uniform en-
richment of 4.1%. This is a less strenuous test for the depletion
solver. The eigenvalues and errors are presented in Figure 7.
Six separate depletion calculations are performed:

• depletions with the default schedule using P0FC0L,
P2FC2, and FP2FC2,

• depletions with the adaptive stepsize algorithm P0FC0L
and P2FC2, and

• a fine-step depletion for reference.

The number of depletion steps to reach 50 MWd/kgU is given
in Table I. The improvement in accuracy after 10 MWd/kgU
is substantial for P2FC2 as compared to the default P0FC0L.

The error tolerances have been tuned to reproduce a sim-
ilar level of error in the lattice eigenvalue, and indeed, the
P0FC0L “scheduled” and “adaptive” results agree within about
10–20 pcm.

B. 10×10 BWR natural-U blanket segment

The second depletion case is a 10×10 BWR with natural
uranium (U-235 at 0.71% “enrichment”). This is a more chal-
lenging depletion calculation because of the reactivity peak at
about 2 MWd/kgU caused by the accumulation of plutonium.
Figure 8 shows the lattice infinite multiplication factor, and
Figures 9 and 10 show the U-235 and Pu-239 number densities
in one of the corner pins. The number of depletion steps to
reach 50 MWd/kgU is given in Table I.

The adaptive stepsize algorithm smooths the error. The
large gradients in the “scheduled” error are smoothed by the
adaptive algorithm.

C. 8×8 BWR with gadolinium burnable absorber

Figure 11 shows the eigenvalue results for the BWR lattice
with 10 pins containing gadolinium. The quadratic gadolin-
ium solver in CASMO5 is not currently compatible with the
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Adaptive Adaptive
Case Scheduled P0FC0L P2FC2 Reference

PWR 39 24 31 128
BWR 39 31 32 128

TABLE I: Number of depletion steps needed to deplete to
50 MWd/kgU.
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Fig. 8: Eigenvalue and eigenvalue error for depletion of a
natural uranium BWR lattice from the assembly blanket.

adaptive stepsize algorithm, so only the scheduled depletion
results are given. Furthermore, during the gadolinium burnout
period (from 0 to 20 MWd/kgU), the higher-order coupling
schemes perform poorly as compared to the default scheme.
However, when the quadratic gadolinium solver shuts off

around 20 MWd/kgU, the performance of the higher-order
P2FC2 and FP2FC2 schemes improves considerably.

IV. CONCLUSIONS

As expected, the quadratic P2FC2 method has substan-
tially better accuracy than the default P0FC0L method, es-
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Fig. 9: 235U predictor number densities for corner pin in natural
uranium BWR lattice from blanket.
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Fig. 10: 239Pu predictor number densities for corner pin in
natural uranium BWR lattice from blanket.
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Fig. 11: Eigenvalue and eigenvalue error for depletion of a
BWR lattice with Gd burnable absorber.
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pecially from the middle to end of the depletion, where the
eigenvalue error was reduced by a factor of 3 to 6. In addition,
the reduction in the number of statepoints through the use
of adaptive stepsize control is appealing. P2FC2 with adap-
tive stepsize control has the potential to reduce CASMO5
runtime while maintaining or improving the solution accu-
racy, although the net runtime effect is still unknown due to
uncertainties in the P2FC2 solver.

Several open questions remain:

• What is the net runtime change for adaptive P2FC2 versus
P0FC0L with one-step CRAM, the current CASMO5 de-
fault? The P2FC2 routines can likely be further optimized
to decrease runtime. However, there are other compet-
ing effects. For example, the longer steps allowed by the
adaptive P2FC2 method can increase the number of eigen-
value iterations, since the initial flux guess coming from
the previous statepoint is further from the new state.

• Currently adaptive P0FC0L and P2FC2 are incompatible
with the quadratic gadolinium solver. While it seems
that these two could coexist, we need to implement the
mechanics of such cooperation.

• CASMO5 requires certain exposures (such as 10, 20,
30, . . . MWd/kgU) to be present in depletions so that
it can perform branch calculations at those points. Any
adaptive time step algorithm in CASMO5 should respect
those requirements.

• Numerical ODE solvers have methods to automatically
choose a good starting step size. This could be a useful
addition to an adaptive time-step depletion algorithm so
that the user does not need to select the first step size.

• In addition to using variable step size, numerical ODE
solvers can also automatically switch the order of the
method [5, 12]. Initially, or during periods of steep
changes, a lower-order method is used. Then when the
solution becomes smoother, a higher-order method is se-
lected. This could be useful in the depletion algorithms,
first because it would allow the algorithm to start without
needing special logic for the first step or two. The first
step would be taken with a low-order method, and then
the order could be subsequently increased automatically.
Second, while the improved accuracy of P2FC2 seems
clear after ~15 MWd/kgU, it may be that a low-order
method would be a better choice early in the depletion.
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