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Abstract - This work performs a thorough code order verification study on COolant Boiling in Rod Arrays
– Three Field (COBRA-TF) and the corresponding residual version. A very simple single-channel isokinetic
advection problem is used with three different inlet conditions: constant, hyperbolic tangent, and cosine.
The observed order of accuracy is shown to be one for all simulations, which is consistent with the formal
order of accuracy. Small variations in the observed order can be attributed to iterative error in the solution
algorithm, the influence of higher-order terms, secondary effects on the pressure and velocity, or possible
mistakes in the coding or verification implementation. This work is one of the first code order verification
studies to be documented for the current version of CTF, which is developed at North Carolina State University
in cooperation with the Consortium for Advanced Simulation of Light Water Reactors.

I. INTRODUCTION

COolant Boiling in Rod Arrays – Three Field (COBRA-
TF) is a thermal hydraulic subchannel code designed for the
analysis of Light Water Reactor (LWR) cores. Various ver-
sions of COBRA-TF exist throughout academia and industry.
One version, rebranded as “CTF,” is developed and maintained
by the Reactor Dynamics and Fuel Modeling Group (RDFMG)
at North Carolina State University (NCSU) [1]. CTF has re-
cently been incorporated into the Consortium for Advanced
Simulation of LWRs (CASL), which has led to rapid improve-
ments in the code’s capabilities, parallelization, performance,
validation, and quality assurance.

The original version of COBRA-TF, designed at The Pa-
cific Northwest National Laboratory (PNNL) in 1980 [2], was
optimized to run on computers with limited capabilities. The
code architecture and solution algorithms have remained es-
sentially stagnant since then, so recent work has focused on
modernizing the code. A residual formulation of COBRA-TF,
called COBRA-IE, is used at The Bettis Atomic Power Lab-
oratory [3, 4]. Similar work has commenced to introduce a
residual formulation into the CASL version of CTF [5, 6]. An
initial one dimensional residual formulation for single phase
water with no source terms has been created and incorporated
into the current version of CTF [7]. This option, which is
nested inside CTF itself, is referred to as “CTF-R.”

The residual formulation has a number of important bene-
fits: flexibility to access and change the governing equations,
the ability to discretize equations in different ways, ability to
make the solution more implicit, the possibility of implement-
ing a direct steady state solution, ability to build the pressure
matrix or Jacobian in a variety of ways, the option of fully
integrating solver packages into the solution algorithm be-
cause the numerical solution is separated from the physics,
and potentially a quicker and more accurate solution.

Though CTF is a mature code that has been used through-
out industry and academia, it lacks any formal code order
verification studies. Similarly, CTF-R has no code verifica-
tion studies because its development has just started. This
work is intended to show that the underlying computer science

and mathematical solution of these two codes are correctly
implemented.

II. THEORY

This work will verify CTF-R and CTF through a compar-
ison between formal and observed orders of accuracy. The
governing equations are briefly outlined, then a test problem
is selected for the code verification process. A modified equa-
tion analysis reveals the formal order of accuracy for this test
problem. Finally, the convergence test procedure is outlined.

1. Governing Equations

The main version of CTF solves eight conservation equa-
tions, but only three of these have been implemented in CTF-R
thus far. These are conservation of mass, momentum, and en-
ergy for single phase water in one dimension with no source
terms.
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CTF uses the nonconservative form of the momentum
equation. Also of note is that a term in the energy equation,
u (∂P/∂x), is neglected. Pressure gradients are generally small,
so this is deemed an appropriate approximation.

The source terms – friction, heat transfer, mixing, etc.
– are disabled in the main version of CTF using multipliers
that expose these models to user input. The gravity term
in the momentum equation is disabled in a similar way. The
equations in both codes are discretized over the same staggered
mesh and they share a common input, so the two code options
are expected to have the same solution.
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2. Isokinetic Advection Test Problem

An isokinetic advection test problem is designed to verify
both the main version of CTF and the new residual formula-
tion. The initial conditions are designed such that the pressure
and velocity are constant throughout domain, then the inlet
conditions are allowed to advect through the channel at the
constant velocity, u.

With a constant velocity and pressure, the conservation
equations simplify significantly. The momentum equation
becomes trivial, and both the mass and energy equations take
the same form.
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+ u
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= 0 (4)
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Density and enthalpy are governed by the same advective
properties for this simulation, so either can be examined for
convergence. Enthalpy is selected as the quantity of interest
because it is directly used as the boundary condition in both
versions of CTF. This will eliminate error due to the nonlinear
equation of state from the convergence procedure.

The parameters which define the problem are outlined
in Table I. The conditions approximate a subchannel with
reactor geometry at near standard pressure and temperature.
There is a maximum change in temperature of 2◦C. The water
is subcooled throughout all simulations. The problem was
designed such that the inlet condition will advect to the outlet
of the channel in about ten seconds. The time of interest for
all simulations is when the inlet condition has advected half
way through the channel.

TABLE I: Problem Parameters for Isokinetic Advection

Parameter Symbol Value Units

Channel Length L 0.5 m
Flow Area A 0.0001 m2

Wetted Perimeter Pw 0.040 m
Pressure P 1.00 bar
Initial Temperature To 40 ◦C
Initial Enthalpy ho 167.6 kJ/kg
Initial Density ρo 992.22 kg/m3

Initial Flow Rate ṁo 0.005 kg/s
Velocity u 0.05039 m/s
“Inlet” Temperature Tin 38 ◦C
“Inlet” Enthalpy hin 159.22 kJ/kg
“Inlet” Density ρin 992.90 kg/m3

“Inlet” Flow Rate ṁin 0.05004 kg/s
Hyperbolic Tangent Width l 0.05 m
Hyperbolic Tangent Offset τ 5.0 s
Cosine Wave Period p L/u s

Three inlet condition types are chosen: square wave, hy-
perbolic tangent, and cosine wave. The square wave is selected
for its simplicity; both the inlet condition and the initial condi-
tion are constant. For the square wave, solution of Equation 4
or 5 is a step function.

hsq =

ho, ut ≤ x
hin, ut > x

(6)

The second inlet condition type is the hyperbolic tangent.
This condition is selected because, like the square wave con-
dition, it is smooth with the initial condition, but lacks the
discontinuity at the wave location.

htanh =
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1
2
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)]
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(7)

A characteristic length, l, determines how wide the hyper-
bolic tangent is. The constant τ is necessary to shift the wave
left, which allows the inlet and initial condition to be approxi-
mately equal at the beginning of the simulation. When using
the hyperbolic tangent inlet condition, the time of interest for
all simulations will be at five seconds plus the offset.

The final inlet condition type is a cosine wave. The cosine
is selected such that it is continuous with the initial condition.
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The cosine period, p, is equal to the channel length di-
vided by the velocity, u. Therefore, the wavelength is equal to
the channel length.

To ensure that all derivatives of the solution are smooth,
the initial condition should also be a cosine shape. CTF input
does not allow for a nonuniform initial condition, so there may
be a small amount of error that originates from the discontinu-
ous second derivative at the wave location.

3. Modified Equation Analysis

Modified Equation Analysis [8] is used to define the for-
mal order of accuracy of discretized equations by estimating
the truncation error of a given discretization scheme. The
analysis starts with a discretized form of Equation 4 with a
constant positive velocity and upwinded advection term.
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Second order Taylor series expansions about i and n are
used to approximate ρn+1

i and ρn
i−1.
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Equations 9, 10, and 11 are combined and rearranged
with the original conservation equation on the left and the
error terms on the right.
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This equation defines the general behavior of error in CTF.
The formal order of accuracy is first order in both space and
time when the higher order terms are sufficiently small that
they can be neglected. Similar results can be derived using
Equation 5.
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4. Convergence Study Procedure

Convergence tests are performed by running identical
simulations with different temporal or spatial meshes. Three
metrics are used to assess the change between two successively
refined simulations.

||h||1 =
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i
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∣∣∣ (13)
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i

(
hi, f ine − hi,coarse

)2
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||h||∞ = max
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∣∣∣ (15)

The observed order of accuracy p is determined by finding
a line of best fit with the exponential form, ||h|| = cxp. The
coefficient of determination, R2, demonstrates how closely the
line approximates the results.

Three types of convergence studies are considered in this
work. Temporal and spatial convergence studies are used
to demonstrate correct scaling with ∆t and ∆x, respectively.
Then, both the spatial and temporal meshes are refined at the
same rate to demonstrate the behavior for normal code usage.

The selection of suitable ∆x and ∆t combinations is an
important part of the convergence study process. The solution
must be stable, while also having a feasible computational
time. Equation 12 can be used to derive the Courant Fourier
Limit (CFL), which directly determines the stability of the
single-phase solutions in this work.

Equation 1 is used to find a relationship between the sec-
ond derivative with respect to space and the second derivative
with respect to time,

(
∂2ρ/∂t2

)
= u2

(
∂2ρ/∂x2

)
. This result is

combined with Equation 12 to derive a stability criterion.
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The CFL is defined as u∆t/∆x. When the CFL is less than
one, the error term causes diffusion. When the CFL number is
larger than one, the diffusion term becomes an anti-diffusion
operator and the solution is unstable. The CFL is below 1.0
for all simulations in this work.

III. RESULTS

The results from convergence tests of the isokinetic ad-
vection problem using all three inlet conditions are given in
this section.

1. Square Wave Advection

Typical enthalpies from the simulation of the square wave
advection problem are shown in Figure 1a. The results are
compared to Equation 6, which is represented as dashed lines
in the figure. The difference between the analytical and code
results are shown in Figure 1b. CTF and CTF-R have such
similar results that they cannot be distinguished graphically,
so only the residual formulation results are shown. CTF pre-
dicts the solution well, with characteristic diffusion around
the discontinuity. This is the expected result and demonstrates
that the test problem is set up correctly.
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Fig. 1: Example code run for square wave advection with
∆x = 0.05 m, ∆t = 0.0893 s, and CFL = 0.9

The results from a temporal order of accuracy study are
shown in Figure 2. All three norm results are shown for each
of the code versions along with the lines of best fit for each
data set and their corresponding R2 values. The resulting order
of accuracy is essentially one for both codes.

2. Hyperbolic Tangent Advection

Results for the hyperbolic tangent inlet condition are
shown in Figure 3. Similar to the square wave results, Fig-
ure 3a shows the code results and analytical solution, and
Figure 3b is the difference between the two. The offset of the
wave, τ, is sufficiently large that the solution is smooth. The
error follows the wave location and again shows the expected
diffusion behavior. These results indicate that the problem is
set up correctly.

Temporal, spatial, and constant CFL convergence studies
were performed with the hyperbolic tangent condition and the
results are shown in Figures 4a, 4b, and 4c, respectively. All
three studies have observed orders of accuracy approximately
equal to one.
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Fig. 3: Example code run for hyperbolic tangent advection
with ∆x = 0.05 m, ∆t = 0.0893 s, and CFL = 0.9
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3. Cosine Wave Advection

Typical results for the cosine advection problem are
shown in Figure 5a, and the difference between the code and
analytical solution are shown in Figure 5b. Again, the CTF
results are solid and the analytical solution is dashed. The
code results match well with the analytical solution.
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Fig. 5: Example code run for cosine wave advection with
∆x = 0.05 m, ∆t = 0.0893 s, and CFL = 0.9

Finally, the cosine wave isokinetic advection test problem
is used to perform three convergence studies. The results
are shown in Figures 6a, 6b, and 6c. All observed orders of
accuracy are near unity, which demonstrates that the codes are
first order in both space and time.

IV. CONCLUSIONS

All observed orders of accuracy using the L2 norm are
summarized in Table II. All values are between 0.9 and 1.1.
Small variations in the observed order of accuracy can orig-
inate from a variety of sources, such as iterative error, small
coding mistakes, incorrect verification test implementation,
and the influence of higher order terms that were neglected
during the modified equation analysis.
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TABLE II: Summary of observed orders of accuracy

Inlet Type CTF-R CTF

square ∆t 1.01216 1.01217
tanh ∆t 1.00570 1.00570

∆x 0.93165 0.93163
CFL 0.97359 0.97356

cos ∆t 1.00244 1.00244
∆x 0.95075 0.95070

CFL 0.99336 0.99336

The run times for all simulations are shown in Figures 7a,
7b, and 7c for the temporal, spatial, and constant CFL conver-
gence studies, respectively. Note that the spatial convergence
study, Figure 7b, scales very poorly with mesh size for CTF-R.
This is due to the high computational cost of solving the full
Jacobian. The poor scaling of ∆x with computational cost,
compounded with the inverse relationship between CFL and
∆x, causes computational and stability limitations to force
the simulations outside of the asymptotic range. As such, the
observed orders of accuracy for spatial convergence are the
furthest from one.

The analytical solution completely eliminates the momen-
tum equation, but this cannot be done in practice. As a result,
vary small variations in the momentum equation cause sec-
ondary effects on the pressure and velocity for all simulations.
The secondary effects on pressure and velocity for the square
wave inlet condition are shown in Figures 8a and 8b, respec-
tively. The secondary effects follow the location of the wave
and are due to the nonlinearity of the equation of state. Note
that the scales of the figures are small, so the secondary effects
are not significant to the convergence studies.

It has been shown that the formal order of accuracy and
the observed order match for both CTF and CTF-R when
using an isokinetic advection test problem. Small variations
can be attributed to a variety of sources, but the differences
are sufficiently small to conclude that the code is overall first
order. Therefore, the solution algorithms for both codes have
been implemented correctly and give correct results.

The isokinetic advection problem was designed to test the
mass and energy conservation equations. Therefore, future
code verification work will focus on the momentum equation.
In addition, the residual formulation is currently in its infancy
and must be expanded in a number of ways: adding closure
relations, the conduction solution, transverse momentum equa-
tion, and the additional gas and droplet phases. Work will
also focus on reducing the computational cost of the Jaco-
bian solution. Overall, this work is an indication that CTF-R
is being developed correctly and these test problems will be
used to ensure that the code does not regress during further
development.
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(a) Pressure effects for square wave inlet condition
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(b) Velocity effects for square wave inlet condition

Fig. 8: Secondary effects with ∆x = 0.05 m, ∆t = 0.0893 s,
and CFL = 0.9
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