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Abstract - This paper briefly presents simulation results of a hyperbolic model of the two-phase flow equa-

tions written in a conservative form and discretized using finite volume methods. The model presented herein

utilizes mixture properties and constitutes a three governing equations model. Such a model able to treat the

relative motion between phases independently. Godunov methods of centred type are used for the convection

terms. The TVD SLIC scheme is used in which the fluxes are calculated by the Riemann problem. The key

results include the ability of the model to simulate two-phase flows with strong gradients in both velocity

and phase fractions. In particular, the model is robust and reproduces with fair accuracy the complete wave

structure associated with the flow variables. The model and the methods are capable of handling numerical

instabilities that may occur during simulations, which is essential in analysis of two-phase flow phenom-

ena in nuclear reactors. The model in hand is considered promising for future consideration of additional

sub-models describing complex mechanisms governing gas-liquid mixture two-phase flow including thermo-

dynamic non-equilibrium (subcooled boiling), heterogeneous volume fraction and mass fraction fields for the

gas phase.

I. INTRODUCTION

Gas and liquid multiphase flows are of fundamental
importance in the design, operation and safety assessment of
nuclear reactors. The study of such reactors is a challenging
task both in the mathematical modelling and in designing
accurate and robust numerical tools. Typically, these reactors
are characterized by thermal-hydraulics and multiphase
flows that refers to the formation of gases in liquid flows.
Because of the large size of these reactors, the multi-phase
or two-phase phenomena within such reactors have been
investigated widely with two-fluid models [1, 2, 3, 4, 5]. Such
models are derived from conservation laws for each phase for
mass, momentum and energy along with phase interaction
throughout interfacial terms. Two main issues of concern
are related to these models in their standard form. The first
one is the occurrence of complex eigenvalues resulting in
ill-posed or non-hyperbolic initial-boundary-value problems.
The second concern is the non-conservative temporal and
spatial terms appearing in their final formulation. While
such concerns undoubtedly heralds mathematical, numerical
and practical challenges, considerable remedies have been
proposed over years in resolving some of these challenges.
These include, but are not limited to, incorporating more
physical terms such as the viscous stress terms to the momen-
tum equations, the interfacial pressure force terms, using the
surface tension force terms or including the relative velocity
in the buoyant force term. Although hyperbolicity can
be provided with such physical assumptions, the resulting
hyperbolic initial-boundary-value problems are inherently
non-conservative two-fluid models. Lack of hyperbolicity
and conservativity characters of such models results in
spurious oscillations in the numerical resolutions which
render high-fidelity simulations of small-scale two-phase
phenomena in nuclear reactors intractable. Further, these

models are in general based on homogeneous equilibrium
formulation involving equal or unequal pressure for each
phase. A substantial literature exists on the simulations of
flow of two fluid phases with currently used hyperbolic and
non-hyperbolic non-conservative two-fluid models. See, for
example, [3, 6, 7, 8, 9, 10, 11, 12] and the references therein.
Despite the maturity that such models have been attained, the
complicated coupling terms of physical mechanisms govern-
ing two-phase flows within nuclear reactors has implied that
the previously mentioned mathematical and numerical chal-
lenges remain a crucial interest for scientific investigation.
The purpose of this paper is to introduce a recently developed
two-phase flow model for thermal-hydraulics systems in
nuclear reactors. This model is based on the theory of
thermodynamically compatible systems of hyperbolic conser-
vation laws of continuum mechanics [13] and has been used
extensively to investigate single and two-phase flow prob-
lems, e.g. see [13, 14, 15]. The model is formulated in terms
of parameters of state for the mixture and describes gas and
liquid phases in a complete non-equilibrium. Formulations
with such parameters allows the relative motion between the
two phase systems to be expressed by a separate equation.
In addition to that, it allows the different phases to be
interpenetrated with each other, that is, the volume fractions
of phases can be equal to any value between 0 and 1, and
the interaction between phases can be expressed in different
forms within the resulting mixture equations. Within the con-
text of mixture formulations, the model consists of a mixture
mass, mixture momentum and a balance law for the relative
velocity between the two phases. A very important key
feature of this model is its ability to describe the behaviour
of the relative motion between the two phase systems. In
practice, this is one of the most important characteristics for
two-phase flow mechanisms along with their mathematical
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description designed for the numerical simulations of nuclear
power plants thermal-hydraulics. Further, the system of
equations exhibits rich mathematical structures including
shock and rarefaction waves solutions. These structures also
facilitate the construction of approximate Riemann solvers
and locally involve them in the framework of well-developed
numerical methods for the complete resolution of the model
equations. In contrast to considerable recent advances
in the development of numerical methods for two-phase
flows, extension of such methods to the fully conservative
two-phase flow models have remained relatively scarce. In
general, however, this extension also is mainly carried out
by finite-volume methods such as Godunov-type methods
for simulating the model equations. Accordingly, a total
variation diminishing (TVD) slope limiter centre (SLIC)
numerical scheme is applied and extended for the resolution
of the model equations. The TVD SLIC is a Godunov
centred type scheme to solve hyperbolic conservation laws
that achieves second-order accuracy by using MUSCL ex-
trapolation. See, for example, [16]. Based on finite-volume
methods, the model equations are discretized using the TVD
SLIC scheme where the solution of the non-linear Riemann
problem is fully numerical. The scheme is then applied and
tested on different two-phase problems selected from the
open literature. The performed numerical simulations clearly
demonstrate that both the model equations and numerical
methods are capable of predicting the two-phase flows wave
phenomena with a high degree of accuracy, robustness and
without any oscillation and additional diffusion. Simulations
show that the results of the model and the methods presented
here compare well with other numerical methods available in
the literature.
In this article, the model equations are presented in the next
section. The numerical methods are explained in the section
after. The ability of this hyperbolic and conservative mixture
model to resolve steep gradients in the velocity and phase
fraction fields, without experiencing severe oscillations or
exaggerated numerical smearing, will be assessed in the
fourth section. Concluding remarks are given in the last
section.

II. MATHEMATICAL MODEL

The aim of the present work is to address the accuracy
and robustness obtainable with a fully hyperbolic and fully
conservative two-phase flow model for thermal-hydraulic
analysis of nuclear reactors. At the present stage, the two-
phase flow of interest is, therefore, primarily a relatively di-
lute disperse gas-liquid flow in which small steam bubbles
have just been formed in a continuous water phase. This phys-
ical situation, for instance, is found in the region after the
boiling onset within a boiling water reactor (BWR). In such
a flow situation, local equilibrium between the two phases
is attained over short spatial scales and a mixture model for-
mulation may appropriately employed to simplify the com-
plete two-phase flow equations. Thus, mixture parameters of
state [14, 15] are introduced, and the mathematical model un-
der consideration, in terms of conserved variables, reads as

follows:

• Continuity equation of gas-liquid mixture

∂

∂t
(ρ) +

∂

∂x
(ρu) = 0. (1)

• Momentum equation of gas-liquid mixture

∂

∂t
(ρu) +

∂

∂x
(ρu2 + P + ρc(1 − c)u2

r ) = S. (2)

• Relative velocity equation of gas-liquid mixture

∂

∂t
(ur) +

∂

∂x

(

uur + (1 − 2c)
u2

r

2
+ ψ(P)

)

= π. (3)

The symbols in the equations presented above have the fol-
lowing meanings: t ∈ R

+
0

denotes time and x ∈ R is spatial
position, ρ, u, P, c and ur denote, respectively, the mixture
density, mixture velocity, mixture pressure, gas mass void
fraction and relative velocity between the two phase systems.
These mixture variables are related through the gas volume
fraction, α, in the following form

ρ = αρ2 + (1 − α)ρ1 and ρu = αρ2u2 + (1 − α)ρ1u1,

P = αP2 + (1 − α)P1, c = αρ2 ρ
−1 and ur = u2 − u1.

Here two, 2, and one, 1, are subscripts denotes the gas and
liquid phases, Pk, ρk and uk are the pressure, velocity and
density of phase k, where k = 1, 2, respectively, and α is be-
tween 0 and 1 and satisfies the constraint α + (1 − α) = 1.
In the present work, we have assumed isentropic conditions
within the equations and that no mass transfer between phases
occurs. Further, the basic physics is that the two phases are
coupled by the relative velocity equation rather than the phase
momentum equations. In this regard, additional terms arise in
the framework of velocity non-equilibrium behaviour show-
ing the benefits of using mixture formulations. Based on
such formulations, the term ψ(P) is a function that depends
on phase equations of state (EOS) for isentropic and non-
isentropic laws defined as

ψ(P) = e2 +
P2

ρ2

− e1 −
P1

ρ1

= ψ2(P2) − ψ1(P1). (4)

The source terms on the right-hand side of equations of (2)
and (3) represent the interphase exchange processes. The
different forms of these terms arising in a range of flow
processes have been discussed extensively in the literature
(see [8, 10, 15, 17] and references therein). Although an ade-
quate treatment of the interphase exchange terms will be im-
portant in a final application, the effects of including various
exchange models on the stability and overall behaviour of
the numerical problem would render the current assessment
of the intrinsic model capabilities impossible [8, 18]. These
various forms for modelling the source terms therefore fall
outside the authors’ interest in this paper, and have been dis-
regarded for the sake of clarity and simplicity.
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The system of equations (1)-(3) can be written in the follow-
ing vector conservative form:

∂U

∂t
+
∂F(U)

∂x
= S(U), (5)

where the vector representing the conserved flow variables,
flux and source term vectors, respectively, are given by

U =





















ρ

ρu

ur





















, F(U) =























ρu

ρu2 + P + ρc(1 − c)u2
r

uur + (1 − 2c)
u2

r

2
+ ψ(P)























and S =
(

0, S, π
)

·

If we set u2 = u1 and α = 1 in the above system, then one re-
cover single-phase flow equations. System (5) also has been
compared with currently used two-fluid models. See [14, 15]
for further details. As can be seen in equations (1)-(3), sys-
tem (5) represent a fully conservative initial-boundary-value
problem. Further, the eigenvalues of system (5) in terms of
parameters of state for the mixture are

λ1 = u − am + Yur, λ2 = u and λ3 = u + am + Yur,

where Y is a function connects the mixture variables to each
other and am is the speed of sound of the mixture. For further
details, see [15]. With the complete hyperbolic nature and
the conservative form in hand, system (5) admits discontinu-
ous solutions. More specifically, it admits a linearly degener-
ate field, associated with the middle wave, and two genuinely
non-linear fields, associated to the left and right waves. This
has the consequence that the model equations can be solved
using any standard numerical method without any specific nu-
merical design.

III. NUMERICAL APPROXIMATION

Although system (1)-(3) is independent of the type of nu-
merical method used to resolve it, the equations of the mix-
ture model are discretized for processes without dissipation,
the source terms are zero, using finite-volume methods. The
computational domain discretization is based on a mesh of
length ∆x and the temporal domain t into intervals of dura-
tion ∆t. For the ith mesh, this discretization results as

U
n+1
i = U

n
i −
∆t

∆x

[

Fi+ 1
2
− Fi− 1

2

]

. (6)

In equation (6), the time step is determined by

∆t = CFL ·
∆x

S (n)
max

,

where the Courant number coefficient CFL is between 0 and
1 and the maximum wave speed S (n)

max
is selected at the current

time level n as

S (n)
max
= max

i

{

|λi|
}

,

and λi are eigenvalues corresponding to sound waves. Further,
the determination of U at the new time step n+ 1 necessitates

the computation of the numerical flux F at the cell interfaces
at the previous time n. For the evaluation of the numerical
fluxes of the model equations in finite volume methods, one
need to solve the Riemann problem at the cell interfaces to-
gether with the initial conditions

U
(

x, t = 0
)

=



















UL, if x ≤ x0,

UR, if x > x0,

(7)

where UL and UR are given left and right constant states of
the gas and liquid flows, respectively, separated by a discon-
tinuity at x = x0. The solution to the Riemann problem for
system (1)-(3) can be analytical or numerical. Analytical so-
lution of the model equations, however, faces a practical bar-
rier due to the equations of state and to the relative veloc-
ity equation between the two phases. Although exact Rie-
mann solvers are available for specific mixture and two-fluid
models, they have been developed using certain simplifica-
tions such as mathematical and physical assumptions related
to one of the phases. For a review, see e.g. [15] and the ref-
erences therein. This entails the numerical approximation of
two-phase flow equations where the solution of the Riemann
problem is fully numerical. In the present work, we consider
Godunov methods of centred type, namely the second-order
Slope Limiter Centred (SLIC) scheme, which have been stud-
ied in [16] for single-phase flows. This method gives high-
resolution of large-gradient regions that are free from spuri-
ous oscillations. Further, it involves the following three steps.

• Data reconstruction. In this step, the cell averaged val-
ues Un

i
are locally restored by piecewise linear function

in every cell as

Ui(x) = U
n
i (x) +

(x − xi)

∆x
∆i· (8)

The values Un
i

then are transformed to the boundary ex-
trapolated values as

U
L,R
i
= U

n
i ±
∆i

2
, (9)

where ∆i defines a suitable slope limiter of the linear
function set in every cell.

• Evolution. The boundary extrapolated values are then
evolved by a half time step, 1

2
∆t, for every cell Ii. This

is carried out according to

(

U
L,R
i

)New
= U

L,R
i
+

1

2

∆t

∆x

[

F(UL
i ) − F(UR

i )
]

, (10)

where the above intercell fluxes are calculated at the
boundary extrapolated values of each cell.

• The Riemann problem. The numerical fluxes employed
in this step are computed using the following standard
first-order centered (FORCE) flux where the solution of
the Riemann problem associated with system (5) is fully
numerical

F
FORCE

i+ 1
2

= Fi+ 1
2

(

(

U
R
i

)New
,
(

U
L
i+1

)New
)

, (11)



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

where UL =
(

U
R
i

)New
and UR =

(

U
L
i+1

)New
and the

FORCE intercell flux is defined as the average of fluxes
obtained using Lax-Friedrichs (LF) and Richtmyer (RI)
methods as

F
FORCE

i+ 1
2

=
1

2

(

F
LF

i+ 1
2

+ FRI

i+ 1
2

)

,

with F
LF

i+ 1
2

and F
RI

i+ 1
2

are expressed as

F
LF

i+ 1
2

=
1

2

[

F(Un
i ) + F(Un

i+1)
]

+
1

2

∆x

∆t

[

U
n
i − U

n
i+1

]

,

and

F
RI

i+ 1
2

= F(Ui+ 1
2
), U

RI

i+ 1
2

=
1

2

(

U
n
i + U

n
i+1

)

+
1

2

∆t

∆x

[

F(Un
i ) − F(Un

i+1)
]

·

The SLIC scheme has been validated thoroughly using single-
phase flow problems in, for example, gas dynamics [16]. Two-
phase flow validation has been carried out for wave propaga-
tion in gas, liquid and solid phases using the two-fluid models
and the current model, see for example [15, 19] and refer-
ences therein.

IV. COMPUTATIONAL EXAMPLES

In order to test the model equations presented in the pre-
vious section, numerical computations have been performed
by means of Godunov methods. More specifically, the accu-
racy and versatility of the proposed numerical model is inves-
tigated for three canonical two-phase flow test problems.
For test 1, the initial values are given as [11]:

(

α2, ρ2, u2, ρ1, u1

)

L =
(

0.01, 50,−100, 1000,−100
)

if x ≤ 0,
(

α2, ρ2, u2, ρ1, u1

)

R =
(

0.01, 50, 100, 1000, 100
)

if x > 0.

For test 2, the initial values are given as [6, 15]:

(

α2, ρ2, u2, ρ1, u1

)

L =
(

0.29, 10, 3800, 65, 1
)

if x ≤ 0,
(

α2, ρ2, u2, ρ1, u1

)

R =
(

0.3, 1, 1000, 50, 1
)

if x > 0.

For test 3, the initial values are given as [20]:

(

α2, ρ2, u2, ρ1, u1

)

L =
(

0.9, 719.6856, 150, 1225.8912, 150
)

if x ≤ 0,
(

α2, ρ2, u2, ρ1, u1

)

R =
(

0.9, 719.6856,−u2L
, 1225.8912,−u1L

)

if x > 0.

The following stiffened equation of state (EOS) is taken for
both the gas and liquid phases

P j = K j

(

ρ j

ρ̄ j

)γ j

− P∞,

where j = 2, 1 stands for the gas and liquid phases, respec-
tively, and γ j, K j, P∞ and ρ̄ j are constant parameters to be
specified for each test case. The three test problems are
solved in the special domain [−10, 10] using the total varia-
tion diminishing (TVD) slope limiter centre (SLIC) scheme.
Simulation results are depicted in figures 1-4. Since analyt-
ical solutions do not exist, we produce a high-resolution nu-
merical solution for system (1)-(3) to calculate the reference
solution for each test problem. For these reference solutions
we make use of the TVD SLIC scheme on a very fine mesh of
10000 cells. In all simulations, the CFL number taken as 0.9
along with transmissive boundary conditions using the SU-
PERBEE limiter within the SLIC scheme. Numerical results
are compared with both the reference solutions and with the
Lax-Friedrichs scheme, which is an explicit scheme that does
not require any approximate Riemann solver. The reference
solution is shown with a solid line while the symbols show
the numerical solutions in all test problems.
Test 1 is a commonly used cavitation problem, see e.g. [11].
In nuclear reactor systems, cavitation phenomena may take
place in conjunction with the starting or stopping of pumps
or the closure of valves [21], or be induced by the flow in
the coolant channels [22]. Numerical analysis of such phe-
nomena are directly valuable for both safety and monitoring
purposes. Test 1 is a modified version two-phase rarefaction
problem of [11] that includes a tube filled initially with 1%
dispersed gas among water at atmospheric pressure. Numer-
ical results are displayed in figure 1 at t = 1.826 ms using
the following EOS constant parameters for the gas and liquid
phases, respectively, γ2 = 1.4, ρ̄2 = 100.0 kg/m3, K2 = 100.0
Pa and P∞ = 0 and γ1 is the ratio of specific heat for the liquid,
P∞ and ρ̄1 are the reference pressure and density with values
of 2.8, 107 Pa and 100.0 kg/m3 and K1 = 700 Pa. From fig-
ure 1 one can see that both system (1)-(3) and the TVD SLIC
scheme can resolve the strong rarefaction waves well and sim-
ilar to the results presented in [11] at t = 1.826 ms. In figure 1
also one can note the difference when comparing the first first-
order numerical methods, first-order centered (FORCE) and
Lax-Friedrichs methods with the TVD SLIC scheme. The
agreement between the results provided by the three numeri-
cal methods with 100 mesh points and the reference solution
is good enough and oscillation-free throughout the complete
wave structure. The numerical results are in good agreement
with the results of [11], obtained using different two-phase
flow equations and numerical resolution. In particular, the
relative velocity profile appears in figure 1, provided using
the relative velocity equation (3), is in excellent agreement
with the reference solution through the complete wave struc-
ture. This profile is missing in [11].
Next we consider a mixture shock tube problem, Test 2,
which is an important application in nuclear safety analy-
sis [23]. Results are shown in figure 2 at t = 0.1 ms. Shock
wave propagation may, for example, occur in a nuclear re-
actor during a Loss of Coolant Accident (LOCA). This Rie-
mann problem is an extended version of a test constructed
in [6, 15]. The solution for this test case consists of a left
rarefaction wave, a right travelling contact discontinuity and
a right shock wave with the following EOS constant param-
eters, respectively, γ2 = 1.4, ρ̄2 = 1.0 kg/m3 and K2 = 1.0
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Fig. 1. Test 1. Cavitation problem in a gas-liquid mixture at time t = 1.826 ms. Three different numerical methods, namely the

TVD SLIC, FORCE and Lax-Friedrichs methods are compared with the reference solution results. Coarse meshes, symbols,

are provided on 100 cells and very fine meshes of 10000 cells for the solid lines. The relative velocity profile was not displayed

in [11].

Pa, P∞ = 0 Pa, and γ1, P∞, K1 and ρ̄1 are 2.8, 1 Pa, 1 Pa
and 1.0 kg/m3. One can see the complete wave structure is
resolved very well by the velocity non-equilibrium mixture
model and the TVD SLIC scheme. In particular, the model
in hand significantly compute the relative motion between
the gas and liquid flows without any added stability terms to
the governing equations. The relative velocity profile appear-
ing in figure 2 changes only discontinuously across the con-
tact discontinuity. Further, the performance of the numerical
methods and model equations are very satisfactory, all discon-
tinuities are sharp and oscillations-free. For this test problem,
the numerical results agree well with the reference solutions.
Among the three presented methods the TVD SLIC scheme is
shown to be more accurate leading to sharper and better pro-
files than the results obtained with the lower order methods
for gas-liquid mixture two-phase flow.
The final test problem consists of a symmetric colliding shock
waves and a trivial contact discontinuity proposed in [20] for
a currently used two-fluid mode of two compressible fluids.

The numerical results are shown in figure 3 at t = 0.0004 ms
with γ2 = 1.4, ρ̄2 = 1.0 kg/m3, P∞ = 0 Pa and K2 = 1 × 105

Pa, and γ1, P∞ and ρ̄1 are 7.15, 0 Pa and 1000.0 kg/m3 and
K1 = 3.03975 × 108. The shock-wave test case represents
a well-established way to investigate the inclination to pro-
duce oscillatory solutions for numerical schemes employed
in two-phase flow modelling [24, 25]. It is often used to test
numerical formulations for duct-like flow, such as two-phase
flow inside a pipeline. This flow situation is of high relevance
for nuclear reactor applications where the spatial discretiza-
tion, in general, usually relies on the assumption that the flow
is essentially one-dimensional. Such a one-dimensional treat-
ment of the two-phase mixture is typically justified by the
fact that the magnitude of the secondary flows existing in a
fuel assembly sub-channel is order of magnitude smaller than
the magnitude of the axial flow [4]. Thus, non-oscillatory so-
lutions in shock-wave test cases are regarded as appropriate
indicators of robust enough behaviour for application to more
realistic nuclear core simulations. The numerical solutions
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Fig. 2. Test 2. Gas-liquid two-phase shock tube problem at time t = 0.1 ms. Three different numerical methods using a coarse

mesh of 100 cells are compared with the reference solution on a very fine mesh of 10000 cells.

provided by the three different methods is compared with the
reference solution in this figure. Overall, one observe that
all the shock waves are accurately captured and located in
the correct position. Also, one can note that the mixture flow
density, mixture velocity and mixture pressure remain primar-
ily undisturbed whereas the relative velocity between the two
phase systems jump discontinuously across the middle wave
as observed in the previous test problems. Further, it is noted
that a visible unphysical kink or dip in the mixture density and
mixture pressure across the contact discontinuity in this test
problem but not the previous test problems. This unphysical
kink also becomes more noticeable in the TVD SLIC scheme
even with the reference solutions on a very fine mesh.
To get insight of this behaviour, we repeat the same test prob-
lem using Lax-Friedrichs scheme with a different number of
cells (a very coarse mesh of 50 cells, a coarse mesh of 500
cells, a fine mesh of 5000 cells and a very fine mesh of 10000
cells) using as shown in figure 4. The unphysical kink or
dip over the contact discontinuity for the mixture density and
mixture pressure is visible regardless of whether the mesh

is coarse or fine. Overall, there is an excellent agreement
between the Lax-Friedrichs scheme fine mesh with the refer-
ence solution. It is worth noting that this unphysical kink is
not related to the hyperbolic nature of the mixture equations
nor the conservative formulation. Such a behaviour may be
related to spurious mixture density perturbation which is a
well-known anomalies of hyperbolic systems [16]. However,
considerable research should be carried out to further investi-
gate how such unphysical kinks can appear in gas-liquid mix-
ture collision and its association with thermal-hydraulics two-
phase flows.

V. CONCLUDING REMARKS

A hyperbolic mixture model in conservative form is
presented. The model formulation accounts for the non-
equilibrium behaviour between the two phase systems and
guarantees that the relative velocity is expressed by a sepa-
rate equation. It is found that the model equations are suit-
able for Godunov-type methods without the need for a pos-
teriori numerical treatments. Further, the model equations
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Fig. 3. Test 3. Solution of the mixture model for the one-dimensional colliding shock waves problem at time t = 0.0004 ms.

are able to handle flows such as those encountered in Loss
of Coolant Accident (LOCA) and in other specific situations
arising in the framework of nuclear reactor systems. Com-
pared to other models existing in the literature, the model in
hand does not require any specific simplifications as indicated
by the numerical results. Further, the model and the methods
have been shown to be computationally efficient and robust,
the main advantage being that the model equations are solved
using mixture formulations. The robustness of the simulation
results indicates that the mathematical model and the associ-
ated numerical method may be extended in various ways to
address even more complex phenomena such as the stability
of dispersed bubbly gas-liquid flows in nuclear reactors. A
natural next step would for example be to extend the current
work to engineering simulations of nuclear reactors thermal-
hydraulics and multiphase flows research.
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7. H. Städtke, “Gasdynamic Aspects of Two-Phase Flow:



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

-10 -5 0 5 10

Position

770

770.5

771

771.5

772

M
ix

tu
r
e
 D

e
n

si
ty

Reference

50 Cells

500 Cells

5000 Cells

10000 Cells

-10 -5 0 5 10

Position

1.3

1.32

1.34

1.36

1.38

1.4

1.42

M
ix

tu
r
e
 P

r
e
ss

u
r
e

×10
11

Reference

50 Cells

500 Cells

5000 Cells

10000 Cells

Fig. 4. Mesh refinement study for Test 3: colliding shock waves. Results for the mixture density and mixture pressure:

calculated Lax-Friedrichs scheme (line symbols) and reference (solid line) at t = 0.0004 ms

Hyperbolicity, Wave Propagation Phenomena, and Re-
lated Numerical Methods,” (1st ed.), Weinheim: Wiley-
VCH (2006).

8. H. Ström, S. Sasic, k. Jareteg and C. Demaziere, “Be-
haviour and Stability of the Two-Fluid Model for Fine-
Scale Simulations of Bubbly Flow in Nuclear Reactors,”
Int. J. Chem. React. Eng., 13, 449-459 (2015).

9. D. Bestion, “Applicability of Two-Phase CFD to Nuclear
Reactor Thermalhydraulics and Elaboration of Best Prac-
tice Guidelines,” Nuclear Engineering and Design, 253,
11-321 (2012).

10. T. Vazquez-Gonzalez, A. Llor and Christophe Fochesato,
“Ransom test Results From Various Two-Fluid Schemes:
is enforcing hyperbolicity a thermodynamically consistent
option?,” International Journal of Multiphase Flow, 81,
104-112 (2016).

11. G.-S. Yeom and K.-S. Chang, Numerical Simulation of
Two-Fluid Two-Phase Flows by HLL Scheme Using an
Approximate Jacobian Matrix, Numerical Heat Transfer,
Part B, 49, 155-177 (2006).

12. Eric Goncalvès and Dia Zeidan, “Numerical Simulation
of Unsteady Cavitation in Liquid Hydrogen Flows,” Inter-
national Journal of Engineering Systems Modelling and
Simulation, 9, 41-51 (2017).

13. I. Peshkov and E. Romenski, “A Hyperbolic Model for
Viscous Newtonian Flows,” Contin. Mech. Thermodyn.,
28, 85-104 (2016).

14. E. Romenski, A.D. Resnyansky and E.F. Toro, “Con-
servative Hyperbolic Formulation for Compressible Two-
Phase Flow with Different Phase Pressures and Tempera-
tures,” Quart. Appl. Math., 65, 259-279 (2007).

15. D. Zeidan, “Assessment of Mixture Two-Phase Flow
Equations for Volcanic Flows using Godunov-type Meth-
ods,” Applied Mathematics and Computation, 272, 707-
719 (2016).

16. E.F. Toro, “Riemann Solvers and Numerical Methods
for Fluid Dynamics: A Practical Introduction,” (3rd ed.),

Springer (2009).
17. S.M. Monahan, V.S. Vitankar and R.O. Fox, “CFD Pre-

dictions for Flow-Regime Transitions in Bubble Columns,”
AIChE Journal, 51, 1897-1923 (2005).

18. K. Jareteg, P. Vinai, S. Sasic and C. Demazière, “Coupled
Fine-Mesh Neutronics and Thermal-Hydraulics - Model-
ing and Implementation for PWR Fuel Assemblies,” An-
nals of Nuclear Energy, 84, 244-257 (2015).

19. D. Zeidan, “The Riemann Problem for a Hyperbolic
Model of Two-Phase Flow in Conservative Form,” Inter-
national Journal of Computational Fluid Dynamics, 25,
299-318 (2011).

20. C.E. Castro and E.F. Toro, “A Riemann Solver and
Upwind Methods for a Two-Phase Flow Model in Non-
Conservative Form,” International Journal for Numerical
Methods in Fluids, 50, 275-307 (2006).

21. M. Souli, R. Messahel, B. Cohen and N. Aquelet, “Nu-
merical Investigation of Phase Change and Cavitation Ef-
fects in Nuclear Power Plant Pipes ,” 13th International
LS-DYNA Users Conference, Detroit, USA, 1-10 (2014).

22. R.F. Saxe and L.W. Lau, “Cavitation Noise in Nuclear
Reactors,” Nuclear Engineering and Design, 8, 229-240
(1968).

23. S.C. Sutradhar, “Shock Wave Propagation Through the
Pressure Tubes of a CANDU-type Nuclear Reactor,” PhD
thesis, McMaster University, Canada (1985).

24. M. Baudin, C. Berthon, F. Coquel, R. Masson and Q. H.
Tran, “A Relaxation Method for Two-Phase Flow Models
with Hydrodynamic Closure Laws,” Numerische Mathe-
matik, 99, 411-440 (2005).

25. S. T. Munkejord, S. Evje, T. Flatten, “The Multi-stage
Centred-Scheme Approach Applied to a Drift-Flux Two-
Phase Flow Model,” International Journal for Numerical
Methods in Fluids, 52, 679-705 (2006).


