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Abstract – Direct Numerical Simulation (DNS) serves as an irreplaceable tool to probe the complexities of 

multiphase flow and identify turbulent mechanisms that elude conventional experimental measurement 

techniques. The insights unlocked via its careful analysis can be used to guide the formulation and 

development of turbulence models used in multiphase computational fluid dynamics (M-CFD) simulations of 

nuclear reactor applications. Here, we perform statistical analyses of DNS bubbly flow data generated by 

Bolotnov (Reτ=400) and Lu & Tryggvason (Reτ=150), examining single-point statistics of mean and turbulent 

liquid properties, turbulent kinetic energy budgets, and two-point correlations in space and time. 

Deformability of the bubble interface is shown to have a dramatic impact on the liquid turbulent stresses and 

energy budgets. A reduction in temporal and spatial correlations for the stream-wise turbulent stress (uu) is 

also observed at wall-normal distances of y+=15, y/δ=0.5, and y/δ=1.0. These observations motivate the 

need for adaptation of length- and time-scales for bubble-induced turbulence models and serve as guidelines 

for future analyses of DNS bubbly flow data. 

 

 

I. INTRODUCTION  

 

Understanding and predicting the fundamental two-

phase flow and boiling heat transfer phenomena is 

instrumental to the thermal-hydraulic design and safety 

analysis of light-water reactors. Multiphase computational 

fluid dynamics (M-CFD) modeling techniques can be utilized 

to obtain predictions for these quantities. Such modeling 

approaches typically adopt the Eulerian-Eulerian two-fluid 

formulation [1] [2], which consists of solving a system of 

spatially and temporally averaged governing equations. By 

virtue of the averaging processes, additional terms arise that 

must be accounted for through prescription of suitable 

momentum and multiphase turbulent closure relations. The  

lack of consensus for the formulation of the multiphase 

turbulence closure relation comes as direct consequence of 

the incomplete understanding of the underlying physical 

phenomena. Therefore, before developing an advanced 

closure relation it is first necessary to identify the key 

multiphase turbulence mechanisms at play, which can be 

achieved by leveraging the volumes of statistics and data 

obtained from Direct Numerical Simulation (DNS) results. 

The canonical multiphase turbulence model comprises 

the single-phase transport equations (e.g. k-ε, k-ω, SST) 

scaled by the liquid volume fraction. Notable efforts have 

been made to develop bubble-induced turbulent closure 

relation source terms in the turbulent transport equations [3] 

[4] [5] [6] [7]; however, in most cases these additions lead to 

worse prediction than the original formulations, and it is 

common practice in the industry to neglect such terms 

entirely. An effective multiphase turbulence model must 

revert back to the single-phase equations in the absence of 

vapor volume fraction; consequently, when searching for 

multiphase turbulence mechanisms one must be cognizant of 

how to incorporate these features into the model equations. 

Quantities that become of interest include turbulent time- and 

length-scales, as well as the turbulent kinetic energy budgets. 

Experimental and DNS observations evidence several 

complex and interesting phenomena, associated with 

multiphase turbulence, that are lacking from current bubble-

induced turbulence model formulations. While interfacial 

interactions generally act to augment the liquid turbulence 

profile, in high liquid flux / low gas flux flows liquid 

turbulence suppression has been routinely observed [8] [9] 

[10] [11] [12]. Further, spectral analyses of the liquid energy 

spectrum performed experimentally [9] [13] [14] and through 

DNS [15] [16] reveal that the well-established inertial range 

-5/3 power law, intrinsic to single-phase flows, is modified to 

a value close to -3 in multiphase flows; this suggests the need 

for modification to the rates of energy transfer and turbulent 

time-scales. Inspection of the turbulent kinetic energy budget 

terms has shown the impact of local volume fraction and 

relative velocity on the resulting liquid turbulence profile 

[17], as well as demonstrated enhanced production through 
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interfacial interaction, followed by immediate dissipation 

[18]. 

DNS has the potential to serve as an invaluable tool to 

probe these processes in order to identify and understand the 

complex multiphase turbulence mechanisms of interest. By 

resolving all time- and length-scales of the turbulent flow, 

DNS unlocks the ability to compute advanced statistics for 

turbulent quantities, turbulent kinetic energy budget terms, 

and turbulent scales. While these methods are 

computationally expensive and require large run-times on 

supercomputers, the insights that they can offer can be used 

to guide the development of enhanced multiphase turbulence 

models. 

A great body of multiphase DNS has been performed for 

bubbly simulations of homogeneous flow [19] [20], parallel-

plate [16] [18] [21] [22] [23], pipe [16], and reactor sub-

channel geometries [16] [24]. Lu and Tryggvason [23] 

simulated over 100 bubbles in a vertical channel with 

Reτ=250 and demonstrated the formation of a core region in 

hydrostatic equilibrium with the wall layer. Bolotnov [21] 

simulated 60 bubbles in a vertical channel with Reτ=400 and 

examined the Reynolds stress components and resulting 

anisotropy distributions. More recently, advanced analysis 

techniques are beginning to be applied to bubbly flow 

simulations to improve understanding. Brown and Bolotnov 

[16] demonstrated the universality of the -3 power law in 

plate, pipe and reactor sub-channel geometries through 

frequency analysis of the energy spectrum using a linear 

interpolation between defective velocity signals. Santarelli et 

al. [18] performed a turbulent kinetic energy budget analysis 

of parallel plate geometry with Reτ~170 and 2,880 bubbles, 

demonstrating a balance between interfacial turbulent 

production and the dissipation term that is an order of 

magnitude larger than single-phase observations. Ma et al. 

[25] have applied machine learning neural network 

techniques to develop the framework for optimization of 

closure relations and terms for the two-fluid model equations.  

In this work, we examine DNS data presented by 

Bolotnov [21] and newly generated by Lu and Tryggvason in 

effort to identify multiphase turbulence mechanisms that can 

be used to inform the development of bubble-induced 

turbulent closure relations. Single-point statistics for mean 

and turbulent liquid quantities are first presented. Turbulent 

kinetic energy budget analyses for the production, dissipation, 

transport, and interfacial terms are then analyzed to trace how 

the multiphase flow influences the liquid turbulent kinetic 

energy distribution, and propagates through the equations. 

Next, two-point statistics are examined by computing auto-

correlations and spatial correlations of the stream-wise (x) 

fluctuating velocity, at three wall-normal distances (y+=15, 

y/δ=0.5, and y/δ=1.0), to assess the impact on the multiphase 

turbulence time- and length-scales, respectively. 

 

 

 

II. DESCRIPTION OF THE WORK 

 

The computational domain for both simulations involves 

a parallel-plate channel with no-slip conditions applied at the 

wall, and periodic boundary conditions applied in the stream-

wise (x) and span-wise (z) directions (Fig. 1). Table I 

summarizes the key computational parameters and fluid 

properties adopted in the simulations. Definitions for all 

variables are provided in the Nomenclature section. 

 

Table I. DNS Simulation Parameters   

Parameter   Lu & Tryggvason  Bolotnov  

Reference 

Name 
LT BOL 

Code custom PHASTA 

Domain Size 

(x,y,z) 
π x 2 x π/2 2π x 2 x 2π/3 

Mesh size 

(x,y,z) 
384 x 256 x 192 587 x 187 x 195 

Interface 

Resolution 
Front Tracking Level Set 

Reτ 150 400 

Re 16,000 29,350 

Eo 3.6 0.11 

UL 1.0 1.0 

ρL 1.0 1.0 

ρG 0.1 0.001208 

νL 0.00025 0.000136 

g 0.1 0.022 

Nb 21 60 

α 3.04% 1% 

Db/δ 0.3 0.25 

 

1. DNS Data Format 

 

A. Bolotnov 

 

For each PHASTA simulation in Bolotnov [21], 

numerical probes were used to record instantaneous flow 

quantities that include phase, pressure, velocity, and velocity 

gradients. These virtual probes were distributed along the 

span-wise (z) and wall-normal directions (y) at two stream-

wise (x) planar locations to gather sufficient statistics for 

calculation of the desired turbulent quantities (Fig. 1). 

In this work we examine the ensemble-averaged flow 

statistics of 1 single-phase case and 5 two-phase cases with 

different bubble initializations. The single-phase case   

spanned 10,062 time-steps, which corresponds to 633,906 

data points for each wall-normal (y) coordinate. Likewise, 

each two-phase run encompassed 6,036 time-steps, yielding 

1,901,340 data points for each y-coordinate. 
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Fig. 1. Simulation domain (right) and distribution of 

numerical probes in stream-wise plane for Bolotnov cases 

(left). Walls are shown as shaded areas and periodic 

boundaries denoted by dashes. 

   

A. Lu / Tryggvason 

 

Access to the entire spatial domain values for velocity, 

pressure, and density, recorded every one second of 

computational time, was available for the LT data. Forty-six 

such full domain snapshots were examined, corresponding to 

3,418,030 data points for each wall-normal (y) coordinate. 

Only two-phase data is examined here. 

 

2. Methodology 

 

By decomposing an arbitrary instantaneous quantity 

(𝑎𝑖,𝑘) into its mean (𝐴𝑖,𝑘
̿̿ ̿̿ ̿) and fluctuating (𝑎𝑖,𝑘

′ ) components it 

is possible to quantify the impact of turbulence on the flow 

profile. This phase-weighted average (𝐴𝑖,𝑘
̿̿ ̿̿ ̿) is computed as 

[26]: 

 

  𝐴𝑖,𝑘
̿̿ ̿̿ ̿ =

Φ𝑘𝐴𝑖,𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅̅

Φ𝑘̅̅ ̅̅̅
 (1) 

 

Here, Φk is the phase indicator function that describes the 

presence of phase k at a given point in space (x) and time (t): 

 

  Φ𝑘(𝒙, 𝑡) =  {
1        if (𝒙, 𝑡) is occupied by phase 𝑘
0       otherwise                                       

  (2) 

 

The single over-bar (    ̅ ) denotes a general averaging 

procedure with respect to time, space, or ensemble. In this 

study, such a quantity was computed by ensemble-averaging 

over a window of time-steps (tw) for all probes/data points (p) 

in the span-wise (z) and stream-wise (x) directions in order to 

achieve a single, unique value for each wall-normal (y) 

coordinate in the domain. Following this convention, the 

averaged phase indicator function (Φ𝑘
̅̅ ̅̅ ) at each y-coordinate 

was calculated as:  

 

  Φ𝑘
̅̅ ̅̅ (𝑦) =  

1

𝑁𝑝𝑁𝑤
∑ [∑ Φ𝑘(𝒙𝑝, 𝑡𝑤)

𝑁𝑤
𝑤=1 ]

𝑁𝑝

𝑝=1  (3) 

 

Note that this term is equivalent to the phase volume 

fraction (αk). 

 

A. Single-Point Statistics 

 

Using the methodology outlined above, the phase-

averaged single-point statistics for the mean velocity 

components (Ui) and turbulent Reynolds stresses (τij) are 

defined as: 

 

  𝑈𝑖,𝑘
 ̿̿ ̿̿ ̿(𝑦) =

1

𝛼𝑘(𝑦)𝑁𝑝𝑁𝑤
∑ [∑ Φ𝑘𝑢𝑖,𝑘

 𝑁𝑤
𝑤=1 ]

𝑁𝑝

𝑝=1  (4) 

 

  𝜏𝑖𝑗,𝑘
 ̿̿ ̿̿ ̿(𝑦) =

1

𝛼𝑘(𝑦)𝑁𝑝𝑁𝑤
∑ [∑ Φ𝑘𝑢𝑖,𝑘

′ 𝑢𝑗,𝑘
′ 𝑁𝑤

𝑤=1 ]
𝑁𝑝

𝑝=1  (5) 

  

Note that all quantities in the summation terms above are 

functions of space and time (xp, tw), and this notation has been 

omitted here for clarity. Lastly, the phase-averaged turbulent 

kinetic energy (k) is obtained by taking one half of the trace 

of the Reynolds stress tensor: 

 

  𝑘𝑘
̿̿ ̿(𝑦) =

1

2𝜌𝑘
𝜏𝑖𝑖,𝑘

 ̿̿ ̿̿ ̿(𝑦) (6) 

 

B. Turbulent Kinetic Energy Budgets 

 

For a fully-developed flow, the turbulent kinetic energy 

budget equation is defined as [3]: 

 

  0 = 𝑃 + 𝜖 + 𝐶 + 𝐼 (7) 

 

Analogous to the single-phase equations, the first three 

terms on the right-hand side denote liquid contributions to the 

turbulent kinetic energy budget by production (P) due to 

liquid shear, dissipation (ε) by viscosity, and diffusive 

transport (C) via viscous, pressure, and turbulent processes. 

The final term (I) represents the interfacial transport of 

turbulent kinetic energy arising from velocity fluctuations at 

the phase-boundary interface, which is grouped into pressure 

and viscous contributions. These four budget terms are 

calculated by applying the phase-weighted ensemble-

averaging methodology outlined above and are defined 

below (note the omission of subscript L denoting the liquid 

phase for the sake of clarity here):  

 

  𝑃 =  −𝛼 𝑢𝑖
′𝑢𝑗

′̿̿ ̿̿ ̿̿ 𝜕𝑈𝑖̿̿ ̿

𝜕𝑥𝑗
 (8) 

 

  𝜖 =  − 2𝛼𝜈 
𝜕𝑢𝑖

′

𝜕𝑥𝑗
 
𝜕𝑢𝑖

′

𝜕𝑥𝑗

̿̿ ̿̿ ̿̿ ̿̿ ̿
 (9) 

 

  𝐶 =
1

𝜌

𝜕(𝛼𝑢𝑖
′𝜏𝑖𝑗

′̿̿ ̿̿ ̿̿ ̿)

𝜕𝑥𝑗
−

1

𝜌

𝜕(𝛼𝑝′𝑢𝑖
′̿̿ ̿̿ ̿̿ ̿)

𝜕𝑥𝑖
−

1

2

𝜕(𝛼𝑢𝑖
′𝑢𝑖

′𝑢𝑗
′̿̿ ̿̿ ̿̿ ̿̿ ̿̿ )

𝜕𝑥𝑗
 (10) 
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  𝐼 =  −
1

𝜌
𝑝 

′𝑢𝑖
′𝑛𝑖𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ +

1

𝜌
𝜏𝑖𝑗

′ 𝑢𝑖
′𝑛𝑗𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅   (11) 

 

 Here, ni is the outward normal vector emanating from the 

phase-boundary interface, S is the interfacial area 

concentration, and τij’ is the fluctuating component of the 

viscous stress tensor (different from the Reynolds stress 

tensor): 

 

  𝜏𝑖𝑗
′ = 𝜈 (

𝜕𝑢𝑖
′

𝜕𝑥𝑗
+

𝜕𝑢𝑗
′

𝜕𝑥𝑖
) (12) 

 

 Only the production and dissipation terms can be 

computed for the BOL cases as the numerical probe data is 

distributed among two planes normal to the stream-wise 

direction and therefore does not have sufficient spatial 

resolution to compute the requisite gradients of the turbulent 

quantities; however, as the LT case comprises data spanning 

the entire spatial domain, it is indeed possible to compute the 

transport (C) and interfacial (I) terms using a centered 

difference gradient calculation scheme. The quantity niS was 

approximated by computing the gradient of the phase 

indicator function using the expression derived by Kataoka et 

al. [27]: 

 

  
𝜕𝛷

𝜕𝑥𝑖
= −𝑛𝑖𝑆 (13) 

 

C. Two-Point Statistics 

 

 The two-point correlation function quantifies the 

relationship between fluctuating velocity components that are 

separated temporally (Eq. 14) or spatially (Eq. 15). When the 

magnitude of separation is zero, the correlation is unity, and 

ultimately tends to zero as the separation distance is increased. 

  

  𝑅𝑖𝑗(𝜏)  =
𝑢𝑖

′(𝑡)𝑢𝑗
′(𝑡+𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑢𝑖
′(𝑡)̅̅ ̅̅ ̅̅ ̅𝑢𝑖𝑗

′ (𝑡)̅̅ ̅̅ ̅̅ ̅̅  (14) 

 

  𝑅𝑖𝑗(𝒙) =
𝑢𝑖

′(𝒙)𝑢𝑗
′(𝒙+𝒓)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑢𝑖
′(𝒙)̅̅ ̅̅ ̅̅ ̅̅ 𝑢𝑗

′(𝒙)̅̅ ̅̅ ̅̅ ̅̅  (15) 

  

 Integration of the auto-correlation curve provides an 

estimate for the integral time-scale of turbulence (Eq. 16). 

Correspondingly, integration of the area under the spatial 

correlation curve provides an estimate for the integral 

turbulent length-scale (Eq. 17), which describes the size of 

the largest turbulent eddies present in the flow. Computation 

of the integral was carried out until the first zero was reached 

or if a local minimum was reached. 

 

  𝑇 = ∫ 𝑅(𝑡′)𝑑𝑡
∞

0
 (16) 

 

  𝐿 = ∫ 𝑅(𝑥′)𝑑𝑥
∞

0
 (17) 

 

III. RESULTS 

 

A side by side examination of the Bolotnov (BOL) and 

Lu/Tryggvason (LT) data for the turbulent quantities outlined 

above is performed here, to facilitate comparison between 

runs. When applicable, results are compared alongside with 

the Kasagi single-phase database for the same Reτ [28]. 

 

1. Single-Point Statistics  

 

The stream-wise liquid velocities—normalized by the 

friction velocity (uτ)—and gas volume fraction (αG) as a 

function of wall-normal distance (y) are plotted in Fig. 2. As 

can be seen, the BOL two-phase cases exhibit a wall-peaked 

volume fraction distribution whereas the LT case is center-

peaked, a direct consequence of the imposed Eӧtvӧs number 

(Table I). Both the BOL and LT cases display a reduction in 

the liquid velocity by comparison to its single-phase profile. 

 

 

 
 

Fig. 2. Liquid mean velocity and gas volume fraction profiles 

for BOL (top) and LT (bottom) data. 

 

The turbulent Reynolds stresses (uu, vv, ww, and uv) 

normalized by the square of the friction velocity (uτ
2) are 

plotted in Fig. 3. The BOL two-phase data show only 

moderate augmentation of these terms in the near-wall region, 

with no appreciable impact in the center of the channel. 

Conversely, the LT data show a dramatic augmentation of all 

four Reynolds stress components throughout the entirety of 

the domain.  
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Fig. 3. Liquid turbulent Reynolds stresses for BOL (top) and 

LT (bottom) data. 

 

2. Turbulent Kinetic Energy Budgets  

 

The turbulent kinetic energy budgets (normalized by 

uτ
4/ν) are presented in Fig. 4. For the BOL data, it is only 

possible to examine the production (P) and dissipation (ε) 

terms, due to the nature of the numerical probe data 

distributed at a select number of locations. The two-phase 

data show a slight increase in production due to liquid shear 

in the near-wall region, with minimal impact everywhere else 

in the domain. 

Analysis of the LT case reveals a more dramatic 

modification of the turbulent kinetic energy budgets. A 

reduction in production throughout the domain is observed, 

with minimal impact on transport. There is a considerable 

increase in dissipation, which is balanced by the interfacial 

term in the bulk of the flow. Lastly, a residual term (Res) is 

also plotted to assess the balance of these four mechanisms 

(P+ε+C+I). This sum should approach zero given sufficient 

statistics and proper calculation of the budget terms (Eq. 7). 

In the bulk of the flow the Res term does indeed approach 

zero; however, when approaching the wall this residual error 

term increases, which implies that additional statistics are 

needed. Simulations remain underway to continue gathering 

statistics for these terms. 

The prescribed Eӧtvӧs number (ΔρgDb
2/σ) is the primary 

difference between the BOL and LT cases. This term ranks 

the relative strengths of buoyancy and surface tension, with 

low values characterizing spherically shaped bubbles and 

higher values describing higher degrees of bubble 

deformability. The LT case is characterized by highly 

deformable bubbles (Eo = 3.6) whereas the BOL case has 

spherical bubbles (Eo = 0.11); it would therefore appear that 

the malleability of the phase-boundary interface imparts 

stronger fluctuations onto the liquid velocity components and 

their gradients, thereby augmenting these interfacial and 

dissipation terms. This observation further suggests that 

bubble deformability leads to a new quasi-equilibrium 

balance between interfacial transfer and dissipation 

mechanisms, which represents a transition from the 

production and dissipation balance intrinsic to single-phase 

flows. 

 

 

 

 
 

Fig. 4. Liquid turbulent kinetic energy budgets for BOL (top) 

and LT (bottom) data. 

 

3. Two-Point Statistics  

 

Two-point spatial and temporal correlations for uu at 

wall-normal distances of y+=15, y/δ = 0.5, and y/δ =1.0 are 

examined here for the BOL and LT cases. The three-step 

process of (1) computing the correlation for each probe at a 

given wall-normal distance, (2) ensemble-averaging to yield 

a single representative curve, and (3) integrating to obtain an 

estimate for the turbulent scale is showcased in Fig. 5, where 

the auto-correlation of uu at y+=15 for the BOL data is 

examined. As can be seen, the two-phase auto-correlation 
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curves (colored in gray) exhibit a much larger deviation in the 

behavior between numerical probes, which brings into 

question the validity of this approach and warrants further 

evaluation. 

 

 

 
 

Fig. 5. Process for calculation of auto-correlation and integral 

time-scale at y+=15 for BOL single-phase (top) and two-

phase (bottom) cases. The gray curves denote auto-

correlation for each probe, with the blue curve being the 

ensemble-averaged result used to compute the time-scale (T). 

 

A. Temporal Correlations 

 

 The ensemble-averaged auto-correlation profiles for uu 

evaluated at y+=15, y/δ = 0.5, and y/δ =1.0 are shown in Fig. 

6 for the BOL data. Both the single- and two-phase cases 

display the trend of curves decreasing with increasing wall 

separation, with the two-phase cases slightly reduced by 

comparison to the single-phase values. These observations 

suggest a small reduction in the integral times-scale, which is 

physically justified by the interaction of the bubbles with the 

liquid velocity profile. 

 

B. Spatial Correlations  

 

 The ensemble-averaged spatial correlation profiles for 

uu evaluated at y+=15, y/δ = 0.5, and y/δ =1.0 in the span-

wise (z) direction are shown in Fig. 7 for the BOL and LT 

data. Comparing across y-coordinate values, one observes the 

general trend of the correlation curves to increase with wall-

normal distance; this finding is consistent with the presence 

of larger turbulent structures in the bulk of the flow. 

The BOL cases show negligible difference between 

single- and two-phase cases at y+=15. However, at y/δ = 0.5 

and y/δ =1.0 the BOL two-phase results begin to deviate from 

their single-phase counterparts at a spatial separation (Δz/δ) 

near 0.3, as evidenced by a reduction in their curves that 

attain a more negative value; it is worth noting that this spatial 

separation is slightly larger than one bubble diameter.  

A reduction in the two-phase curves is observed for all 

three wall-normal distances for the LT case. The curves show 

larger oscillations than what is observed with the BOL data, 

which is attributable to the insufficient statistics. 

Since data for the entire domain are available for the LT 

case, it is possible to further examine the spatial correlation 

in the stream-wise direction. Inspection of Fig. 8 reveals that 

increasing wall distance leads to a reduced correlation curve, 

which is opposite to the trend observed in the span-wise 

direction. This seemingly contradictory phenomena arises 

from the fact that long, narrow turbulent streaks and rolls are 

generated at the wall by liquid shear; as these structures are 

ejected from the wall into the bulk, they subsequently break 

up into smaller structures in the stream-wise direction, while 

simultaneously spreading out in the span-wise direction. 

 As with the span-wise direction, the stream-wise two-

phase correlation curves are reduced by comparison to their 

single-phase values. This is observed for all three wall-

normal distances and is most noticeable in the center of the 

channel (y/δ =1.0) where there the highest bubble 

concentration is observed (Fig. 2). Again, the curves exhibit 

some fluctuations, which suggests insufficient statistics for 

converged steady-state analysis. This simulation is ongoing 

and results will be updated upon receipt of additional data. 

In summary, the reduction in the spatial correlation for 

uu in the stream-wise and span-wise directions for the two-

phase DNS cases signifies a reduction in the integral length-

scale of turbulence. This observation is expected, and it is 

attributed to the interfacial interactions between bubbles and 

the liquid phase. 

 

 
Fig. 6. Ensemble-averaged auto-correlation curve for uu at 

y+=15, y/δ = 0.5, and y/δ =1.0 for BOL data.  
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Fig. 7. Span-wise spatial correlations of uu at y+=15, y/δ = 

0.5, and y/δ =1.0 for BOL (top) and LT (bottom) data.  

  

 
 

Fig. 8. Stream-wise spatial correlations of uu at y+=15, y/δ = 

0.5, and y/δ =1.0 for LT data. 

 

IV. CONCLUSIONS 

 

Examination of bubbly flow DNS data generated by 

Bolotnov (BOL) and Lu/Tryggvason (LT) suggests that 

bubble deformability at the phase-boundary interface serves 

an important role in the liquid turbulent kinetic energy profile. 

Inspection of the turbulent stresses for BOL (spherical 

bubbles) shows slight augmentation in the near-wall region, 

whereas LT (deformable bubbles) shows dramatic 

augmentation throughout the domain.  

Analysis of the turbulent kinetic energy budget terms 

further supports this notion, wherein the BOL two-phase 

production and dissipation terms show minimal deviation 

from their single-phase values. On the other hand, the LT 

two-phase data exhibit a considerable reduction in production, 

and a dramatic increase in dissipation that is in balance with 

the interfacial transfer term in the bulk of the flow. Together, 

these observations suggest that the quasi-equilibrium 

turbulent kinetic energy balance between production and 

dissipation that is intrinsic to single-phase flows undergoes a 

transition to form a new balance between interfacial transfer 

and dissipation. This observation has also been confirmed 

experimentally [17] and in previous numerical studies [18]. 

Reduction of the two-phase temporal and spatial 

correlation curves, calculated at three wall-normal distances, 

further implies the reduction of turbulent length- and time-

scales. This latter statement will require further confirmation, 

as the DNS data for the LT case still had insufficient statistics, 

which led to fluctuations in the computed curves. This 

simulation is ongoing and the results and analysis will be 

updated accordingly. 

The observations brought forward in this work provide 

the base to support the development of M-CFD turbulence 

models through modification and scaling of the bubble-

induced turbulent source terms, which arise in both the k and 

ε transport equations. Future DNS research endeavors will 

investigate the individual tensor components of the budget 

terms, in addition to expanding the parameter space by 

further examination of the Reτ and Eo impact the liquid 

turbulent profile. 

 

NOMENCLATURE 

 

g  = gravity  

i   = velocity / tensor component 

j   = velocity / tensor component 

k  = phase / turbulent kinetic energy 

n  = direction normal to phase interface 

p  = pressure / probe index 

r  = spatial separation  

tw  = time-step 

uτ  = friction velocity 

x = position 

 

C  = transport of turbulent kinetic energy 

Db   = bubble diameter 

Eo  = Eӧtvӧs number 

G    = gas phase 

I  = interfacial transfer of turbulent kinetic energy 

L    = liquid phase 

P  = production of turbulent kinetic energy 

Nb   = number of bubbles in domain 

Np  = number of probes/data points in averaging window 

Nw  = number of time-steps in averaging window 

Re  = Reynolds number 

Reτ  = Reynolds number based on friction velocity 
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S     = interfacial area concentration 

 

α  = volume fraction 

δ  = channel half-width 

ε  = dissipation of turbulent kinetic energy 

ρ  = density 

Φ   = phase indicator function 

τ  = increment in time 

τij   = Reynolds stress tensor 

τij'  = fluctuating viscous stress tensor 

ν = kinematic viscosity 
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