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Abstract – In deterministic reactor core analysis, verification of multigroup cross sections calculated from 

a problem-independent multigroup library often requires substantial efforts. When discrepancies between 

the results of the deterministic code and the reference solution occur, it is often lack of useful information 

(mostly only keff and power distribution) for a library developer to identify the potential issues of an existing 

cross section library and the associated resonance self-shielding methods. In the verification and validation 

of the CASL neutronics code MPACT, such difficulties occur when the cross section library or methods are 

updated or to be used for new applications. To reduce the verification efforts, it is crucial to develop an 

eigenvalue analysis tool that is able to quickly pinpoint the eigenvalue error in regard to an isotope, a 

reaction channel and an energy group. This paper discusses two candidate methods for eigenvalue analysis, 

i.e., perturbation method and neutron balance method. The two methods are implemented into MPACT 

V&V and the difference between the two methods is discussed. The applications of using eigenvalue 

analysis to improve the energy group structure and to compare the resonance methods are also presented. 

  

I. INTRODUCTION 

 

In deterministic reactor core analysis, the multigroup 

(MG) theory is usually applied to treat the energy 

complexity of cross sections. A number of physical and 

mathematical approximations have been used in this process 

[1], so the accuracy of a deterministic neutron transport 

code is largely depending on the quality of the MG cross 

section library and the associated resonance self-shielding 

method. In general, the MG cross section library and 

resonance method are verified against benchmark problems 

from Monte Carlo calculation. However, assessing a MG 

library by the commonly interested core parameters such as 

reactivity and power distribution is often insufficient. In 

order to locate the error source of a biased eigenvalue, the 

following question is often raised: which isotopes, reaction 

channels and energy groups contribute most to the 

eigenvalue bias? A quick and precise answer to this question 

will help developers to identify the deficiency of the cross 

section library for further improvement.   

In the verification and validation (V&V) of the CASL 

neutronics code MPACT [2], the previously released 47-

group cross section library shows a few issues in obtaining 

consistent results as compared to the continuous-energy 

(CE) Monte Carlo solution [3]. Recently, the procedure of 

generating MPACT MG library has been reviewed in Oak 

Ridge National Laboratory, and a few new versions of 

MPACT libraries are generated to improve the results of 

PWR and BWR problems [4,5]. To reduce the verification 

efforts for updates of the cross section library and method, it 

is crucial to develop an eigenvalue analysis tool to quickly 

answer the foregoing question, i.e., pinpointing the 

eigenvalue error in regard to an isotope, a reaction channel 

and an energy group. This paper describes the candidate 

methods for the analysis tool and its integration into the 

MPACT V&V. An initial set of problems has been 

developed to demonstrate the analysis tool. The applications 

of using the eigenvalue analysis to improve the energy 

group structure and compare the resonance methods are also 

presented. 

 

II. THEORY 

 

Eigenvalue analysis aims at converting the multigroup 

cross section error into the eigenvalue error between the 

results of a deterministic code and Monte Carlo reference. 

Two candidate methods are discussed in this section, 

perturbation method and neutron balance method [6].  

 

1. Perturbation method 

 

A common application of the perturbation theory is to 

predict the change in eigenvalue due to the small 

perturbation of a reactor. Previously, the perturbation theory 

has been widely used for cross section sensitivity analysis 

[7]. In this paper, a similar approach is taken to verify the 

generation of MG cross section. The neutron balance 

equation of a base problem and a perturbed problem are 

defined as, 
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where F  is the operator of fission and M includes the other 

non-fission terms.   is the reverse of the reactor 
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multiplication factor effk . In our case, the small 

perturbation M  and F  can be viewed as the error of 

MG cross section from the deterministic calculation to the 

Monte Carlo calculation. Using the first-order perturbation 

theory [8], one can obtain the eigenvalue change due to the 

error of MG cross section without solving the perturbed 

neutron balance equation, 

 
* 2

*

( )k F k M
k

F

      
 

   
                    (2) 

 

where    denotes the integration over all phase spaces. In 

Eq. (2), * is the adjoint flux that obeys the equation, 

 

 
* * * *M F                               (3) 

 

To obtain the eigenvalue error from a material region j, 

isotope i and energy group g, one can write out the 

components of Eq. (2), 

 
* *

', , ', , , , ,

'

g i j g j f g i j g j j

j i g g

F V           (4-a) 

 
* *

, , , , , , ', , ',, , ,

'

( )fiss test ref
g i j j g j f g i j g i j g jf g i j

g

k F kV                  

(4-b) 

 
* 2 2 *

, , , , , , , , , ,( )abs test ref
g i j j g j g j a g i j a g i jk M k V             (4-c) 

 
* 2 2 *

, , , , , , , , , , , ,

2 *
, , , ' ',, , '

'

( )

( )

scat test ref
g i j j g j g j s tr g i j s tr g i j

test ref
j g j s tr g g g js tr g g

g

k M k V

k V

 

  

       

    (4-d) 

 

In these equations, the superscripts test and ref denote the 

deterministic and Monte Carlo cross sections. The transport 

corrected P0 is used in Eq. (4-d) for brevity. Note the 

leakage term in operator M is omitted since the eigenvalue 

analysis is usually performed for an infinite pin cell or 

lattice with reflective boundaries. By using Eq. (4), k due 

to fission, absorption and scattering cross section errors can 

be evaluated as (4-b)/(4-a), (4-c)/(4-a) and (4-d)/(4-a), 

respectively. 

Assuming the deterministic solver is consistent with the 

Monte Carlo solver if the consistent MG cross section ( M  

and F ) are provided, three options are possible for obtaining 

the forward and adjoint flux in Eq. (4), 

 

1. Deterministic method with Monte Carlo tallied cross 

section. Perform Monte Carlo calculation and tally MG 

1-D cross sections and scattering matrices. Using these 

cross sections to set up M  and F  (and thus *M  

and *F ), solve the forward and adjoint equations with 

the deterministic solver. 
2. Deterministic method with deterministic cross section. 

Compute MG cross sections using the MG library and 

resonance methods by the deterministic solver. Solve 

the forward and adjoint equations using deterministic 

solver. 

3. Monte Carlo method with deterministic cross section. 

Compute MG cross section using MG library and 

resonance methods by the deterministic solver. Perform 

MG Monte Carlo forward and adjoint calculations 

using these MG cross sections. 

The difference between Options 1 and 2 is the base case 

(either using the reference cross section from Monte Carlo, 

or the cross section from deterministic calculation). Option 

2 is easier to achieve since generating the isotopic scattering 

matrices is not a common capability for most Monte Carlo 

codes. Instead of using the deterministic solver in Option 2, 

Option 3 uses the Monte Carlo solver with the multigroup 

cross section. If the adjoint capability is available in the 

Monte Carlo code rather than the deterministic code, Option 

3 can be considered.  

In this paper, Option 2 is chosen by taking advantage of 

the MOC adjoint capability in MPACT [9,10]. The 

multigroup forward and adjoint transport equations are 

written as 
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where g  and 
*

g  are the forward and adjoint angular flux, 

and all other symbols are standard in the neutron transport 

equation. By changing the variable *( , ) ( , )g gr r     

and setting     in Eq. (5-b), the only difference 

between (5-a) and (5-b) is the source term, where the 

scattering matrix is reversed and the nu-fission cross section 

is exchanged with the fission spectrum. Therefore, the same 

MOC solver can be used to solve both (5-a) and (5-b).  
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2. Neutron balance method 

 

The neutron balance method for eigenvalue analysis 

was previously introduced to verify a cross section library 

[6]. Considering a case with reflective boundary, the 

eigenvalue can be written as the ratio of neutron production 

to the neutron absorption, 
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In Eq. (6), , ,i j g are the indices of isotope, material region 

and energy group, respectively. Similar to the perturbation 

method, the leakage term is not needed because of the 

reflective boundary conditions in our applications. 

Estimation of the infk  error due to an isotopic reaction rate 

error of group g is given as, 
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  (7) 

 

All the quantities of Eqs. (6) and (7) except the R  term are 

from the reference calculation. The R  term can be defined 

as the reaction rate error between test and reference results, 
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Ref. [6] also includes another definition of R  to isolate the 

cross section error by using the reference flux, 
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Rigorously speaking, neither of the two definitions are 

the true error introduced by the discrepancy of 1-D cross 

section of group g. Eq. (8) produces the infk  error of group 

g due to both errors of cross section and flux, where the 

latter is also dependent on the scattering matrix. 

Unfortunately, scattering matrix cannot be assessed with the 

neutron balance method. Eq. (9) produces the infk  error due 

only to the cross section error, but identical fluxes between 

Monte Carlo and deterministic results are assumed. This 

assumption is questionable, since the 1-D cross section error 

could more or less affect the flux. Comparison of the two 

definitions of the neutron balance method and the 

perturbation method is performed in Section III.1. 

 

III. NUMERICAL RESULTS 

 

The two eigenvalue analysis methods are implemented 

into the MPACT V&V suite. To minimize the manual 

efforts and assure the extendibility of the tool, HDF5 data 

[11] is used to facilitate the data transition and comparison. 

A uniform data structure is defined to store the effective 

cross section (absorption, nu-fission, scattering and fission 

spectrum), flux, adjoint flux, core geometry and material 

composition. This allows the analysis to be extended to any 

two codes by implementing an edit routine for each code 

with the uniform HDF5 data structure. Currently, we’ve 

implemented the edit routines for MPACT and MCNP [12]. 

Future plan is to include SHIFT [13] and KENO [14] as 

alternative reference solutions. 

The analysis script takes two HDF5 files for 

comparison. All quantities (flux, cross section, etc.) are 

saved in a mesh defined by the material regions of a 

geometry configuration, but one can choose to perform the 

analysis either for the predefined mesh, or for an integrated 

coarse mesh (e.g., integrated over subdivided fuel rings). In 

the rest of this section, the tool is first demonstrated by 

comparing the analysis methods discussed in Section II. 

Then a few group structures and resonance methods are 

examined with the tool. 

 

1. Demonstration of the tool 

 

As shown in Table I, the tool is demonstrated by 

analyzing a set of 2-D pin cell problems that cover the 

issues found in the past versions of MPACT libraries [3]. A 

beta version of the MPACT 51-group library is used with 

the subgroup method to obtain the deterministic results. The 

MCNP calculations are performed with reaction rate tallies 

in the same group structure. 40 million neutron histories are 

used for each run to ensure that the statistic errors of keff for 

all group-wise reaction rates are well within 0.1%. These 

reaction rates are then converted to effective cross sections. 

Three levels of results are generated with various 

details to help the developer identify the potential issues in a 

cross section library and associated resonance methods. The 

first level presents the overall information, as shown in 

Table II. The cases with large eigenvalue bias can be 

identified from the column of ‘dk’. The column of ‘dk-RR’ 

shows the total eigenvalue error from the neutron balance 

method by summing the reaction rate errors obtained from 

Eqs. (7) and (8) over all energy groups, isotopes and 

material regions. ‘dk-RR’ should be essentially equal to 

‘dk’, since summation of the reaction rate errors 

approximately preserve the overall eigenvalue error. 
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Table I Pin cell problems of the initial test 

# Case ID Description 

1 3.1% PWR1 with 3.1% U-235 

2 2.1% 2.1% U-235 

3 4.1% 4.1% U-235 

4 293.6K Cold condition, TF
2=293.6K, TC=293.6K 

5 600K TF=600K, TC=600K 

6 1200K TF=1200K, TC=600K 

7 B600 Boron 600ppm 

8 B1300 Boron 1300ppm 

9 Bwr-0 BWR3 with 0 void fraction 

10 Bwr-50 BWR with 50 void fraction 

11 Bwr-70 BWR with 70 void fraction 

12 Bwr-90 BWR with 90 void fraction 

13 Burn-0 Fresh PWR pin cell 

14 Burn-001 PWR pin cell depleted at 0.1GWD/tU 

15 Burn-20 PWR pin cell depleted at 20GWD/tU 

16 Burn-40 PWR pin cell depleted at 40GWD/tU 

17 Burn-60 PWR pin cell depleted at 60GWD/tU 

1 PWR pin cells are derived from Watts Bar Unit 1 Cycle 1 

17×17 assembly. 

2 TF and TC are temperatures of fuel and coolant.  

3 BWR pin cells are derived from Peach Bottom-2 BWR/4 7×7 

assembly. 

 

Table II Results of Level 1 analysis 

# Case ID keff-Ref keff-Test dk (pcm) dk-RR(pcm) 

1 3.1% 1.29875 1.29876 1 11 

2 2.1% 1.21284 1.21234 -50 -37 

3 4.1% 1.34866 1.34904 38 49 

4 293.6K 1.39633 1.39525 -108 -102 

5 600K 1.31051 1.31096 45 58 

6 1200K 1.28904 1.28840 -64 -64 

7 B600 1.23718 1.23749 31 31 

8 B1300 1.17365 1.17403 38 39 

9 Bwr-0 1.32950 1.32692 -258 -265 

10 Bwr-50 1.16130 1.16067 -63 -67 

11 Bwr-70 1.01791 1.01851 60 71 

12 Bwr-90 0.77229 0.77621 392 389 

13 Burn-0 1.24733 1.24757 24 32 

14 Burn-001 1.20427 1.20572 145 139 

15 Burn-20 1.00176 1.00551 375 379 

16 Burn-40 0.88061 0.88392 331 325 

17 Burn-60 0.80622 0.80894 272 291 

 

The second level of analysis presents the eigenvalue 

bias contributed by each isotope in every cell (material 

region). Table III shows the results of Case 4, by which the 

‘problematic’ isotopes can be quickly identified. We denote 

the neutron balance method as MRR and MXS by using Eqs. 

(7)+(8), and Eqs. (7)+(9), respectively. The perturbation 

method is denoted as MPUR. The cross section errors 

computed by MXS and MPUR have large discrepancies from 

the reaction rate errors of MRR, which are due to both 1-D 

cross section and flux (including the error of scattering 

matrix). Most values between MXS and MPUR are close, 

except for U-238 absorption, which will be explained by the 

results of the third level. 

 

Table III Results of Level 2 analysis (pcm) 

Cell* Isotope 
Abs- 
MRR 

Nufiss- 
MRR 

Abs- 
MXS 

Nufiss- 
MXS 

Abs- 
MPUR 

Nufiss- 
MPUR 

0 8016 -5 0 -4 0 -3 0 

0 1001 45 0 45 0 46 0 

1 40090 -4 0 -3 0 -3 0 

1 40091 -1 0 0 0 0 0 

1 40092 2 0 3 0 2 0 

1 40094 2 0 2 0 1 0 

1 40096 4 0 3 0 3 0 

2 8016 0 0 0 0 0 0 

3 92235 122 -220 506 -765 525 -791 

3 92238 31 -76 480 -12 278 -9 

3 8016 -1 0 -3 0 -3 0 

Sum 194 -296 1029 -776 845 -800 

Abs+Nufiss -102 253 45 

True error -108 

*The cell index starts from moderator 

 

Group-dependent eigenvalue errors can be viewed from 

the results of the third level, as shown in Figs. 1 and 2. In 

each figure, the upper plot shows the reference absorption 

and nu-fission cross section, and the lower plot shows the 

eigenvalue error per energy group (rather than per lethargy). 

To improve the cross section library, extra efforts should be 

made to the ‘hot spots’ where large eigenvalue errors occur, 

e.g., the U-238 resonance cross sections and U-235 thermal 

cross sections. From Fig. 1, the error of U-238 6.67eV 

absorption predicted by MPUR is much smaller than MXS. In 

this group, the absorption cross section is underestimated by 

MPACT (positive eigenvalue error). Since MXS uses the 

reference flux from MCNP, the change of flux due to the 

biased cross section is not considered. MPUR is able to 

capture this effect by adjoint flux weighting. As shown in 

Fig. 3, the adjoint flux in the fuel region is much smaller 

around 6.67eV.  

It is observed from Table III that MXS and MPUR do not 

preserve the true eigenvalue error from MPACT to MCNP. 

Currently, MCNP cannot generate isotopic scattering 

matrices. If this capability is available, MPUR can be 

improved to preserve the true eigenvalue error by assessing 

the scattering matrices, but MXS cannot. As the neutron 

balance equation is used in MRR, the true eigenvalue error is 

automatically preserved, but the group-wise reaction rate 

errors obtained in MRR come from a mixed effect of both 1-

D and 2-D cross sections (not an isolated error for 

absorption or nu-fission). In spite of the limitations for MRR 

and MXS, they can be utilized to perform a ‘quick and 

rough’ judgement until the scattering matrix assessment is 

available in MPUR. In the next two subsections, MRR and 

MXS will be used to evaluate a few group structures and 

resonance methods. 
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Fig. 1 Group-wise eigenvalue error of U-238 

 

 
Fig. 2 Group-wise eigenvalue error of U-235 

 

 
Fig. 3 Forward and adjoint fluxes in the fuel 

2. Comparison of group structures 

 

An important application of the eigenvalue analysis tool 

is to verify the progress of cross section library development 

for MPACT. Previously, a 47-group MPACT library was 

developed for PWR applications [4]. However, substantial 

discrepancies were identified when the 47-group library is 

used for BWR calculations. Figs. 4a and 4b show the 

eigenvalue analysis of a 90% void BWR pin cell (Case 12 in 

Table II). The cross section and reaction rate errors in the 

plot correspond to MXS and MRR previously discussed. As 

neutron spectrum becomes harder for a high void BWR pin 

cell, significant errors are observed in the intermediate and 

high energy groups.  

 

 
Fig. 4-a. Eigenvalue error of U-235 for a high void BWR 

pin cell with 47-group library 

 

 
Fig. 4-b. Eigenvalue error of U-238 for a high void BWR 

pin cell with 47-group library 
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To improve the library for BWR applications, the 

recently released 51-group MPACT library refined a few 

resonance groups including the broad group (130eV-

2035eV), and extended the upper energy boundary of self-

shielding calculation from 9118eV to 50keV [5]. Fig. 5 

shows the eigenvalue analysis for the same case with the 51-

group library. The cross section errors are significantly 

reduced as compared to the 47-group library. In some 

groups, the sign of cross section error and reaction rate error 

is different, indicating large biases of neutron flux. These 

biases may result from the inaccuracy of scattering matrices, 

which is an ongoing task of the library development. 

 

 
Fig. 5-a. Eigenvalue error of U-235 for a high void BWR 

pin cell with 51-group library 

 

 
Fig. 5-b. Eigenvalue error of U-238 for a high void BWR 

pin cell with 51-group library 

 

3. Comparison of resonance methods 

Another application of eigenvalue analysis is to verify 

the resonance self-shielding methods. Three self-shielding 

methods are available in MPACT, the physical subgroup 

method (referred to as subgroup method in the rest of the 

paper) [15], the embedded self-shielding method (ESSM) 

[16,17], and ESSM-X [18]. Among a few important physics 

phenomena that a self-shielding model needs to account for 

[19], the long-standing problem, resonance interference, can 

be verified against resonance methods using the eigenvalue 

analysis tool.    

In Fig. 6, eigenvalue analysis is performed for a PWR 

pin cell with 4.1 wt% U-235 enrichment (Case 3 in Table 

II). By comparing the ‘pcm’ error of U-235 in the resonance 

energy range (between the two blue lines), one can easily 

pinpoint the groups that are interfered due to the presence of 

U-238. Since the subgroup method and ESSM 

approximately handle the resonance interference using 

Bondarenko iteration [20], larger errors are observed as 

compare to ESSM-X, in which the slowing-down 

calculation is performed to correct the interference effect. It 

would be straightforward to obtain the percentage errors of 

cross sections and reaction rates, but the percentage errors 

sometimes disguise the groups that may have larger 

contribution to the eigenvalue. For example, Fig. 7 shows 

the percentage error of the same case for subgroup method. 

It looks like the two groups near U-238 6.67eV resonance 

have ~30% errors for U-235, but as converted to eigenvalue, 

the errors are less important than the groups near U-238 

21eV resonance as seen from Fig. 6. 

In addition to the resonance groups, substantial 

discrepancies are found in many thermal groups, where the 

eigenvalue errors are somewhat cancelled out between 

absorption and fission. This is not related to resonance 

interference. Further efforts should be made to improve the 

thermal cross sections, since the biased fission sources may 

affect the power distribution for an assembly or full core 

calculation.  

    

IV. CONCLUSION 

 

The eigenvalue analysis methods have been 

investigated and implemented into the MPACT V&V. The 

neutron balance method could provide useful information 

for a developer to quickly pinpoint the large eigenvalue 

errors in regard to isotope, reaction channel and energy 

group. However, the results of the neutron balance method 

are either a mixture of effects, or less accurate compared to 

the perturbation method. Given the neutron balance method 

is free from adjoint calculation, it can perform a ‘quick and 

rough’ judgement in the quality of a cross section library. 

To obtain the accurate and isolated error information, the 

perturbation method could be used. Further study is needed 

to include the scattering matrix verification, which will 

involve the generation of isotopic scattering matrices from 

Monte Carlo codes. 
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Fig. 6 U-235 eigenvalue analysis for subgroup, ESSM and 

ESSM-X 
*Total error over all resonance groups  

 

 
Fig. 7 Relative error (%) of U-235 cross section with 

subgroup method 

Applications of the eigenvalue analysis include 

verifying the group structure and the resonance self-

shielding methods. Moreover, the analysis can be used for 

mesh convergence study to visualize the trend in reaction 

rate when refining the mesh. This could be a helpful 

addition to optimize the calculation mesh by providing more 

detailed information, rather than a single keff value that could 

bear error cancellations. 
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